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Abstract

Genome-wide association studies (GWASs) have identified >20 genetic loci associated with human intelligence. However,
due to correlations between the trait-associated SNPs, only a few of the loci are confirmed to have a true biological effect. In
order to distinguish the SNPs that have a causal effect on human intelligence, we must eliminate the noise from the high
degree of linkage disequilibrium that persists throughout the genome. In this study, we apply a novel PAINTOR fine-
mapping method, which uses a Bayesian approach to determine the SNPs with the highest probability of causality. This
technique incorporates the GWAS summary statistics, linkage disequilibrium structure, and functional annotations to
compute the posterior probability of causality for all SNPs in the GWAS-associated regions. We found five SNPs
(rs6002620, rs41352752, rs6568547, rs138592330, and rs28371699) with a high probability of causality, three of which
have posterior probabilities >0.60. The SNP rs6002620 (NDUFAG6), which is involved in mitochondrial function, has the
highest likelihood of causality. These findings provide important insight into the genetic determinants contributing to human

intelligence.

Introduction

Human intelligence, a broad term for mental capabilities
involving the ability to reason, plan, solve problems and
learn from experience, plays a vital role in educational
achievement, career success, and health outcomes [1]. This
important construct is commonly measured through tests
involving simple concepts like shapes and designs [2].
Intelligence quotient (IQ), a commonly recognized measure
of intelligence, is a total score derived from several tests
using words, numbers, and specific cultural knowledge [2].
The distribution of IQ is generally considered to be a nor-
mal curve centered around an average score of 100, with
~3% of Americans scoring above 130 and nearly the same
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percent scoring below 70 [2]. Previous studies based on
genome-wide complex trait analysis (GCTA) showed that
60% of the phenotypic variation in human intelligence
could be accounted for by genetic factors [3].

Although researchers have focused on the identification
of genetic determinants related to human intelligence for
over a century, the fundamental neural underpinnings of
intelligence remain unclear [4]. Genome-wide association
studies (GWASs) using meta-analyses can be used to reveal
an abundance of trait-associated single nucleotide poly-
morphisms (SNPs) for many complex phenotypes [5]. One
of the largest current GWAS analyses for human intelli-
gence (n="78,308) identified 336 associated SNPs at the
genome-wide significance level located in 18 genomic loci
[5]. However, the vast majority of GWAS-reported variants
are not biologically causal but are instead correlated with
the actual causal variants through linkage disequilibrium
(LD) [6].

GWASs provide a crucial and necessary step to interpret
the biological mechanisms underlying complex diseases, and
to identify novel therapeutic gene targets by prioritizing var-
iants located within those regions. However, due to the
complex LD structure, the SNP with the smallest p-value in a
given area is not necessarily the most likely to be causal, and
it is insufficient to assume that the gene located closest to the
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top SNP in a given region is the most probable causal gene.
Previous studies have shown that the genomic distance of a
SNP to a gene does not imply a causal relationship [7]. Due to
the presence of LD, it is essential to prioritize the variants
within GWAS-associated regions, enabling the conversion of
statistical associations into target genes.

Fine-mapping is a statistical analysis approach designed to
assign probabilities of causality to candidate variants located
in the GWAS-associated regions [8]. This technique may be
used to filter the original GWAS findings in order to identify
the SNPs that are most likely to be causal for the association
signal at a given locus. In recent years, fine-mapping tools
have been developed that make use of a variety of algorithms
for causal variant identification, including Markov Chain
Monte Carlo, exhaustive search, and stochastic search [9].
However, these approaches mainly require individual-level
genotype data, which is often difficult to acquire through
publicly available sources. Additionally, they generally
assume there is only a single causal variant at a given locus,
which may not be biologically realistic [10].

To address these issues, several methods have been
developed to incorporate GWAS summary statistics into
fine-mapping analysis. In particular, the PAINTOR method
allows for the integration of the summary statistics, infor-
mation about the LD structure, and functional annotations to
improve the accuracy of causal variant detection [6].
Additional bioinformatics tools based on the GWAS sum-
mary statistics include CAVIARBF[10], CAVIAR [11], and
FINEMAP [12]. However, these other approaches cannot
consider functional annotations or jointly fine-map multiple
loci of interest simultaneously.

In this study, we applied the PAINTOR fine-mapping
technique to further refine the results from an existing
GWAS meta-analysis of human intelligence. We aim for
these results to inform future functional validation and
molecular biology studies to determine the variants with a
true causal effect for the phenotype.

