A genome-wide association study reveals a substantial genetic basis underlying the Ebbinghaus illusion

Abstract

The Ebbinghaus illusion (EI) is an optical illusion of relative size perception that reflects the contextual integration ability in the visual modality. The current study investigated the genetic basis of two subtypes of EI, EI overestimation, and EI underestimation in humans, using quantitative genomic analyses. A total of 2825 Chinese adults were tested on their magnitudes of EI overestimation and underestimation using the method of adjustment, a standard psychophysical protocol. Heritability estimation based on common single nucleotide polymorphisms (SNPs) revealed a moderate heritability (34.3%) of EI overestimation but a nonsignificant heritability of EI underestimation. A meta-analysis of two phases (phase 1: n = 1986, phase 2: n = 839) of genome-wide association study (GWAS) discovered 1969 and 58 SNPs reaching genome-wide significance for EI overestimation and EI underestimation, respectively. Among these SNPs, 55 linkage-disequilibrium-independent SNPs were associated with EI overestimation in phase 1 with genome-wide significance and their associations could be confirmed in phase 2 cohort. Gene-based analyses found seven genes to be associated with EI overestimation at the genome-wide level, two from meta-analysis, and five from classical two-stage analysis. Overall, this study provided consistent evidence for a substantial genetic basis of the Ebbinghaus illusion.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Boelte S, Holtmann M, Poustka F, Scheurich A, Schmidt L. Gestalt perception and local-global processing in high-functioning autism. J Autism Dev Disord. 2007;37:1493–504.

    Google Scholar 

  2. 2.

    Dakin S, Frith U. Vagaries of visual perception in autism. Neuron. 2005;48:497–507.

    PubMed  CAS  Google Scholar 

  3. 3.

    Manning C, Morgan MJ, Allen CTW, Pellicano E. Susceptibility to Ebbinghaus and Muller-Lyer illusions in autistic children: a comparison of three different methods. Mol Autism. 2017;8:16.

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Uhlhaas PJ, Phillips WA, Mitchell G, Silverstein SM. Perceptual grouping in disorganized schizophrenia. Psychiatry Res. 2006;145:105–17.

    PubMed  Google Scholar 

  5. 5.

    Bressan P, Kramer P. The relation between cognitive-perceptual schizotypal traits and the Ebbinghaus size-illusion is mediated by judgment time. Front Psychol. 2013;4:343.

    PubMed  PubMed Central  Google Scholar 

  6. 6.

    Doherty MJ, Campbell NM, Tsuji H, Phillips WA. The Ebbinghaus illusion deceives adults but not young children. Dev Sci. 2010;13:714–21.

    PubMed  Google Scholar 

  7. 7.

    Bremner AJ, Doherty MJ, Caparos S, de Fockert J, Linnell KJ, Davidoff J. Effects of culture and the urban environment on the development of the Ebbinghaus Illusion. Child Dev. 2016;87:962–81.

    PubMed  Google Scholar 

  8. 8.

    Yamazaki Y, Otsuka Y, Kanazawa S, Yamaguchi MK. Perception of the Ebbinghaus illusion in 5-to 8-month-old infants. Jpn Psychol Res. 2010;52:33–40.

    Google Scholar 

  9. 9.

    Coren S, Porac C. Heritability in visual-geometric illusions: a family study. Perception. 1979;8:303–9.

    PubMed  CAS  Google Scholar 

  10. 10.

    Schwarzkopf DS, Song C, Rees G. The surface area of human V1 predicts the subjective experience of object size. Nat Neurosci. 2011;14:28–30.

    PubMed  CAS  Google Scholar 

  11. 11.

    Chen CH, Peng Q, Schork AJ, Lo MT, Fan CC, Wang Y, et al. Large-scale genomics unveil polygenic architecture of human cortical surface area. Nat Commun. 2015;6:7.

    Google Scholar 

  12. 12.

    Yang J, Lee SH, Goddard ME, Visscher PM. GCTA: a tool for genome-wide complex trait analysis. Am J Hum Genet. 2011;88:76–82.

    PubMed  PubMed Central  CAS  Google Scholar 

  13. 13.

    Chen B, Zhu Z, Na R, Fang W, Zhang W, Zhou Q, et al. Genomic analyses of visual cognition: perceptual rivalry and top-down control. J Neurosci. 2018;38:9668–78.

    PubMed  PubMed Central  CAS  Google Scholar 

  14. 14.

    Zhu Z, Chen B, Na R, Fang W, Zhang W, Zhou Q, et al. Heritability of human visual contour integration-an integrated genomic study. Eur J Hum Genet. 2019;27:1867–75.

    PubMed  CAS  Google Scholar 

  15. 15.

    Purcell S, Neale B, Todd-Brown K, Thomas L, Ferreira MAR, Bender D, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81:559–75.

    PubMed  PubMed Central  CAS  Google Scholar 

  16. 16.

