Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

The third case of TNFRSF11A-associated dysosteosclerosis with a mutation producing elongating proteins

Abstract

Dysosteosclerosis (DOS) is a distinct form of sclerosing bone disease characterized by platyspondyly and progressive osteosclerosis. DOS is genetically heterogeneous. Three causal genes, SLC29A3, CSF1R, and TNFRSF11A are reported. TNFRSF11A-associated DOS has been identified in two patients; however, TNFRSF11A is also a causal gene for osteopetrosis, autosomal recessive 7 (OP-AR7). Whole-exome sequencing in a patient with sclerosing bone disease identified novel compound heterozygous variants (c.414_427 + 7del, c.1664del) in TNFRSF11A. We examined the impact of the two variants on five splicing isoforms of TNFRSF11A by RT-PCR. We found that c.1664del resulted in elongated proteins (p.S555Cfs*121, etc.), while c.414_427 + 7del generated two aberrant splicing products (p.A139Wfs*19 and p.E132Dfs*19) that lead to nonsense mediated mRNA decay (NMD). In the previous two cases of TNFRSF11A-associated DOS, their mutations produced truncated TNFRSF11A protein isoforms. The mutations in all three cases thus contrast with TNFRSF11A mutations reported in OP-AR7, which does not generated truncated or elongated TNFRSF11A proteins. Thus, we identified the third case of TNFRSF11A-associated DOS and reinforced the genotype–phenotype correlation that aberrant protein-producing TNFRSF11A mutations cause DOS.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Mortier GR, Cohn DH, Cormier-Daire V, Hall C, Krakow D, Mundlos S, et al. Nosology and classification of genetic skeletal disorders: 2019 revision. Am J Med Genet Part A. 2019;179:2393–419.

    Article  Google Scholar 

  2. Spranger J, Albrecht C, Rohwedder HJ, Wiedemann HR. Dysosteosclerosis-a special form of generalized osteosclerosis. Fortschr Geb Rontgenstr Nuklearmed. 1968;109:504–12.

    Article  CAS  Google Scholar 

  3. Houston CS, Gerrard JW, Ives EJ. Dysosteosclerosis. Am J Roentgenol. 1978;130:988–91.

    Article  CAS  Google Scholar 

  4. Whyte MP, Wenkert D, McAlister WH, Novack DV, Nenninger AR, Zhang X, et al. Dysosteosclerosis presents as an ‘Osteoclast-Poor’ form of osteopetrosis: comprehensive investigation of a 3-year-old girl and literature review. J Bone Min Res. 2010;25:2527–39.

    Article  Google Scholar 

  5. Elçioglu NH, Vellodi A, Hall CM. Dysosteosclerosis: a report of three new cases and evolution of the radiological findings. J Med Genet. 2002;39:603–7.

    Article  Google Scholar 

  6. Pascual-Castroviejo I, Casas-Fernandez C, Lopez-Martin V, Martinez-Bermejo A. X-linked dysosteosclerosis. Eur J Pediatr. 1977;126:127–38.

    Article  CAS  Google Scholar 

  7. Campeau PM, Lu JT, Sule G, Jiang MM, Bae Y, Madan S, et al. Whole-exome sequencing identifies mutations in the nucleoside transporter gene SLC29A3 in dysosteosclerosis, a form of osteopetrosis. Hum Mol Genet. 2012;21:4904–9.

    Article  CAS  Google Scholar 

  8. Turan S, Mumm S, Gottesman GS, Abali S, Serpil B, Atay Z, et al. Dysosteosclerosis from a unique mutation in SLC29A3. Bone Abstr. 2015;4:97.

    Google Scholar 

  9. Howaldt A, Nampoothiri S, Quell LM, Ozden A, Fischer-Zirnsak B, Collet C, et al. Sclerosing bone dysplasias with hallmarks of dysosteosclerosis in four patients carrying mutations in SLC29A3 and TCIRG1. Bone. 2019;120:495–503.

    Article  CAS  Google Scholar 

  10. Guo L, Bertola DR, Takanohashi A, Saito A, Segawa Y, Yokota T, et al. Bi-Allelic CSF1R mutations cause skeletal dysplasia of Dysosteosclerosis-Pyle disease spectrum and degenerative encephalopathy with brain malformation. Am J Hum Genet. 2019;104:925–35.

    Article  CAS  Google Scholar 

  11. Guo L, Elcioglu NH, Karalar OK, Topkar MO, Wang Z, Sakamoto Y, et al. Dysosteosclerosis is also caused by TNFRSF11A mutation. J Hum Genet. 2018;63:769–74.

    Article  CAS  Google Scholar 

  12. Xue JY, Wang Z, Shinagawa S, Ohashi H, Otomo N, Elcioglu NH, et al. TNFRSF11A-associated dysosteosclerosis: a report of the second case and characterization of the phenotypic spectrum. J Bone Miner Res. 2019;34:1873–9.

    Article  CAS  Google Scholar 

  13. Liu W, Zhang X. Receptor activator of nuclear factor-κB ligand (RANKL)/RANK/osteoprotegerin system in bone and other tissues. Mol Med Rep. 2015;11:3212–8.

    Article  CAS  Google Scholar 

  14. Xing L, Chen D, Boyce BF. Mice deficient in NF-κB p50 and p52 or RANK have defective growth plate formation and post-natal dwarfism. Bone Res. 2013;1:336–45.