Materials and methods

GWAS dataset

The GWAS summary statistics were acquired from a meta-
analysis of 78,308 individuals. The study included whole-
genome and whole-exome sequencing of eight separate
cohorts including UK Biobank web-based measure (UKB-
wb; n=17,862), UK Biobank touchscreen measure (UKB-
ts; n=36,257, non-overlapping with UKB-wb), CHIC
consortium (n = 12,441) and five additional smaller cohorts
(n=11,748) [5]. The dataset consists of Z scores and
P values showing the association between human intelli-
gence and over 10 million SNPs.
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Defining fine-mapping loci

We first selected the set of SNPs from the original GWAS
data that were detected at the genome-wide significance
level (p<5x 10*8), and then sorted this subset by the
chromosomal location and p-value. For each selected SNP
we used ANNOVAR [13] to perform a gene-based anno-
tation based on the RefGene database from the UCSC
Genome Browser. We defined the top SNP in each asso-
ciated region as the center of the fine-mapping locus, which
included a 100-kilobase window of SNPs (50kb on each
side) around the most significant GWAS hit. Previous stu-
dies have shown that LD begins to decay between SNPs
that are separated by more than 25 kb, so the choice of a
100 kb width is conservative [14]. For each fine-mapping
locus we used PLINK [15] to compute the LD matrix of the
pairwise correlations between SNPs based on the 1000
Genomes Phase 3 European (CEU) reference panel.

Functional information

Incorporation of the functional annotations of each SNP can
improve the accuracy of causal variant selection [16]. The
functional annotations were made available by Gusev et al.
[17] in a heritability study and are publicly available through
the Broad Institute (Cambridge, MA, USA; https://data.broa
dinstitute.org/alkes group/). We created a binary (0/1) anno-
tation matrix to assign SNPs to their corresponding functional
annotations. The rows of the matrix show the rsID of each
SNP, and the columns correspond to the functions of the
given SNP, including coding, untranslated region (3’ and 5’
UTR), promoter, DNase hypersensitivity site (DHS) in any of
217 cell types, intron and intergenic [17].

The coding annotation corresponds to the exonic coding
regions of the gene that are responsible for protein coding.
Untranslated regions (3’ and 5’ UTR) represent the areas of
mRNA directly upstream or downstream from the translation
initiation codon. Promoters indicate regions of DNA that
initiate the transcription of a particular gene. DHS are regions
of chromatin that are sensitive to cleavage by the DNase I
enzyme and have important implications for gene expression.
Finally, introns are the non-protein coding regions that are
removed during RNA splicing, while intergenic denotes
regions that are located between gene bodies [18].

Statistical analysis

Prior probability

In this study, we used PAINTOR, an expectation max-
imization algorithm, to compute the posterior probabilities

of causality for each SNP at a given fine-mapping locus.
This approach incorporates several types of information
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including the association Z-scores from the summary sta-
tistics, LD matrix of pairwise correlation coefficients, and
functional annotations [6]. First, we assume C; is the indi-
cator vector, giving the causal status of all the SNPs in each
locus where C;;=1 if the ith SNP is causal, C;; =0 other-
wise. 4; is the vector of non-centrality parameters, and Ay is
the binary indicator of annotations for the i SNP at locus j
in the k™ annotation. According to the method, Z-scores for
the SNPs at a particular fine-mapping locus follow a mul-
tivariate normal distribution. Because of this, we have Eq.
(1), where the symbol o denotes the element-wise multi-
plication of the two vectors and X%; is the LD matrix
including the pairwise Pearson Correlation coefficients
between SNPs at j™ loci. The prior probability in the
algorithm is the effect of each functional element on the
likelihood of causality for the SNPs at each locus, produced
by PAINTOR through a logistic probability model. For the
prior probability, we assume 7y as the effect of the k™"
functional annotation on the probability of causality. We
have Eq. (2) for computing the prior probability of the
Bayes formulation.

P(Z|Cj; ) = N(Z;; (% © G), )

(1)
P(Ciivy) =TLP(Cyiny)
! G ! 1-¢;
P Ci‘; =
(Cisre) (1 +exp(}’kAtjk)> <1 +exp(—7kAtjk)>
(2)

Posterior probabilities

Next, PAINTOR computes posterior probabilities of each
causal configuration of SNPs C; in the total set of all pos-

sible causal configurations Q; (|Q;| = Zf:o (Al/f ), where S

is the number of potential causal variants to be considered at
a locus and N, is the total number of SNPs at the i locus),
through the application of Bayes’ rule at each locus inde-
pendently. With the two equations above, we have Equation
(3) to produce posterior probabilities.

__ P(ZIC; 4)P(Giine)
Y cco, P(Z1Cii 43 P(Crivy)

P(CilZ, 71, 4) (3)

To obtain the posterior probability for each SNP at per
locus, PAINTOR calculates the possibilities of each causal
configuration, shown in Eq. (4).

