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Abstract
Huntington’s disease (HD) is caused by an expanded CAG trinucleotide repeat in the first exon of the huntingtin gene (HTT).
Since the entire course of the disease starts from this dominant gain-of-function mutation, lowering total or mutant
huntingtin mRNA/protein has emerged as an appealing therapeutic strategy. We reasoned that endogenous mechanisms
underlying HTT gene regulation may inform strategies to target the source of the disease. As part of our investigation to
understand how the expression of HTT is controlled, we performed (1) complete sequencing analysis for mutant HTT 3′-
UTR and (2) unbiased screening assays to identify naturally-occurring miRNAs that could lower the HTT mRNA levels. By
sequencing HD families inheriting the major European mutant haplotype, we determined the full sequence of HTT 3′-UTRs
of the most frequent mutant (i.e., hap.01) and normal (i.e., hap.08) haplotypes, revealing 5 sites with alternative alleles. In
subsequent miRNA activity assays using the full-length hap.01 and hap.08 3′-UTR reporter vectors and follow-up validation
experiments, hsa-miR-4324 and hsa-miR-4756-5p significantly reduced HTT 3′-UTR reporter activity and endogenous HTT
protein levels. However, those miRNAs did not show strong haplotype-specific effects. Nevertheless, our data highlighting
full sequences of HTT 3′-UTR haplotypes, effects of miRNAs on HTT levels, and potential interaction sites provide rationale
and promising targets for total and mutant-specific HTT lowering intervention strategies using endogenous and artificial
miRNAs, respectively.

Introduction

An expanded CAG trinucleotide repeat (>35) in the hun-
tingtin (HTT) causes Huntington’s disease (HD) [1]; the size
of the expanded CAG repeat shows strong inverse corre-
lations with age at onset of symptoms and age at death
[2, 3]. Since an expanded CAG repeat is the primary
determinant of the disease, targeting mutant HTT mRNA
has emerged as an appealing therapeutic strategy [4, 5]. For
example, gene silencing approaches directly targeting CAG
repeat in HTT mRNA showed therapeutic benefit with some
allele specificity in model systems [6]. However, CAG
repeat-targeting intervention strategies may not provide
sufficient gene specificity because many other CAG repeat-
containing genes can be also affected [7]. Alternatively,
silencing approaches targeting the genetic variations asso-
ciated with the haplotypes carrying the disease-causing
mutation may provide better gene specificity while
achieving mutant allele specificity.

Although all cases of HD are due the same mutation, the
causative mutation of HD sits on diverse haplotype
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backbones [8–10]. For example, to account for approxi-
mately 90% of mutant chromosomes in HD subjects with
European ancestry, 16 different haplotypes are required
[9, 11–15]. Importantly, frequencies of HTT gene haplo-
types in the HD mutant chromosomes are quite different
from those in normal chromosomes [9, 10, 16]. For exam-
ple, the most frequent mutant haplotype in European HD
subjects (hap.01) is infrequent in normal chromosomes.
Conversely, the most common normal haplotype in Eur-
opeans (hap.08) is relatively infrequent in HD mutant
chromosomes. As a result, more than 90% of HD subjects
have mutant haplotypes that are different from the normal
counterparts [9]. These are particularly relevant with respect
to therapeutics, because different alleles on mutant and
normal haplotypes in a given HD subject are targets of
mutant allele-specific gene targeting strategies, making
investigation of HTT haplotypes and identification of
associated alleles [8–10, 16, 17] highly significant.