    Price AL, Patterson NJ, Plenge RM, Weinblatt ME, Shadick NA, Reich D. Principal components analysis corrects for stratification in genome-wide association studies. Nat Genet. 2006;38:904–9.

    PubMed  CAS  Google Scholar 

  17. 17.

    Yang J, Benyamin B, McEvoy BP, Gordon S, Henders AK, Nyholt DR, et al. Common SNPs explain a large proportion of the heritability for human height. Nat Genet. 2010;42:565–U131.

    PubMed  PubMed Central  CAS  Google Scholar 

  18. 18.

    Visscher PM, Hemani G, Vinkhuyzen AAE, Chen G-B, Lee SH, Wray NR, et al. Statistical power to detect genetic (Co)variance of complex traits using snp data in unrelated samples. Plos Genet. 2014;10:e1004269.

    PubMed  PubMed Central  Google Scholar 

  19. 19.

    Delaneau O, Marchini J, Zagury J-F. A linear complexity phasing method for thousands of genomes. Nat Methods. 2012;9:179–81.

    CAS  Google Scholar 

  20. 20.

    Howie B, Fuchsberger C, Stephens M, Marchini J, Abecasis GR. Fast and accurate genotype imputation in genome-wide association studies through pre-phasing. Nat Genet. 2012;44:955.

    PubMed  PubMed Central  CAS  Google Scholar 

  21. 21.

    Howie BN, Donnelly P, Marchini J. A flexible and accurate genotype imputation method for the next generation of genome-wide association studies. Plos Genet. 2009;5:e1000529.

    PubMed  PubMed Central  Google Scholar 

  22. 22.

    Marchini J, Howie B, Myers S, McVean G, Donnelly P. A new multipoint method for genome-wide association studies by imputation of genotypes. Nat Genet. 2007;39:906–13.

    PubMed  CAS  Google Scholar 

  23. 23.

    Gauderman WJ, Morrison JM, Morrison W. QUANTO 1.1: a computer program for power and sample size calculations for genetic-epidemiology studies. 2006. https://hydrauscedu/gxe

  24. 24.

    Willer CJ, Li Y, Abecasis GR. METAL: fast and efficient meta-analysis of genomewide association scans. Bioinformatics. 2010;26:2190–1.

    PubMed  PubMed Central  CAS  Google Scholar 

  25. 25.

    de Leeuw CA, Mooij JM, Heskes T, Posthuma D. MAGMA: generalized gene-set analysis of GWAS data. Plos Comput Biol. 2015;11:e1004219.

    PubMed  PubMed Central  Google Scholar 

  26. 26.

    Ripke S, Neale BM, Corvin A, Walters JTR, Farh K-H, Holmans PA, et al. Biological insights from 108 schizophrenia-associated genetic loci. Nature. 2014;511:421.

    PubMed Central  CAS  Google Scholar 

  27. 27.

    King DJ, Hodgekins J, Chouinard PA, Chouinard V-A, Sperandio I. A review of abnormalities in the perception of visual illusions in schizophrenia. Psychonomic Bull Rev. 2017;24:734–51.

    Google Scholar 

  28. 28.

    Uhlhaas PJ, Silverstein SM, Phillips WA, Lovell PG. Evidence for impaired visual context processing in schizotypy with thought disorder. Schizophrenia Res. 2004;68:249–60.

    Google Scholar 

  29. 29.

    Lam M, Chen C-Y, Li Z, Martin AR, Bryois J, Ma X, et al. Comparative genetic architectures of schizophrenia in East Asian and European populations. Nat Genet. 2019;51:1670.

    PubMed  PubMed Central  CAS  Google Scholar 

  30. 30.

    Li Z, Chen J, Yu H, He L, Xu Y, Zhang D, et al. Genome-wide association analysis identifies 30 new susceptibility loci for schizophrenia. Nat Genet. 2017;49:1576.

    PubMed  CAS  Google Scholar 

  31. 31.

    Yu HG, Yan HK, Li JM, Li ZP, Zhang XD, Ma YC, et al. Common variants on 2p16.1, 6p22.1 and 10q24.32 are associated with schizophrenia in Han Chinese population. Mol Psychiatr. 2017;22:954–60.

    CAS  Google Scholar 

  32. 32.

    Needleman LA, McAllister AK. The major histocompatibility complex and autism spectrum disorder. Dev Neurobiol. 2012;72:1288–301.

    PubMed  PubMed Central  CAS  Google Scholar 

  33. 33.

    Huh GS, Boulanger LM, Du H, Riquelme PA, Brotz TM, Shatz CJ. Functional requirement for class I MHC in CNS development and plasticity. Sci (N. Y, NY). 2000;290:2155–9.

    CAS  Google Scholar 

  34. 34.

    Higenell V, Ruthazer ES. Layers upon Layers: MHC Class I acts in the retina to influence thalamic segregation. Neuron. 2010;65:439–41.

    PubMed  CAS  Google Scholar 

  35. 35.