Z P(Cj|Zja7k7/1) 4)

CieQ;:Cy=1

P(Cij = 1‘Zj’7k7/1) =

Likelihood ratio test (LRT) for functional element

To determine whether each functional element influences
the posterior probability computation, PAINTOR calcu-
lates the log, relative probability of causality between
models incorporating different functional information and
performs the LRT to test the statistical significance of the
estimated prior probability. According to the PAINTOR
method, y is considered as the baseline estimate in a
logistic model without any functional annotation. The prior
causal probability for any SNP belonging to the kth
annotation was estimated through y;. PAINTOR computes
the log, of the ratio of prior causal probability between the
kth annotation and baseline to compare the effects between
different annotations on causal probability for SNPs. For
the LRT, we used Eq. (5) to calculate the likelihoods of
each model and compare their log-likelihoods to the base
model to determine their significance through Eq. (6). The
test statistics asymptotically follow a chi-square distribu-
tion with one-degree freedom. When the log-LRT is sig-
nificant (p <0.05), the causal variants are significantly
enriched in the given functional element indicating that any
SNPs residing in this annotation should be assigned the
appropriate prior probability that is different from the
baseline effect [6].

L(Z;y,A)= > P(Z,C;y,4)
CceQ

=11 > P(Z|C; 4)P(Cjir) ®)
J GieQ;
LRT = —2[In(L(Z; 79, 4)) — In(L(Z; 10,71, 4))] ~ X*(df = 1)
(6)

Results
Fine-mapping loci for human intelligence

The original GWAS results indicate that 336 SNPs are
detected at the genome-wide significance level, located at
10 different chromosomes (1, 2, 3, 5, 6, 7, 13, 16, 17, 22).
We identified 14 fine-mapping loci based on the genomic
locations of the GWAS-associated SNPs. These loci have a
mean of 659 SNPs and a standard deviation of 220.0912
(Table 1a, b).

Incorporation of functional annotation data
To improve the accuracy of the fine-mapping analysis, we

incorporated the functional annotations of selected SNPs.
After matching SNPs with their corresponding functional
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Table 1a Fine-mapping loci for intelligence

Locus Chromosome number Number Number of SNPS

of SNPs reaching genome
significance

1 1 703 32

2 2 718 13

3 2 855 25

4 2 652 49

5 3 886 24

6 3 596 12

7 5 412 6

8 6 659 14

9 6 436 5

10 7 1022 66

11 13 950 51

12 16 235 17

13 17 556 13

14 22 546 9

Table 1b Summary of fine-mapping loci for intelligence

Total Mean Standard

deviation
Number of SNPs 9226 659 220.09
Number of SNPs reaching genome 336 24 18.87

significance

annotations, we found that the majority of the SNPs are
located in the intergenic and intronic regions. In order to
calculate the prior probability of causality for each func-
tional element, we built a model containing all annota-
tions of interest, including Coding, UTR, Promoter, DHS,
Intron, and Intergenic. There are minimal differences
between the prior probabilities estimated for each func-
tional annotation, suggesting that in this fine-mapping
analysis, all SNPs are weighted relatively evenly regard-
less of functional class (Table 2). We also calculated the
log, relative probability of causality for each functional
element, which represents the fold enrichment or deple-
tion of causal SNPs within each annotation. However,
after performing the LRT for each functional annotation,
the results show that the functional information does not
significantly influence the analysis (p <0.05). The causal
SNPs are not significantly enriched in any particular
functional elements for human intelligence across the
genome and including this information does not greatly
improve the accuracy of the posterior probability calcu-
lation. Thus, the baseline model will be applied to eval-
uate the posterior probability.

SPRINGER NATURE

Identifying variant with highest posterior
probability

We summarize the posterior probabilities of all SNPs in 14
fine-mapping loci (Supplementary Table 1) and present top
five SNPs that are most likely to have a causal effect on
human intelligence (Table 3). It is noteworthy that the SNPs
with the highest posterior probability of causality are not
necessarily the most statically significant SNPs in the ori-
ginal GWAS analysis. There is only one SNP, rs6002620
(NDUFAG6-ASI), with posterior probability higher than
0.90. This SNP is the most likely variant to have a causal
effect on human intelligence.

Discussion

In this fine-mapping analysis, we incorporated the summary
statistics from a publicly available GWAS, information
about the pairwise correlations between SNPs, and func-
tional annotations to determine the genomic loci with the
highest probability of playing a causal role in human
intelligence. This secondary downstream analysis is meant
to expand upon the GWAS findings in order to narrow the
original results and discern the SNPs that may have the
most biological relevance. The exploration of causal var-
iants is a crucial step in understanding the mechanisms
underlying complex phenotypes and finding effective ways
to prevent and treat human disease. Although there are
various proposed methods for performing fine-mapping
analysis using GWAS summary statistics, we chose to apply
the PAINTOR algorithm since previous simulations indi-
cated that compared with other approaches, PAINTOR
showed higher accuracy in selecting causal SNPs [6].

