Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Bioinformatics of nanopore sequencing

Abstract

Nanopore sequencing is one of the most exciting new technologies that undergo dynamic development. With its development, a growing number of analytical tools are becoming available for researchers. To help them better navigate this ever changing field, we discuss a range of software available to analyze sequences obtained using nanopore technology.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Eid J, Fehr A, Gray J, Luong K, Lyle J, Otto G, et al. Real-time DNA sequencing from single polymerase molecules. Science. 2009;323:133–8.

    CAS  Article  Google Scholar 

  2. 2.

    Kasianowicz JJ, Brandin E, Branton D, Deamer DW. Characterization of individual polynucleotide molecules using a membrane channel. Proc Natl Acad Sci. 1996;93:13770–3.

    CAS  Article  Google Scholar 

  3. 3.

    Leggett RM, Clark MD. A world of opportunities with nanopore sequencing. J Exp Bot. 2017;68:5419–29.

    CAS  Article  Google Scholar 

  4. 4.

    Loman NJ, Quinlan AR. Poretools: a toolkit for analyzing nanopore sequence data. Bioinformatics. 2014;30:3399–401.

    CAS  Article  Google Scholar 

  5. 5.

    Rang FJ, Kloosterman WP, de Ridder J. From squiggle to basepair: computational approaches for improving nanopore sequencing read accuracy. Genome Biol. 2018;19:90.

    Article  Google Scholar 

  6. 6.

    Boza V, Brejova B, Vinar T. DeepNano: deep recurrent neural networks for base calling in MinION nanopore reads. PLoS ONE. 2017;12:e0178751.

    Article  Google Scholar 

  7. 7.

    Teng HT, Cao MD, Hall MB, Duarte T, Wang S, Coin LJM. Chiron: translating nanopore raw signal directly into nucleotide sequence using deep learning. Gigascience. 2018;7:giy037.

  8. 8.

    Wick RR, Judd LM, Holt KE. Performance of neural network basecalling tools for Oxford nanopore sequencing. Genome Biology. 2019;20:129.

  9. 9.

    Simpson JT, Workman RE, Zuzarte PC, David M, Dursi LJ, Timp W. Detecting DNA cytosine methylation using nanopore sequencing. Nat Methods. 2017;14:407.

    CAS  Article  Google Scholar 

  10. 10.

    Needleman SB, Wunsch CD. A general method applicable to the search for similarities in the amino acid sequence of two proteins. J Mol Biol. 1970;48:443–53.

    CAS  Article  Google Scholar 

  11. 11.

    Smith TF, Waterman MS. Identification of common molecular subsequences. J Mol Biol. 1981;147:195–7.

    CAS  Article  Google Scholar 

  12. 12.

    Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215:403–10.

    CAS  Article  Google Scholar 

  13. 13.

    Shang J, Zhu F, Vongsangnak W, Tang Y, Zhang W, Shen B. Evaluation and comparison of multiple aligners for next-generation sequencing data analysis. Biomed Res Int. 2014;2014:309650.

    Article  Google Scholar 

  14. 14.

    Kielbasa SM, Wan R, Sato K, Horton P, Frith MC. Adaptive seeds tame genomic sequence comparison. Genome Res. 2011;21:487–93.

    CAS  Article  Google Scholar 

  15. 15.

    Li H, Durbin R. Fast and accurate long-read alignment with Burrows–Wheeler transform. Bioinformatics. 2010;26:589–95.

    Article  Google Scholar 

  16. 16.

    Robinson JT, Thorvaldsdottir H, Winckler W, Guttman M, Lander ES, Getz G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–6.

    CAS  Article  Google Scholar 

  17. 17.

    Staden R. A strategy of DNA sequencing employing computer programs. Nucleic Acids Res. 1979;6:2601–10.

    CAS  Article  Google Scholar 

  18. 18.

    Hernandez D, Francois P, Farinelli L, Osteras M, Schrenzel J. De novo bacterial genome sequencing: Millions of very short reads assembled on a desktop computer. Genome Res. 2008;18:802–9.

    CAS  Article  Google Scholar 

  19. 19.

    Simpson JT, Durbin R. Efficient construction of an assembly string graph using the FM-index. Bioinformatics 2010;26:i367–i73.

    CAS  Article  Google Scholar 

  20. 20.

    Gremme G, Steinbiss S, Kurtz S. GenomeTools: a comprehensive software library for efficient processing of structured genome annotations. IEEE ACM Trans Comput Biol Bioinform. 2013;10:645–56.

    Article  Google Scholar 

  21. 21.

    Pevzner PA, Tang H, Waterman MS. An Eulerian path approach to DNA fragment assembly. Proc Natl Acad Sci USA. 2001;98:9748–53.

    CAS  Article  Google Scholar 

  22. 22.

    Pevzner PA, Tang H, Tesler G. De novo repeat classification and fragment assembly. Genome Res. 2004;14:1786–96.

    CAS  Article  Google Scholar 

  23. 23.

    Koren S, Walenz BP, Berlin K, Miller JR, Bergman NH, Phillippy AM. Canu: scalable and accurate long-read assembly via adaptive k-mer weighting and repeat separation. Genome Res. 2017;27:722–36.

    CAS  Article  Google Scholar 

  24. 24.

    Myers EW, Sutton GG, Delcher AL, Dew IM, Fasulo DP, Flanigan MJ, et al. A whole-genome assembly of Drosophila. Science. 2000;287:2196–204.

    CAS  Article  Google Scholar 

  25. 25.