    Article  CAS  Google Scholar 

  15. Walsh MC, Choi Y. Biology of the RANKL-RANK-OPG system in immunity, bone, and beyond. Front Immunol. 2014;5:511.

    Article  Google Scholar 

  16. Hughes AE, Ralston SH, Marken J, Bell C, MacPherson H, Wallace RG, et al. Mutations in TNFRSF11A, affecting the signal peptide of RANK, cause familial expansile osteolysis. Nat Genet. 2000;24:45–8.

    Article  CAS  Google Scholar 

  17. Johnson-Pais TL, Singer FR, Bone HG, McMurray CT, Hansen MF, Leach RJ. Identification of a novel tandem duplication in exon 1 of the TNFRSF11A gene in two unrelated patients with familial expansile osteolysis. J Bone Miner Res. 2003;18:376–80.

    Article  CAS  Google Scholar 

  18. Nakatsuka K, Nishizawa Y, Ralston SH. Phenotypic characterization of early onset Paget’s disease of bone caused by a 27-bp duplication in the TNFRSF11A gene. J Bone Miner Res. 2003;18:1381–5.

    Article  CAS  Google Scholar 

  19. Whyte MP, Tau C, McAlister WH, Zhang X, Novack DV, Preliasco V, et al. Juvenile Paget’s disease with heterozygous duplication within TNFRSF11A encoding RANK. Bone. 2014;68:153–61.

    Article  CAS  Google Scholar 

  20. Whyte MP, Hughes AE. Expansile skeletal hyperphosphatasia is caused by a 15-base pair tandem duplication in TNFRSF11A encoding RANK and is allelic to familial expansile osteolysis. J Bone Miner Res. 2002;17:26–9.

    Article  CAS  Google Scholar 

  21. Guerrini MM, Sobacchi C, Cassani B, Abinun M, Kilic SS, Pangrazio A, et al. Human osteoclast-poor osteopetrosis with hypogammaglobulinemia due to TNFRSF11A (RANK) mutations. Am J Hum Genet. 2008;83:64–76.

    Article  CAS  Google Scholar 

  22. Pangrazio A, Cassani B, Guerrini MM, Crockett JC, Marrella V, Zammataro L, et al. RANK-dependent autosomal recessive osteopetrosis: characterization of five new cases with novel mutations. J Bone Min Res. 2012;27:342–51.

    Article  CAS  Google Scholar 

  23. Spranger JW, Brill PW, Hall C, Nishimura G, Superti-Furga A, Unger S, editors. Bone dysplasias: an atlas of genetic disorders of skeletal development. New York: Oxford University Press; 2018.

  24. Theoleyre S, Wittrant Y, Tat SK, Fortun Y, Redini F, Heymann D. The molecular triad OPG/RANK/RANKL: involvement in the orchestration of pathophysiological bone remodeling. Cytokine Growth Factor Rev. 2004;15:457–75.

    Article  CAS  Google Scholar 

  25. Armstrong AP, Tometsko ME, Glaccum M, Sutherland CL, Cosman D, Dougall WC. A RANK/TRAF6-dependent signal transduction pathway is essential for osteoclast cytoskeletal organization and resorptive function. J Biol Chem. 2002;277:44347–56.

    Article  CAS  Google Scholar 

  26. Wei L, Duorong X, Hongmei Y. Functional identification of three RANK cytoplasmic motif mediating osteoclast differentiation and function. J Biol Chem. 2004;279:54759–69.

    Article  Google Scholar 

  27. Liu W, Xu D, Yang H, Xu H, Shi Z, Cao X, et al. Functional identification of three receptor activator of NF-κB cytoplasmic motifs mediating osteoclast differentiation and function. J Biol Chem. 2004;279:54759–69.

    Article  CAS  Google Scholar 

  28. Li Y, Shi Z, Jules J, Chen S, Kesterson RA, Zhao D, et al. Specific RANK cytoplasmic motifs drive osteoclastogenesis. J Bone Miner Res. 2019;34:1938–51.

    Article  CAS  Google Scholar 

  29. Wei Y, Zhan Y, Chen P, Liu Z, Zhang H, Liu D, et al. Heterologous expression, purification and function of the extracellular domain of human RANK. BMC Biotechnol. 2017;17:87.

    Article  Google Scholar 

  30. Ikebuchi Y, Aoki S, Honma M, Hayashi M, Sugamori Y, Khan M, et al. Coupling of bone resorption and formation by RANKL reverse signalling. Nature. 2018;561:195–200.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Mrs. Tomoko Otsuki for the technical support. This study is supported by grants from the Japan Society for the Promotion of Science (SI, No. 18H02932) and the Japan Agency For Medical Research and Development (SI, No. 20bm0804006h0104 and 20ek0109486h0001; NM, JP20ek0109486, JP20ek0109301, JP20ek0109348, and JP20kk0205012), CAMS Initiative Fund for Medical Sciences (ZW, 2016-I2M-3-003) and RIKEN Incentive Research Projects (ZW, 201801062228).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shiro Ikegawa or Long Guo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xue, JY., Wang, Z., Smithson, S.F. et al. The third case of TNFRSF11A-associated dysosteosclerosis with a mutation producing elongating proteins. J Hum Genet 66, 371–377 (2021). https://doi.org/10.1038/s10038-020-00831-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-020-00831-8

Search

Quick links