Most widely used HTT targeting strategies rely on exo-
genous silencing reagents such as siRNA, ASO (antisense
oligonucleotide), or CRISPR/Cas9 [4, 5, 7, 17–19].
Although such exogenous nucleotide-based reagents
showed some pre-clinical efficacy in model systems of HD
[20, 21], efficient delivery to relevant region remains as a
significant challenge. Alternatively, we envisioned that
therapeutic HTT lowering can be achieved endogenously. A
potential mechanism that may be involved in natural HTT
gene regulation and thus can be used to lower HTT mRNA
expression levels is microRNA (miRNA). While others
demonstrated the value of miRNAs as biomarkers of HD
and tools to probe underlying disease mechanisms [22–26],
we are primarily interested in understanding miRNA-
mediated regulation of the HTT expression levels because
of its therapeutic potential. Therefore, we set out to identify
endogenous miRNAs that can lower the HTT mRNA levels
and evaluated their mutant allele-specificities using full 3’-
UTR sequences of the most common mutant and normal
HTT haplotypes.

Materials and methods

Haplotype analysis to determine the full HTT 3′-UTR
sequence

Reconstruction of the full haplotype sequences of HTT 3′-
UTR was based on the whole genome sequencing data of
selected HD families inheriting mutant hap.01 haplotype
[12]. Our genetic analysis focused on 3′-UTR region of
RefSeq transcript NM_002111 (chr4:3241786-3245687;
GRCh37/hg19 coordinates; Fig. S1) in order to reconstruct
the full sequence of HTT 3’-UTR of the most common
mutant (hap.01) and normal haplotype (hap.08) in HD

subjects with European ancestry [9, 12, 16]. In both
families, sequences of mutant hap.01 HTT 3’-UTR were
fully reconstructed without any missing, generating com-
plete 3’-UTR sequences. The normal hap.08 3’-UTR
sequence was reconstructed based on un-transmitted chro-
mosomes in trios #4 and #5 (Fig. S2). Allele frequencies of
those 6 variations in the control population were based on
1000 Genomes Project data (phase 3, Europeans).

1000 Genomes Project data analysis to determine 8
common HTT haplotype 3′-UTR sequences

Sequences of 8 common HTT haplotype 3′-UTR were
reconstructed from the 1000 Genomes Project data
(phase3). Focusing on the most common 8 haplotypes, each
phased haplotype was grouped based on our haplotype
definitions [12, 16]. For a given haplotype comprising a
group of chromosomes from 1000 Genomes Project parti-
cipants, we identified the most frequent allele to identify
representative alleles. Finally, sites with alternative alleles
were identified for each haplotype to summarize sequences
of 8 common haplotype 3’-UTR.

Cloning of the full HTT 3′-UTR into dual luciferase
reporter vector

DNA sample from a HD subject carrying hap.01 mutant and
hap.08 normal haplotypes (Coriell, GM01169; 17/44 CAG
repeats) [9] was used to clone the full HTT 3′-UTR into a
dual luciferase reporter vector. DNA sample was PCR
amplified using a primer set (5′-TCCAGTCTGTGCTT
GAGGTG-3′ and 5′-GCAACAACTGATGGTTTCCA-3′).
Amplified DNA was digested (XhoI and XbaI), and inserted
into a pmirGLO Dual-Luciferase reporter vector (Promega).
The entire HTT 3’-UTR of hap.01 or hap.08 was
independently inserted at the 3’-UTR site of luc2 gene.
Full sequences of resulting hap.01-pmirGLO and hap.08-
pmirGLO reporter vectors were validated by Sanger
sequencing.

Cell culture

The miRNA screening assays and validation experiments
were performed using HEK293T cells and the HD patient-
derived fibroblast. Cells were cultured in DMEM supple-
mented with 10% fetal bovine serum and Penicillin-
Streptomycin at 37 °C and 5% CO2.

