Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

GWA-based pleiotropic analysis identified potential SNPs and genes related to type 2 diabetes and obesity

Abstract

Metabolic syndrome is a cluster of symptoms including excessive body fat and insulin resistance which may lead to obesity and type 2 diabetes (T2D). The physiological and pathological cross-talk between T2D and obesity is crucial and complex, meanwhile, the genetic connection between T2D and obesity is largely unknown. The purpose of this study is to identify pleiotropic SNPs and genes between these two associated conditions by applying genetic analysis incorporating pleiotropy and annotation (GPA) on two large genome-wide association studies (GWAS) data sets: a body mass index (BMI) data set containing 339,224 subjects and a T2D data set containing 110,452 subjects. In all, 5182 SNPs showed pleiotropy in both T2D and obesity. After further prioritization based on suggested local false discovery rates (FDR) by the GPA model, 2146 SNPs corresponding to 217 unique genes are significantly associated with both traits (FDR < 0.2), among which 187 are newly identified pleiotropic genes compare with original GWAS in individual traits. Subsequently, gene enrichment and pathway analyses highlighted several pleiotropic SNPs including rs849135 (FDR = 0.0002), rs2119812 (FDR = 0.0018), rs4506565 (FDR = 1.23E−08), rs1558902 (7.23E−10) and corresponding genes JAZF1, SYN2, TCF7L2, FTO which may play crucial rol5es in the etiology of both T2D and obesity. Additional evidences from expression data analysis of pleiotropic genes strongly supports that the pleiotropic genes including JAZF1 (p = 1.39E−05 and p = 2.13E−05), SYN2 (p = 5.49E−03 and p = 5.27E−04), CDKN2C (p = 1.99E−12 and p = 6.27E−11), RABGAP1 (p = 3.08E−03 and p = 7.46E−03), and UBE2E2 (p = 1.83E−04 and p = 8.22E−03) play crucial roles in both obesity and T2D pathogenesis. Pleiotropic analysis integrated with functional network identified several novel and causal SNPs and genes involved in both BMI and T2D which may be ignored in single GWAS.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fall T, Ingelsson E. Genome-wide association studies of obesity and metabolic syndrome. Mol Cell Endocrinol. 2014;382:740–57.

    Article  CAS  PubMed  Google Scholar 

  2. Min JL, Nicholson G, Halgrimsdottir I, Almstrup K, Petri A, Barrett A, et al. Coexpression network analysis in abdominal and gluteal adipose tissue reveals regulatory genetic loci for metabolic syndrome and related phenotypes. PLoS Genet. 2012;8:e1002505.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Kaur J. A comprehensive review on metabolic syndrome. Cardiol Res Pract. 2014;2014:943162.

    PubMed  PubMed Central  Google Scholar 

  4. Kolovou GD, Anagnostopoulou KK, Salpea KD, Mikhailidis DP. The prevalence of metabolic syndrome in various populations. Am J Med Sci. 2007;333:362–71.

    Article  PubMed  Google Scholar 

  5. Desroches S, Lamarche B. The evolving definitions and increasing prevalence of the metabolic syndrome. Appl Physiol Nutr Metab. 2007;32:23–32.

    Article  PubMed  Google Scholar 

  6. Lim SS, Vos T, Flaxman AD. A comparative risk assessment of burden of disease and injury attributable to 67 risk factors and risk factor clusters in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010 (vol 380, pg 2224, 2012). Lancet. 2013;381:1276.

    Article  Google Scholar 

  7. Prospective Studies C, Whitlock G, Lewington S, Sherliker P, Clarke R, Emberson J, et al. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet. 2009;373:1083–96.

    Article  Google Scholar 

  8. Horr S, Nissen S. Managing hypertension in type 2 diabetes mellitus. Best practice & research. Clin Endocrinol Metab. 2016;30:445–54.

    Google Scholar 

  9. Winnier DA, Fourcaudot M, Norton L, Abdul-Ghani MA, Hu SL, Farook VS, et al. Transcriptomic identification of ADH1B as a novel candidate gene for obesity and insulin resistance in human adipose tissue in Mexican Americans from the Veterans Administration Genetic Epidemiology Study (VAGES). Plos ONE. 2015;10:e0119941

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. Bastien M, Poirier P, Lemieux I, Despres JP. Overview of epidemiology and contribution of obesity to cardiovascular disease. Prog Cardiovasc Dis. 2014;56:369–81.

    Article  PubMed  Google Scholar 

  11. Shaw JE, Sicree RA, Zimmet PZ. Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Res Clin Pract. 2010;87:4–14.

    Article  CAS  PubMed  Google Scholar 

  12. Zimmet P, Alberti KG, Shaw J. Global and societal implications of the diabetes epidemic. Nature. 2001;414:782–7.

    Article  CAS  PubMed  Google Scholar 

  13. Kogelman LJ, Zhernakova DV, Westra HJ, Cirera S, Fredholm M, Franke L, et al. An integrative systems genetics approach reveals potential causal genes and pathways related to obesity. Genome Med. 2015;7:105.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. Locke AE, Kahali B, Berndt SI, Justice AE, Pers TH, Day FR, et al. Genetic studies of body mass index yield new insights for obesity biology. Nature. 2015;518:197–206.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Mahajan A, Go MJ, Zhang WH, Below JE, Gaulton KJ, Ferreira T, et al. Genome-wide trans-ancestry meta-analysis provides insight into the genetic architecture of type 2 diabetes susceptibility. Nat Genet. 2014;46:234.