    Lee H, Brott BK, Kirkby LA, Adelson JD, Cheng S, Feller MB, et al. Synapse elimination and learning rules co-regulated by MHC class I H2-D-b. Nature. 2014;509:195.

    PubMed  PubMed Central  CAS  Google Scholar 

  36. 36.

    Braskie MN, Jahanshad N, Stein JL, Barysheva M, Johnson K, McMahon KL, et al. Relationship of a variant in the NTRK1 gene to white matter microstructure in young adults. J Neurosci. 2012;32:5964–72.

    PubMed  PubMed Central  CAS  Google Scholar 

  37. 37.

    Sawal HA, Ullah MI, Ahmad A, Nasir A, Amar A, Khan EA, et al. Homozygous mutations in NTRK1 gene underlie congenital insensitivity to pain with anhidrosis in Pakistani families. Neurology. Asia. 2016;21:129–36.

    Google Scholar 

  38. 38.

    Liu Z, Liu J, Liu G, Cao W, Liu S, Chen Y, et al. Phenotypic heterogeneity of intellectual disability in patients with congenital insensitivity to pain with anhidrosis: a case report and literature review. J Int Med Res. 2018;46:2445–57.

    PubMed  PubMed Central  Google Scholar 

  39. 39.

    Swaminathan S, Kim S, Shen L, Risacher SL, Foroud T, Pankratz N, et al. Genomic copy number analysis in alzheimer’s disease and mild cognitive impairment: an ADNI study. Int J Alzheimer’s Dis. 2011;2011:729478.

    Google Scholar 

  40. 40.

    Uys GM, Ramburan A, Loos B, Kinnear CJ, Korkie LJ, Mouton J, et al. Myomegalin is a novel A-kinase anchoring protein involved in the phosphorylation of cardiac myosin binding protein C. Bmc Cell Biol. 2011;12:18.

    PubMed  PubMed Central  CAS  Google Scholar 

  41. 41.

    Brunetti-Pierri N, Berg JS, Scaglia F, Belmont J, Bacino CA, Sahoo T, et al. Recurrent reciprocal 1q21.1 deletions and duplications associated with microcephaly or macrocephaly and developmental and behavioral abnormalities. Nat Genet. 2008;40:1466–71.

    PubMed  PubMed Central  CAS  Google Scholar 

  42. 42.

    McLellan AS, Fischer B, Dveksler G, Hori T, Wynne F, Ball M, et al. Structure and evolution of the mouse pregnancy-specific glycoprotein (Psg) gene locus. BMC Genom. 2005;6:4.

    Google Scholar 

  43. 43.

    Shannon RW, Patrick CJ, Jiang Y, Bernat E, He S. Genes contribute to the switching dynamics of bistable perception. J Vis. 2011;11:8, 1-7.

    PubMed  Google Scholar 

  44. 44.

    Wang Y, Wang L, Xu Q, Liu D, Chen LH, Troje NF, et al. Heritable aspects of biological motion perception and its covariation with autistic traits. Proc Natl Acad Sci USA. 2018;115:1937–42.

    PubMed  CAS  Google Scholar 

  45. 45.

    Shakeshaft NG, Plomin R. Genetic specificity of face recognition. Proc Natl Acad Sci USA. 2015;112:12887–92.

    PubMed  CAS  Google Scholar 

  46. 46.

    Wilmer JB, Germine L, Chabris CF, Chatterjee G, Williams M, Loken E, et al. Human face recognition ability is specific and highly heritable. Proc Natl Acad Sci USA. 2010;107:5238–41.

    PubMed  CAS  Google Scholar 

  47. 47.

    Haak KV. Genetic influence on contrast sensitivity in young adults. Acta Ophthalmologica 2019;97:E663–4.

    PubMed  Google Scholar 

  48. 48.

    Coleman JRI, Lester KJ, Keers R, Munafo MR, Breen G, Eley TC. Genome-wide association study of facial emotion recognition in children and association with polygenic risk for mental health disorders. Am J Med Genet Part B-Neuropsychiatr Genet. 2017;174:701–11.

    CAS  Google Scholar 

  49. 49.

    Warrier V, Grasby KL, Uzefovsky F, Toro R, Smith P, Chakrabarti B, et al. Genome-wide meta-analysis of cognitive empathy: heritability, and correlates with sex, neuropsychiatric conditions and cognition. Mol Psychiatr. 2018;23:1402–9.

    CAS  Google Scholar 

  50. 50.

    Bosten JM, Goodbourn PT, Lawrance-Owen AJ, Bargary G, Hogg RE, Mollon JD. A population study of binocular function. Vis Res. 2015;110:34–50.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Projects 31930053, 31421003 and 31671168). We are grateful to Zhangyan Guan and Huizhen Yang for help with DNA preparation.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Yi Rao or Fang Fang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhu, Z., Chen, B., Na, R. et al. A genome-wide association study reveals a substantial genetic basis underlying the Ebbinghaus illusion. J Hum Genet (2020). https://doi.org/10.1038/s10038-020-00827-4

Download citation

Search