The miRNA library and luciferase activity assays for
the primary screening assay

The mirVana miRNA mimic library (1719 miRNAs) was
purchased from the Life Technologies. Cells were
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transfected using Lipofectamine 2000 (Invitrogen). Briefly,
20,000 cells/well (in 50 microliter) were plated in 96-well
plates and transfected with 25 microliter of transfection
mixture comprising 0.2 microliter/well of Lipofectamine,
30 nM of a test microRNA, and 80 ng/well of a reporter
vector. All pipetting for screening assays were performed
by an automated liquid handling system (Biomek FX,
Beckman Coulter). We included (1) a control miRNA, hsa-
125b-5p [25], (2) a miRNA negative control (scramble), (3)
a positive control siRNA targeting HTT 3′-UTR (5′-
CGTTGTACATGTTCCTGTT-3′), and (4) a negative
control for siRNA (scramble). 24 h post-transfection, luci-
ferase activity assays were performed using Dual-Glo
luciferase reagent (Promega). Firefly luciferase reagent
was added by the automated pump (50 microliter), plates
were incubated for 15 min at room temperature, and then
each well was read for 2 s by MicroLumatPlus LV 96 V
(Berthold). 45 min after, 50 microliter of stop/Renilla
solution was added, incubated for 15 min at room tem-
perature, and each well was read for 2 s. Each miRNA was
tested in duplicates in separate plates, and the entire
screening assays were repeated twice.

Primary screening data analysis and identification
of candidate miRNAs for follow-up

In our primary screening assays, each miRNA was tested 4
times. In addition, each test plate included wells for back-
ground (cells without transfection), basal reporter activity
(cells transfected with reporter vector without miRNA
treatment), miRNA negative control, miRNA control,
siRNA negative control, and siRNA positive control for
background correction and data normalization. Plate-
specific background correction and normalization was per-
formed to generate 4 data values (percent of control) for
each test miRNA. Briefly, for a given plate, background
activity of Firefly luciferase and Renilla luciferase were
calculated by taking median values of background wells.
These background values (mean of two) were subtracted
from Firefly and Renilla luciferase values for miRNA
negative control. Similarly, Firefly and Renilla luciferase
values of test miRNAs were subtracted by the same back-
ground value. Finally, background corrected Firefly luci-
ferase/Renilla luciferase ratio of a test miRNA was divided
by Firefly luciferase/Renilla luciferase ratio of miRNA
negative control to determine the effects of a test miRNA on
HTT 3′-UTR (% of control).

Secondary assays, dose-response experiments, and
validation

The primary screening assay results revealed 74 candidate
miRNAs for secondary assays. We performed secondary

reporter activity assays for those using hap.01, hap.08 and
empty vector control dual luciferase reporters to determine
effects on different haplotype 3′-UTR. Experimental con-
ditions and data analysis for the secondary assay were same
as those in the primary screening assay. Each candidate
miRNA was tested in duplicate for the secondary activity
assay. Subsequently, we identified miRNA that showed
minimal effects on empty vector control but robust effects
on hap.01 or hap.08 reporter vector to eliminate false
positives. Four miRNAs survived secondary activity assays,
and subjected to dose-response reporter activity assays.
Potential targets of candidate miRNAs were predicted using
the TargetScan program available in miRBase (http://www.
mirbase.org/).

Statistical analysis

Data were presented as mean ± standard deviation. Statis-
tical analyses were performed using GraphPad InStat pro-
gram (student t-test). Also, multiple comparisons were
conducted using Tukey’s range test and Dunett’s multiple
comparison test. *,#P < 0.05; **,##P < 0.01; ***,###P < 0.001.

Results

Expression patterns of HTT 3′-UTR in human tissues

Firstly, we characterized the expression patterns of HTT 3′-
UTR in human tissues to select a region for sequencing and
molecular analyses. Pioneering works revealed that differ-
ential 3′-polyadenylation of HTT generates two mRNA
species with different sizes [27, 28]. Different transcripts
appeared to have same coding sequence with different 3′-
UTRs; a larger transcript with a long 3′-UTR (NM_002111;
~3.9KB) and a smaller transcript with a short 3′-UTR
(L12392; ~0.6KB). Expression of these transcripts varies by
tissues and developmental stages [27, 28]. In order to
characterize expression patterns of 3′-UTR of HTT in adult
human tissues at a high resolution, we examined the Human
BodyMap 2.0 (http://www.ensembl.info/blog/2011/05/24/
human-bodymap-2-0-data-from-illumina/), which surveyed
16 tissues using the Illumina HiSeq 2000 RNAseq platform.
We utilized sequence coverage data to determine the HTT
3′-UTR region expressed in each tissue. Generally, RNAseq
sequence reads were aligned over the entire long 3′-UTR
region in all tissues examined (Fig. S1). However, certain
tissues displayed an enrichment of sequencing reads at short
3′-UTR (skeletal muscle), 3′ end of long 3′-UTR (brain), or
both (prostate). Differences in relative usage of the 3′-UTRs
in different tissues (or cell types) are intriguing [29], sug-
gesting cell type-specific regulatory mechanisms. Since the
main scope of our study is to investigate miRNA-mediated
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gene regulation of HTT applicable to brain, we selected the
long 3′-UTR (chr4:3241786-3245687, GRCh37/hg19) for
subsequent genetic and molecular analyses.