    Article  CAS  PubMed  Google Scholar 

  16. Chung D, Yang C, Li C, Gelernter J, Zhao H. GPA: a statistical approach to prioritizing GWAS results by integrating pleiotropy and annotation. PLoS Genet. 2014;10:e1004787.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. Stearns FW. One hundred years of pleiotropy: a retrospective. Genetics. 2010;186:767–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Paaby AB, Rockman MV. The many faces of pleiotropy. Trends Genet. 2013;29:66–73.

    Article  CAS  PubMed  Google Scholar 

  19. Swa HL, Shaik AA, Lim LH, Gunaratne J. Mass spectrometry based quantitative proteomics and integrative network analysis accentuates modulating roles of annexin-1 in mammary tumorigenesis. Proteomics. 2015;15:408–18.

    Article  CAS  PubMed  Google Scholar 

  20. Wu X, Hasan MA, Chen JY. Pathway and network analysis in proteomics. J Theor Biol. 2014;362:44–52.

    Article  CAS  PubMed  Google Scholar 

  21. Sherman BT, Huang da W, Tan Q, Guo Y, Bour S, Liu D, et al. DAVID Knowledgebase: a gene-centered database integrating heterogeneous gene annotation resources to facilitate high-throughput gene functional analysis. BMC Bioinforma. 2007;8:426.

    Article  CAS  Google Scholar 

  22. Zeng Y, Zhang L, Zhu W, Xu C, He H, Zhou Y, et al. Quantitative proteomics and integrative network analysis identified novel genes and pathways related to osteoporosis. J Proteom. 2016;142:45–52.

    Article  CAS  Google Scholar 

  23. Zhang L, Liu YZ, Zeng Y, Zhu W, Zhao YC, Zhang JG, et al. Network-based proteomic analysis for postmenopausal osteoporosis in caucasian females. Proteomics. 2016;16:12–28

  24. Stancakova A, Civelek M, Saleem NK, Soininen P, Kangas AJ, Cederberg H, et al. Hyperglycemia and a common variant of GCKR are associated with the levels of eight amino acids in 9,369 Finnish men. Diabetes 2012;61:1895–902.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chen L, Magliano DJ, Zimmet PZ. The worldwide epidemiology of type 2 diabetes mellitus-present and future perspectives. Nat Rev Endocrinol. 2012;8:228–36.

    Article  CAS  Google Scholar 

  26. Huang T, Qi Q, Zheng Y, Ley SH, Manson JE, Hu FB, et al. Genetic predisposition to central obesity and risk of type 2 diabetes: two independent cohort studies. Diabetes Care. 2015;38:1306–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Blakemore AI, Buxton JL. Obesity, genetic risk, and environment. BMJ. 2014;348:g1900.

    Article  PubMed  Google Scholar 

  28. Vattikuti S, Guo J, Chow CC. Heritability and genetic correlations explained by common SNPs for metabolic syndrome traits. PLoS Genet. 2012;8:e1002637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. McCarthy MI. Genomics, type 2 diabetes, and obesity. N Engl J Med. 2010;363:2339–50.

    Article  CAS  PubMed  Google Scholar 

  30. Zhu X, Feng T, Tayo BO, Liang J, Young JH, Franceschini N, et al. Meta-analysis of correlated traits via summary statistics from GWASs with an application in hypertension. Am J Hum Genet. 2015;96:21–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Andreassen OA, Thompson WK, Schork AJ, Ripke S, Mattingsdal M, Kelsoe JR, et al. Correction: improved detection of common variants associated with schizophrenia and bipolar disorder using pleiotropy-informed conditional false discovery rate. PLoS Genet. 2015;11:e1005544.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. Corvin A, Craddock N, Sullivan PF. Genome-wide association studies: a primer. Psychol Med. 2010;40:1063–77.

    Article  CAS  PubMed  Google Scholar 

  33. Korte A, Farlow A. The advantages and limitations of trait analysis with GWAS: a review. Plant Methods. 2013;9:29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Ramasamy A, Trabzuni D, Guelfi S, Varghese V, Smith C, Walker R, et al. Genetic variability in the regulation of gene expression in ten regions of the human brain. Nat Neurosci. 2014;17:1418–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Consortium GT. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015;348:648–60.

    Article  CAS  Google Scholar 

  36. Langberg KA, Ma L, Sharma NK, Hanis CL, Elbein SC, Hasstedt SJ, et al. Single nucleotide polymorphisms in JAZF1 and BCL11A gene are nominally associated with type 2 diabetes in African-American families from the GENNID study. J Hum Genet. 2012;57:57–61.

