Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Mutations in MTHFR and POLG impaired activity of the mitochondrial respiratory chain in 46-year-old twins with spastic paraparesis

Abstract

Hereditary spastic paraplegias (HSPs) are characterized by lower extremity spasticity and weakness. HSP is often caused by mutations in SPG genes, but it may also be produced by inborn errors of metabolism. We performed next-generation sequencing of 4813 genes in one adult twin pair with HSP and severe muscular weakness occurring at the same age. We found two pathogenic compound heterozygous variants in MTHFR, including a variant not referenced in international databases, c.197C>T (p.Pro66Leu) and a known variant, c.470G>A (p.Arg157Gln), and two heterozygous pathogenic variants in POLG, c.1760C>T (p.Pro587Leu) and c.752C>T (p.Thr251Ile). MTHFR and POLG mutations were consistent with the severe muscle weakness and the metabolic changes, including hyperhomocysteinemia and decreased activity of both N(5,10)methylenetetrahydrofolate reductase (MTHFR) and complexes I and II of the mitochondrial respiratory chain. These data suggest the potential role of MTHFR and POLG mutations through consequences on mitochondrial dysfunction in the occurrence of spastic paraparesis phenotype with combined metabolic, muscular, and neurological components.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Kara E, Tucci A, Manzoni C, Lynch DS, Elpidorou M, Bettencourt C, et al. Genetic and phenotypic characterization of complex hereditary spastic paraplegia. Brain. 2016;139:1904–18.

    Article  Google Scholar 

  2. Hensiek A, Kirker S, Reid E. Diagnosis, investigation and management of hereditary spastic paraplegias in the era of next-generation sequencing. J Neurol. 2015;262:1601–12.

    Article  CAS  Google Scholar 

  3. Sedel F, Fontaine B, Saudubray JM, Lyon-Caen O. Hereditary spastic paraparesis in adults associated with inborn errors of metabolism: a diagnostic approach. J Inherit Metab Dis. 2007;30:855–64.

    Article  CAS  Google Scholar 

  4. Hedera P. Hereditary Spastic Paraplegia Overview. In: Adam MP, Ardinger HH, Pagon RA, Wallace SE, Bean LJH, editors. GeneReviews®. Seattle (WA): University of Washington, Seattle; 1993–2019.

  5. Perna A, Masciullo M, Modoni A, Cellini E, Parrini E, Ricci E, et al. Severe 5,10-methylenetetrahydrofolate reductase deficiency: a rare, treatable cause of complicated hereditary spastic paraplegia. Eur J Neurol. 2018;25:602–5.

    Article  CAS  Google Scholar 

  6. MacArthur DG, Manolio TA, Dimmock DP, Rehm HL, Shendure J, Abecasis GR, et al. Guidelines for investigating causality of sequence variants in human disease. Nature. 2014;508:469–76.

    Article  CAS  Google Scholar 

  7. Singleton MV, Guthery SL, Voelkerding KV, Chen K, Kennedy B, Margraf RL, et al. Phevor combines multiple biomedical ontologies for accurate identification of disease-causing alleles in single individuals and small nuclear families. Am J Hum Genet. 2014;94:599–610.

    Article  CAS  Google Scholar 

  8. Schwarz JM, Cooper DN, Schuelke M, Seelow D. MutationTaster2: mutation prediction for the deep-sequencing age. Nat Methods. 2014;11:361–2.

    Article  CAS  Google Scholar 

  9. Shihab HA, Gough J, Cooper DN, Stenson PD, Barker GL, Edwards KJ, et al. Predicting the functional, molecular, and phenotypic consequences of amino acid substitutions using hidden Markov models. Hum Mutat. 2013;34:57–65.

    Article  CAS  Google Scholar 

  10. Dong C, Wei P, Jian X, Gibbs R, Boerwinkle E, Wang K, et al. Comparison and integration of deleteriousness prediction methods for nonsynonymous SNVs in whole exome sequencing studies. Hum Mol Genet. 2015;24:2125–37.

    Article  CAS  Google Scholar 

  11. Kumar P, Henikoff S, Ng PC. Predicting the effects of coding non-synonymous variants on protein function using the SIFT algorithm. Nat Protoc. 2009;4:1073–81.

    Article  CAS  Google Scholar 

  12. Choi Y, Chan AP. PROVEAN web server: a tool to predict the functional effect of amino acid substitutions and indels. Bioinformatics. 2015;31:2745–7.

    Article  CAS  Google Scholar 

  13. Quang D, Chen Y, Xie X. DANN: a deep learning approach for annotating the pathogenicity of genetic variants. Bioinformatics. 2015;31:761–3.

    Article  CAS  Google Scholar 

  14. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier-Foster J, et al. Standards and guidelines for the interpretation of sequence variants: a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology. Genet Med. 2015;17:405–24.

    Article  Google Scholar 

  15. Forges T, Chery C, Audonnet S, Feillet F, Gueant JL. Life-threatening methylenetetrahydrofolate reductase (MTHFR) deficiency with extremely early onset: characterization of two novel mutations in compound heterozygous patients. Mol Genet Metab. 2010;100:143–8.

    Article  CAS  Google Scholar 

  16. Garcia MM, Gueant-Rodriguez RM, Pooya S, Brachet P, Alberto JM, Jeannesson E, et al. Methyl donor deficiency induces cardiomyopathy through altered methylation/acetylation of PGC-1alpha by PRMT1 and SIRT1. J Pathol. 2011;225:324–35.