Full sequence of the HTT 3′-UTR major mutant
haplotype

In the long HTT 3′-UTR region (chr4:3241786-3245687),
988 single nucleotide polymorphisms (SNPs) are annotated
in the dbSNP (build 151), but their alleles in the HTT
haplotypes are mostly unknown. We thus determined the
full 3′-UTR sequence of the most frequent mutant (hap.01)
and normal (hap.08) HTT haplotypes [12] (Fig. S2). Alleles
of nine transmitted mutant hap.01 chromosomes were
consistent at all sites, unequivocally generating the full
hap.01 haplotype HTT 3′-UTR sequence. In addition, 2
children carrying two hap.01 haplotypes (Fig. S2; trio #7
and #9) did not show any heterozygous sites in the region,
indicating that the 3′-UTR sequences are same between
mutant hap.01 and normal hap.01 in those individuals. We
also determined the normal hap.08 3’-UTR sequence, based
on un-transmitted chromosomes in trio #4 and #5 (Fig. S2)
(summarized in Fig. 1). For example, alleles of hap.01 (red)
and hap.08 (green) are different from the reference sequence
(black) at 3 and 4 locations, respectively. (Fig. 1a, blue
triangles). Between mutant hap.01 and normal hap.08
haplotypes, alleles at 5 SNP sites were different (filled blue

triangles in Fig. 1a), providing potential target sites for
allele-specific silencing strategies for HD subjects with the
most common diplotype.

Next, we extended our genetic analysis to the 8 most
common haplotypes [12, 16] in HD subjects. We deter-
mined the HTT 3′-UTR sequences of those haplotypes
using publicly available sequence/phase data, revealing
8 sites where at least one the most common 8 haplotypes
carries alternative allele (Fig. S3). Because CAG expansion
mutations on existing normal haplotypes generated the HD
mutant chromosomes [9, 11–14], the 3′-UTR sequences of
normal and mutant haplotypes are hypothesized to be same
for a given haplotype (Fig. S2).

Unbiased miRNA activity screening assays using the
full-length hap.01 3′-UTR reporter vector

We next tested whether naturally-occurring miRNAs inter-
act with the HTT 3′-UTR. For this, we generated pmirGLO-
hap.01-3′-UTR (namely, hap.01 reporter vector; Fig. S4A,
middle panel) and pmirGLO-hap.08-3′-UTR (namely,
hap.08 reporter vector; Fig. S4A; right panel). These HTT
3′-UTR reporter vectors produce Firefly luciferase mRNA
with respective HTT 3′-UTR and control Renilla luciferase
(for data normalization). Thus, interaction between a
miRNA and HTT 3′-UTR is predicted to induce transla-
tional suppression or mRNA destabilization [30, 31],
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Fig. 1 The full HTT 3’-UTR sequences of the most common HD
mutant and normal haplotypes. a In HD subjects with European
ancestry, hap.01 is the most common HD disease haplotype. The most
common normal haplotype in the control population and normal
chromosomes in HD subjects is hap.08. As expected from the indi-
vidual haplotype frequency, the most common diplotype in HD sub-
jects is the combination of hap.01 (mutant) and hap.08 (normal).
Focusing on those two haplotypes, full sequences of HTT 3′-UTR
were determined through genetic phasing analysis of HD families