    Article  CAS  PubMed  Google Scholar 

  37. Schleinitz D, Tonjes A, Bottcher Y, Dietrich K, Enigk B, Koriath M, et al. Lack of significant effects of the type 2 diabetes susceptibility loci JAZF1, CDC123/CAMK1D, NOTCH2, ADAMTS9, THADA, and TSPAN8/LGR5 on diabetes and quantitative metabolic traits. Horm Metab Res. 2010;42:14–22.

    Article  CAS  PubMed  Google Scholar 

  38. Stevens VL, Ahn J, Sun J, Jacobs EJ, Moore SC, Patel AV, et al. HNF1B and JAZF1 genes, diabetes, and prostate cancer risk. Prostate. 2010;70:601–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Jang WY, Bae KB, Kim SH, Yu DH, Kim HJ, Ji YR, et al. Overexpression of Jazf1 reduces body weight gain and regulates lipid metabolism in high fat diet. Biochem Biophys Res Commun. 2014;444:296–301.

    Article  PubMed  CAS  Google Scholar 

  40. Ming GF, Xiao D, Gong WJ, Liu HX, Liu J, Zhou HH, et al. JAZF1 can regulate the expression of lipid metabolic genes and inhibit lipid accumulation in adipocytes. Biochem Bioph Res Commun. 2014;445:673–80.

    Article  CAS  Google Scholar 

  41. Li L, Yang Y, Yang GY, Lu CM, Yang ML, Liu H, et al. The role of JAZF1 on lipid metabolism and related genes in vitro. Metabolism. 2011;60:523–30.

    Article  CAS  PubMed  Google Scholar 

  42. Sharma NK, Langberg KA, Mondal AK, Elbein SC, Das SK. Type 2 diabetes (T2D) associated polymorphisms regulate expression of adjacent transcripts in transformed lymphocytes, adipose, and muscle from Caucasian and African-American subjects. J Clin Endocrinol Metab. 2011;96:E394–403.

    Article  CAS  PubMed  Google Scholar 

  43. Popa E, Rusu A, Purcarea C. Methanobrevibacter smithii carbamoyl phosphate synthetase, a missing link and a putative target for obesity prevention. Curr Opin Biotech. 2011;22:S81.

    Article  Google Scholar 

  44. Rodriguez-Acebes S, Palacios N, Botella-Carretero JI, Olea N, Crespo L, Peromingo R, et al. Gene expression profiling of subcutaneous adipose tissue in morbid obesity using a focused microarray: distinct expression of cell-cycle- and differentiation-related genes. BMC Med Genomics. 2010;3:61.

  45. Zhao Y, Shi K, Su X, Xie L, Yan Y. Microcystin-LR induces dysfunction of insulin secretion in rat insulinoma (INS-1) cells: implications for diabetes mellitus. J Hazard Mater. 2016;314:11–21.

    Article  CAS  PubMed  Google Scholar 

  46. Claussnitzer M, Dankel SN, Kim KH, Quon G, Meuleman W, Haugen C, et al. FTO obesity variant circuitry and adipocyte browning in humans. N Engl J Med. 2015;373:895–907.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jia GF, Fu Y, Zhao X, Dai Q, Zheng GQ, Yang Y, et al. N6-Methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO (vol 7, pg 885, 2011). Nat Chem Biol. 2012;8:1008.

    Article  CAS  Google Scholar 

  48. Wang TL, Hong TT, Huang Y, Su HM, Wu F, Chen Y, et al. Fluorescein derivatives as bifunctional molecules for the simultaneous inhibiting and labeling of FTO protein. J Am Chem Soc. 2015;137:13736–9.

    Article  CAS  PubMed  Google Scholar 

  49. Chen X, Ayala I, Shannon C, Fourcaudot M, Acharya NK, Jenkinson CP, et al. The diabetes gene and wnt pathway effector TCF7L2 regulates adipocyte development and function. Diabetes. 2018;67:554–68.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We thank our laboratory members for the collaboration and helpful discussion.

Funding

This study was partially supported by grants from NIH (R01AR059781 and R01MH104680) and Edward G. Schlieder Endowment. The study also benefited from the National Natural Science Foundation of China (31371194) and the Fundamental Research Funds from the Central Universities (2013JBM098).

Author information

Authors and Affiliations

Authors

Contributions

HWD and YZ conceived the idea and designed the study. YZ performed GPA analysis. YZ, HH, LZ, WZ and HS participated in data manipulation or data analysis. YZ and HWD wrote and revised the paper.

Corresponding author

Correspondence to Hong-Wen Deng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Y., He, H., Zhang, L. et al. GWA-based pleiotropic analysis identified potential SNPs and genes related to type 2 diabetes and obesity. J Hum Genet 66, 297–306 (2021). https://doi.org/10.1038/s10038-020-00843-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-020-00843-4

This article is cited by

Search

Quick links