    Article  CAS  Google Scholar 

  17. Goyette P, Sumner JS, Milos R, Duncan AM, Rosenblatt DS, Matthews RG, et al. Human methylenetetrahydrofolate reductase: isolation of cDNA, mapping and mutation identification. Nat Genet. 1994;7:195–200.

    Article  CAS  Google Scholar 

  18. Ferrari G, Lamantea E, Donati A, Filosto M, Briem E, Carrara F, et al. Infantile hepatocerebral syndromes associated with mutations in the mitochondrial DNA polymerase-gammaA. Brain. 2005;128:723–31.

    Article  Google Scholar 

  19. Scuderi C, Borgione E, Castello F, Lo Giudice M, Santa Paola S, Giambirtone M, et al. The in cis T251I and P587L POLG1 base changes: description of a new family and literature review. Neuromuscul Disord. 2015;25:333–9.

    Article  Google Scholar 

  20. Lek M, Karczewski KJ, Minikel EV, Samocha KE, Banks E, Fennell T, et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature. 2016;536:285–91.

    Article  CAS  Google Scholar 

  21. Haworth JC, Dilling LA, Surtees RA, Seargeant LE, Lue-Shing H, Cooper BA, et al. Symptomatic and asymptomatic methylenetetrahydrofolate reductase deficiency in two adult brothers. Am J Med Genet. 1993;45:572–6.

    Article  CAS  Google Scholar 

  22. Bathgate D, Yu-Wai-Man P, Webb B, Taylor RW, Fowler B, Chinnery PF. Recessive spastic paraparesis associated with complex I deficiency due to MTHFR mutations. J Neurol Neurosurg Psychiatry. 2012;83:115.

    Article  Google Scholar 

  23. Lossos A, Teltsh O, Milman T, Meiner V, Rozen R, Leclerc D, et al. Severe methylenetetrahydrofolate reductase deficiency: clinical clues to a potentially treatable cause of adult-onset hereditary spastic paraplegia. JAMA Neurol. 2014;71:901–4.

    Article  Google Scholar 

  24. Lin N, Jiang N, Dai Y, Gao J, Wang L. Adult-onset severe methylenetetrahydrofolate reductase deficiency characterized by reversible spastic paraplegia with a novel mutation. Neurol Sci. 2016;37:1735–7.

    Article  Google Scholar 

  25. Iida S, Nakamura M, Asayama S, Kunieda T, Kaneko S, Osaka H, et al. Rapidly progressive psychotic symptoms triggered by infection in a patient with methylenetetrahydrofolate reductase deficiency: a case report. BMC Neurol. 2017;17:47.

    Article  Google Scholar 

  26. Gueant JL, Namour F, Gueant-Rodriguez RM, Daval JL. Folate and fetal programming: a play in epigenomics? Trends Endocrinol Metab. 2013;24:279–89.

    Article  CAS  Google Scholar 

  27. Milone M, Massie R. Polymerase gamma 1 mutations: clinical correlations. Neurologist. 2010;16:84–91.

    Article  Google Scholar 

  28. Van Goethem G, Schwartz M, Lofgren A, Dermaut B, Van Broeckhoven C, Vissing J. Novel POLG mutations in progressive external ophthalmoplegia mimicking mitochondrial neurogastrointestinal encephalomyopathy. Eur J Hum Genet. 2003;11:547–9.

    Article  Google Scholar 

  29. DeBalsi KL, Longley MJ, Hoff KE, Copeland WC. Synergistic effects of the in cis T251I and P587L mitochondrial DNA polymerase gamma disease mutations. J Biol Chem. 2017;292:4198–209.

    Article  CAS  Google Scholar 

  30. Milone M, Tang S, Sorenson E, Zhiyv N, Wong L-j. POLG-related disorders: muscle biopsy findings, mitochondrial DNA content and deletions (P07.206). Neurology. 2012;78:P07.206.

    Article  Google Scholar 

  31. Hasselmann O, Blau N, Ramaekers VT, Quadros EV, Sequeira JM, Weissert M. Cerebral folate deficiency and CNS inflammatory markers in Alpers disease. Mol Genet Metab. 2010;99:58–61.

    Article  CAS  Google Scholar 

  32. Froese DS, Huemer M, Suormala T, Burda P, Coelho D, Gueant JL, et al. Mutation update and review of severe methylenetetrahydrofolate reductase deficiency. Hum Mutat. 2016;37:427–38.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Institutional grants of INSERM UMR_S 1256 were received from INSERM (French National Institute of Health and Medical Research) and the Region of Lorraine (France). MRB is supported by the Swiss National Science Foundation (SNSF 31003A_138521) and the Rare Disease Initiative Zurich (radiz), a clinical research priority program for rare diseases of the University of Zurich, Switzerland.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jean-Louis Guéant or Abderrahim Oussalah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wiedemann, A., Chery, C., Coelho, D. et al. Mutations in MTHFR and POLG impaired activity of the mitochondrial respiratory chain in 46-year-old twins with spastic paraparesis. J Hum Genet 65, 91–98 (2020). https://doi.org/10.1038/s10038-019-0689-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s10038-019-0689-y

This article is cited by

Search

Quick links