carrying mutant hap.01 and normal hap.08 haplotypes. The hap.01
(red) and hap.08 (green) carry alternative alleles at 3 and 4 sites,
respectively (blue triangles); two haplotypes have different alleles at 5
locations (filled blue triangles). Genomic coordinate was based on the
GRCh37/hg19 assembly. b Allele frequencies of 6 SNPs were based
on 1000 Genomes Project data (Phase 3; Europeans). In each pie chart,
the frequency of the allele of the hap.01 haplotype is depicted in red.
The frequency of alternative allele for SNP rs3072133 is 100% in 1000
Genomes Project data
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leading to lower levels of Firefly luciferase activity without
altering Renilla luciferase activity (Fig. S4B).

Using the hap.01 reporter vector, we performed primary
screening assays in HEK293T cells to test a library of 1719
unique miRNAs (Fig. S5A). Each miRNA was tested in
duplicate in two separate screening assays, generating 4
data points for each miRNA (Fig. S5B). Then, candidate
miRNAs were identified for secondary luciferase activity
assays using 3 reporter vectors (empty vector control,
hap.01, and hap.08 reporter vectors) to judge their allele
specificity (Fig. S5). In the primary screening assays, we
included 1) a positive control siRNA and 2) a miRNA that
has been reported to reduce HTT levels (hsa-miR-125b-5p)
[25] (Fig. S6A). A positive control siRNA (Fig. S6B) and
hsa-miR-125b-5p (Fig. S6C) reduced the Firefly luciferase
activity of hap.01 reporter by 46 and 38%, respectively. A
high level of reproducibility between replicates of test
miRNAs was observed in the primary assay (Fig. S7),
supporting the overall quality. Next, we performed statis-
tical analysis of primary assay results of 1719 miRNAs
(Table S1) to identify candidates that significantly reduced
the hap.01 3′-UTR reporter activity. We applied the fol-
lowing filtering to identify candidates for secondary reporter
activity assays: (1) effect size (percent of negative control
< 85%), (2) variability (coefficient of variation < 20%) and
(3) significance (false discovery rate < 0.05). These criteria
identified 74 candidate miRNAs for the secondary activity
assay (Fig. 2).

Secondary reporter activity assay and validation

We reasoned that the hit miRNAs based on reduced Firefly
luciferase activity in the primary assays could be due to (1)
an interaction between the test miRNA and 3′-UTR of the
Firefly reporter, (2) an interaction between the test miRNA
and Firefly luciferase mRNA coding sequence, or (3)
toxicity. In order to eliminate false positives and to evaluate
allele specificity, the 74 candidate miRNAs were further
tested on (1) empty reporter vector, (2) the hap.01 reporter
vector, and (3) the hap.08 reporter vector (Fig. S4) in sec-
ondary reporter activity assays (Fig. S8). We anticipated
that a genuine miRNA that interacts exclusively with the
HTT 3′-UTR would alter the activity of reporter vectors
containing HTT 3′-UTR, not empty vector.

As shown in the secondary assays, some candidate miR-
NAs strongly reduced the activity of the empty vector control
lacking the HTT 3′-UTR (Fig. S8A, circles at the bottom left
corner), indicating that those miRNAs interact with Firefly
luciferase sequence, representing false positives. In addition,
some candidate miRNAs did not reduce the hap.01 reporter
vector activity in the secondary assays (Fig. S8B), indicating
that they were also false positives. To identify true positives,
we identified miRNAs that showed minimal impact on the
empty vector control (90–110% of negative control) but
strongly influenced the HTT 3′-UTR vector assays (>30%
reduction of HTT 3′-UTR vectors). This revealed 4 and 5
miRNAs that significantly reduced hap.01 (Fig. 3a) and