    Ma ZW, Hu JC. Complete genome sequence of a marine-sediment-derived bacterial strain Bacillus velezensis SH-B74, a cyclic lipopeptides producer and a biopesticide. 3 Biotech. 2019;9:162.

  26. 26.

    Brejova B, Lichancova H, Brazdovic F, Hegedusova E, Jakubkova MF, Hodorova V, et al. Genome sequence of the opportunistic human pathogen Magnusiomyces capitatus. Curr Genet. 2019;65:539–60.

    CAS  Article  Google Scholar 

  27. 27.

    Karageorgiou C, Gamez-Visairas V, Tarrio R, Rodriguez-Trelles F. Long-read based assembly and synteny analysis of a reference Drosophila subobscura genome reveals signatures of structural evolution driven by inversions recombination-suppression effects. BMC Genomics. 2019;20:223.

  28. 28.

    Wang MJ, Tu LL, Yuan DJ, Zhu D, Shen C, Li JY, et al. Reference genome sequences of two cultivated allotetraploid cottons, Gossypium hirsutum and Gossypium barbadense. Nat Genet. 2019;51:224.

    CAS  Article  Google Scholar 

  29. 29.

    Xiao YS, Xiao ZZ, Ma DY, Liu J, Li J. Genome sequence of the barred knifejaw Oplegnathus fasciatus (Temminck & Schlegel, 1844): the first chromosome-level draft genome in the family Oplegnathidae. Gigascience. 2019;8:giz013.

  30. 30.

    Lin Y, Yuan J, Kolmogorov M, Shen MW, Chaisson M, Pevzner PA. Assembly of long error-prone reads using de Bruijn graphs. P Natl Acad Sci USA. 2016;113:E8396–E405.

    CAS  Article  Google Scholar 

  31. 31.

    Quick J, Loman NJ, Duraffour S, Simpson JT, Severi E, Cowley L, et al. Real-time, portable genome sequencing for Ebola surveillance. Nature. 2016;530:228–32.

    CAS  Article  Google Scholar 

  32. 32.

    Zeng Y, Chen T. DNA methylation reprogramming during mammalian development. Genes. 2019;10:257.

    CAS  Article  Google Scholar 

  33. 33.

    Rand AC, Jain M, Eizenga JM, Musselman-Brown A, Olsen HE, Akeson M, et al. Mapping DNA methylation with high-throughput nanopore sequencing. Nat Methods. 2017;14:411.

    CAS  Article  Google Scholar 

  34. 34.

    Liu Q, Fang L, Yu G, Wang D, Xiao CL, Wang K. Detection of DNA base modifications by deep recurrent neural network on Oxford nanopore sequencing data. Nat Commun. 2019;10:2449.

    Article  Google Scholar 

  35. 35.

    Tardaguila M, de la Fuente L, Marti C, Pereira C, Pardo-Palacios FJ, del Risco H, et al. SQANTI: extensive characterization of long-read transcript sequences for quality control in full-length transcriptome identification and quantification. Genome Res. 2018;28:396–411.

    CAS  Article  Google Scholar 

  36. 36.

    Tang AD, Soulette CM, Baren MJV, Hart K, Hrabeta-Robinson E, Wu CJ, et al. Full-length transcript characterization of SF3B1 mutation in chronic lymphocytic leukemia reveals downregulation of retained introns. bioRxiv. 2018:410183.

  37. 37.

    Byrne A, Beaudin AE, Olsen HE, Jain M, Cole C, Palmer T, et al. Nanopore long-read RNAseq reveals widespread transcriptional variation among the surface receptors of individual B cells. Nat Commun. 2017;8:16027.

  38. 38.

    Cook DE, Valle-Inclan JE, Pajoro A, Rovenich H, Thomma BPHJ, Faino L. Long-Read Annotation: Automated Eukaryotic Genome Annotation Based on Long-Read cDNA Sequencing. Plant Physiol. 2019;179:38–54.

    CAS  Article  Google Scholar 

  39. 39.

    Yang C, Chu J, Warren RL, Birol I. NanoSim: nanopore sequence read simulator based on statistical characterization. Gigascience. 2017;6:gix010.

  40. 40.

    Rodríguez-Pérez H, Hernández-Beeftink T, Lorenzo-Salazar JM, Roda-García JL, Pérez-González CJ, Colebrook M, et al. NanoDJ: a dockerized jupyter notebook for interactive Oxford Nanopore MinION sequence manipulation and genome assembly. BMC Bioinformatics. 2019;20:234.

  41. 41.

    Mitsuhashi S, Frith MC, Mizuguchi T, Miyatake S, Toyota T, Adachi H, et al. Tandem-genotypes: robust detection of tandem repeat expansions from long DNA reads. Genome Biol. 2019;20:58.

    Article  Google Scholar 

  42. 42.

    Edwards HS, Krishnakumar R, Sinha A, Bird SW, Patel KD, Bartsch MS. ReAl-time Selective Sequencing with RUBRIC: read until with basecall and reference-informed criteria. BMC Bioinformatics. 2019;20:234.

  43. 43.

    Shabardina V, Kischka T, Manske F, Grundmann N, Frith MC, Suzuki Y, et al. NanoPipe-a web server for nanopore MinION sequencing data analysis. Gigascience. 2019;8:giy169.

  44. 44.

    Aristotle. The nicomachean ethics. Oxford; New York: Oxford University Press; 2009. xliii, p. 277.

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Wojciech Makałowski.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note: Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Makałowski, W., Shabardina, V. Bioinformatics of nanopore sequencing. J Hum Genet 65, 61–67 (2020). https://doi.org/10.1038/s10038-019-0659-4

Download citation

Further reading

Search

Quick links