Fig. 2 Unbiased screening assays reveal candidate miRNAs that may
interact with HTT 3′-UTR. Using a reporter vector containing the full
length HTT 3′-UTR sequence of the hap.01 haplotype, we performed
miRNA screening assays to evaluate a set of 1719 independent, well-
annotated miRNAs. Each miRNA was assayed in duplicate plates, and
the entire screening assays were repeated, generating 4 data points for
a given miRNA. Starting from 1719 miRNAs, we identified 74

candidate miRNAs for secondary assays based on effect sizes (<85%
of negative control; a red vertical line in panel A), relative variability
(coefficient of variation < 20%; a red horizontal line in (a), and sig-
nificance (false discovery rate < 0.05; red circles in (b). Each circle
represents a miRNA. Y-axis in panel B represents nominal p-value,
and miRNAs with false discovery rate < 0.05 were highlighted in red
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hap.08 3’-UTR reporter activity (Fig. 3b), respectively.
Among them, 4 candidate miRNAs (hsa-miR-1200, hsa-miR-
1321, hsa-miR-4324, and hsa-miR-4756-5p) met the criteria
in both hap.01 and hap.08 reporter vector assays (Fig. 3c),
reflecting non-haplotype-specific effects. These 4 shared
miRNAs are predicted (www.targetscan.org/) to interact with
HTT 3′-UTR sequence at various locations (Fig. 3d, vertical
lines in the rectangle), revealing potential HTT 3′-UTR
regions accessible to miRNAs. These potential interaction
sites do not overlap with any of the genetic variations that
distinguish hap.01 from hap.08 (Fig. 3d), consistent with the
non-haplotype-specific effects of those 4 candidate miRNAs
(Fig. 3a, red circles). The miRNA hsa-miR-649 reduced 22.4
and 31.4% of hap.01 and hap.08 reporter vector activity,
respectively (Fig. 3c, blue circle), showing a modest hap.08-
specificity. Therefore, this miRNA was not analyzed in the
validation analysis.

Validation of candidates

We further determined (1) the dose-response relationship
using the reporter vectors and (2) the impact on endogenous
huntingtin protein (HTT) expression levels for the four
shared candidate miRNAs. In reporter vector activity
assays, 3 candidate miRNAs (i.e., hsa-miR-1200, hsa-miR-
4324, hsa-miR-4756-5p) showed robust dose-response
relationships in both hap.01 (open circles) and hap.08
reporter assays (filled triangles) without significantly alter-
ing empty vector control (filled circles) (Fig. S9). In addi-
tion, immunoblot analysis following miRNA treatment
showed a notable reduction of total huntingtin levels for
hsa-miR-1200, hsa-miR-4324, hsa-miR-4756-5p in
HEK293T cells (Fig. 4a). However, hsa-miR-1200 also
significantly reduced Actin protein levels. Since four can-
didate miRNAs did not significantly impact on overall cell
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that truly interact with HTT 3′-UTR sequence. Effects of a miRNA
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date miRNA was evaluated by comparing effects on hap.08 vector
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indicated in filled red circles (c). One miRNA (has-miR-649) showed
slightly weaker effects on hap.01 reporter vector (a blue circle in c).
Predicted interaction sites of those 4 miRNAs were shown relative to
HTT 3′-UTR (d). Vertical lines in (d) marks locations of six variation
sites described in Fig. 1
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viability (Fig. S10), reduced HTT and Actin protein levels
by hsa-miR-1200 imply non-specific targeting or multi-
targeting [32–34]. Considering targeting efficacy and gene
specificity, hsa-miR-4324 and hsa-miR-4756-5p were fur-
ther tested on a fibroblast line from a HD subject who
carries hap.01 mutant and hap.08 normal haplotypes
(GM01169) [9]. As shown in Fig. 4b and Fig. S11, those
two miRNAs significantly reduced total HTT protein levels
in HD patient-derived cells, showing consistent effects on
reporter vectors, and endogenous HTT in non-HD cells and
HD cells.

Discussion

In HD, miRNAs have been investigated to (1) understand
pathogenesis [22, 24, 35–37], (2) identify disease bio-
markers [26, 38, 39], (3) investigate HTT gene regulation
[25, 40], and (4) evaluate pre-clinical therapeutic potential
[38, 41–43]. By sequencing small RNAs in post-mortem
brains, 5 miRNAs were founded to be elevated in HD brains
(BA9 cortex), and ectopic expression of miR-10b-5p
increased survival in a cell model of HD. Differentially
expressed miRNAs in HD compared to normal controls
may be useful in understanding underlying pathological
mechanisms and potential biomarkers in intervention stu-
dies. Developing therapeutic huntingtin lowering strategies
based on those may be therefore challenging as their dif-
ferential expression in HD compared to normal controls
may represent cellular compensatory responses [22].

Although miRNAs are useful for disease biomarkers
[22–24, 26, 37–39, 44–46], their value as a therapeutic

reagent is highly significant considering the fact that one of
the miRNAs’ primary functions of miRNA is to regulate the
expression levels of genes by binding to 3′-UTR or coding
region of target mRNAs [47]. We reasoned that miRNA-
mediated gene regulation mechanisms for HTT, if they
exist, inform means to efficiently intervene in HD patho-
genesis because the source of the disease can be addressed
by endogenous molecules. Due to miRNAs’ pivotal func-
tions in various biological pathways, identification of tar-
gets is one of the most important research topics in the field.
Despite its importance, systemic identification of targets of
miRNAs has been hampered due to the lack of high-
throughput experimental approaches. Since (1) Watson-
Crick base pairing between ~7 nucleotide miRNA seed
sequence and target mRNA is important for post-
transcriptional gene repression [48] and (2) well-annotated
genome sequences of many organisms are readily available,
many computational algorithms to instead ‘predict’ targets
of miRNAs have been developed [49, 50]. The abundance
of readily available prediction algorithms has, however,
generated situations where investigators chose target pre-
diction programs based upon their own subjective pre-
ferences. Although target prediction algorithms have
significantly contributed to the field, they have somewhat
limited values because most prediction programs (1) are
based on the reference genome sequence, which does not
represent the real haplotypes/sequences in the population
(Fig. S3), and (2) do not consider mRNA secondary
structure. Those inherent limitations of target prediction
approaches may generate false positive and false negative
findings in a set of predicted targets of miRNAs. Since we
are focused on a single gene (i.e., HTT), we reasoned that
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Fig. 4 Impacts of candidate miRNAs on the levels of endogenous HTT
protein. Four candidate miRNAs from secondary analyses were further
tested in HEK293T cells (a). Band intensity of HTT was normalized
by levels of Actin, and then vehicle (PBS) treated sample was set to 1
to calculate HTT/Actin ratio. Western blot analysis was performed for

each miRNA using MAB2166 antibody (Millipore) to detect both
mutant and normal HTT protein. Subsequently, hsa-miR-4324 and
hsa-miR-4756-5p were tested for viability on HD-derived fibroblasts
(GM01169 in b). Data represent mean and standard errors of three
independent experiments. *P < 0.05; **P < 0.01
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unbiased experimental approaches testing ~1700 well-
annotated miRNAs might be feasible. In addition, our
unbiased approach would not involve target prediction
algorithms and therefore subsequently identified HTT-
interacting miRNAs might have fewer false-positives and
false-negatives compared to prediction-based methods. To
overcome previously mentioned two major limitations of
prediction-based approaches, we constructed full length
HTT 3′-UTR reporter vectors based on the most frequent
mutant and normal haplotypes in HD subjects with Eur-
opean ancestry. Subsequently, we performed unbiased
miRNA library screening assays, experimentally testing
~1700 miRNAs without relying on target prediction algo-
rithms. Although not fully representing the secondary
structure of the full HTT mRNA, our full length 3′-UTR
reporter vectors may capture some of local secondary
structures produced by 3′-UTR region. As anticipated,
many miRNAs that were predicted to target HTT did not
significantly reduced HTT 3-UTR reporter activity in our
assays (Table S1). However, 2 candidate miRNAs that were
identified from a series of reporter vector activity assays in
this study also reduced the endogenous HTT protein levels,
supporting that our full length 3′-UTR reporter vector may
recapitulate the structure of endogenous HTT mRNA 3′-
UTR.

Of note, many miRNAs seemed to interact with coding
sequence of the Firefly luciferase reporter vector, and we
were able to identify such false positives by using empty
vector controls and reporter vectors conjugated with dif-
ferent HTT haplotypes. Like numerous predicted target sites
in HTT, coding sequence of reporter vector may have
similar sequence as ~7 nucleotide long miRNA seed
sequences. Thus, when using reporter vectors for miRNA
research, the use of appropriate controls is strongly
recommended for correct interpretation of the results.
Again, our data did not strongly support miRNAs that were
previously reported to interact with HTT 3′-UTR and reduce
HTT expression levels [25, 40]. Many of them were
nominated since they were predicted to interact with HTT
[25, 40] or showed differential expression in HD [22–24].
Because HTT 3′-UTR is relatively big, seed sequences of
numerous miRNAs are found in the HTT 3′-UTR region.
For example, the TargetScan prediction algorithm predicted
1694 unique miRNA-target sites for 1074 miRNAs, sug-
gesting that virtually all miRNAs may be able to interact
with HTT 3′-UTR. Therefore, any miRNA at higher con-
centrations is likely to suppress HTT expression levels in
in vitro experiments. Supporting this, 9 miRNAs (miR-214-
3p, miR-150-5p, miR-146a-5p, miR-125b-5p, miR-137,
miR-148a-3p, miR-128a, miR-196a, miR-27a-3p) pre-
viously reported in the literature to reduce HTT expression
levels [25, 35, 36, 40–42] were not significant by FDR in

our primary screening assay except hsa-miR-125b-5p,
which was used as a control miRNA in our primary
screening assays (Table S1). In addition, the use of reporter
vector containing a small region of HTT 3′-UTR might have
contributed to overestimating the impacts of certain miR-
NAs. Considering these, our unbiased experiment-based
approach using full length HTT 3′-UTR produced an
objective data that supports various aspects of miRNA
research for HD, representing a relevant development and
significant advancement.

Currently, it is not clear whether those candidate miR-
NAs are expressed in brains and interact with 3′-UTR of
HTT to regulate mRNA levels. Our candidate miRNAs are
not described in the brain RNAseq data [22, 23, 39], sug-
gesting low expression levels in brain regions, if any.
Nevertheless, one can hypothesize that if used as silencing
reagents, our candidate miRNAs may generate strong
lowering effects due to the lack of basal activities. Unfor-
tunately, our candidate miRNAs based on full human HTT
3′-UTR can’t be meaningfully tested in mice due to the lack
of models carrying expanded CAG repeat in the endogen-
ous mouse Htt locus with full human 3′-UTR sequence.
Still, our unbiased data provide important insights into
accessible regions in the HTT 3′-UTR, and thus follow-up
molecular mapping may help develop highly efficient
lowering strategies using siRNA or artificial miRNAs. The
candidate miRNAs that we discovered can’t be used for
therapeutics as current format because those miRNAs may
target other genes, a phenomenon called multi-targeting
[32–34]. It may not be feasible to fully identify all the
targets of our candidate miRNAs in brains due to technical
difficulty of experiments involving human brains. However,
our data clearly demonstrated that endogenous miRNAs
that can interact with HTT 3′-UTR exist and can be dis-
covered through unbiased approaches. We believe that
knowledge of endogenous regulatory mechanisms of HTT
expression may contribute to developing therapeutic low-
ering strategies for HD. Thus, our data providing full 3′-
UTR sequences of common HTT haplotypes, their allelic
differences, and demonstration of lowering HTT 3′-UTR
activities by naturally-occurring miRNAs provide strong
support for alternative routes to deal with the root cause of
the disease.
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