Based on the original summary statistics of human
intelligence, we identified 14 fine-mapping loci containing
9226 total SNPs, of which 1323 SNPs reached genome-
wide significance. This analysis aims to distinguish the
small subset of SNPs that are most likely to be causal. After
applying this statistical approach, we selected the top five
candidate SNPs with the highest probability of causality for
human intelligence. Interestingly, four of the top five SNPs
selected are not the most statistically significant SNP loca-
ted at their respective fine-mapping locus.

It is also important to note that some SNPs with highly
significant p-values in the original GWAS analysis do not
have high posterior probabilities of causality. While many
of the original GWAS hits simply tag the true causal var-
iant, there are also several other possible explanations. For
instance, we do not consider topologically associated
domains (TADs), which are believed to have an important
impact on the functional genome [19]. TADs refer to
regions of the genome located far away from each other that
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Table 2 Functional elements

Functional N Frequency Prior log, relative probability of Likelihood LRT
annotation probability causality
Coding 57 5.64x107 1.16x107° 0.91 —48,281.59 0.86
UTR 117 0.01 2.62%107° 4.70 —48,281.41 0.53
Promoter 295 0.03 226x107° 0.24 —48,281.60 0.92
DHS 1825 0.18 2.60x 107 0.11 —48,281.60 0.88
Intron 3480 0.34 2.68x1073 0.09 —48,281.60 0.87
Intergenic 4326 0.43 2.90x107° —0.03 —48,281.61 0.96
Table 3 Top 5 SNPs with high posterior probability
SNP Chromosome number Gene GWAS(p) P value of the most significant  Posterior Functional
SNP in loci probability annotation
1s6002620  Chr22 NDUFA6 1.27x107° 2.87x 107" 0.98 Intron
rs41352752  Chr5 MEF2C 1.35x 10 1.35x 107 0.82 Intron
156568547  Chr6 AFGIL||[FOX03 2.12x1078 9.96x 107! 0.62 Intergenic
15138592330 Chrl6 EIF3C||NPIPB9 1.22x107° 1.16x107 0.60 Intergenic
1s28371699  Chr22 LOCI01929829 1.33x107® 4.68x107'° 0.54 Intron

may interact [19]. Therefore, it is plausible that the causal
variant responsible for a given association signal may reside
in a different genomic region that interacts with the GWAS-
detected locus. Furthermore, in certain instances the
PAINTOR algorithm may be unable to differentiate
between SNPs when a given region contains many variants
with high levels of statistical significance and a very com-
plex correlation structure.

The two most noteworthy potential causal variants
detected for human intelligence are 1s6002620 and
rs41352752. The SNP rs6002620 has a posterior probability
of 0.98 and is located in an intronic region of the gene
NDUFA6. The NDUFAG6 gene codes for the NADH dehy-
drogenase 1 alpha subcomplex subunit 6, an accessory
subunit of ubiquinone oxidoreductase (Complex I), which is
the most abundant enzyme of the mitochondrial membrane
respiratory chain [20]. Previous studies performing gene-
based analysis of verbal-numerical reasoning have indicated
that NDUFAG6 is involved in mitochondrial function [21].
Hence, we assume that NDUFA6 may affect the function of
neural cells through mitochondrial function, influencing
human intelligence. Further biological experiments are
needed to prove this assumption.

On the other hand, the SNP rs41352752 has a posterior
probability of 0.82 and is located in the intronic region of
the gene MEF2C. The gene MEF2C is considered a novel
gene associated with human intelligence [21]. Previous
studies suggest that MEF2C in cortical pyramidal neurons
may regulate synapse densities in early development by
acting in the postsynaptic neuron as a cell-autonomous,
transcriptional  repressor on crucial target genes.

Furthermore, knockout of MEF2C is associated with the
alteration of gene expression for numerous autism and
synapse linked genes, and in turn may lead to diseases
related to mental deficiency [22]. Due to the strong asso-
ciation between MEF2C and human psychological defi-
ciencies, we believe that this SNP may be highly important
for human intelligence.

Additionally, we highlight the SNP rs6568547, which
has a posterior probability of 0.62 and resides in the inter-
genic region between AFGIL and FOXO3. AFGIL encodes
a mitochondrial integral membrane protein that plays a role
in mitochondrial protein homeostasis [23]. The evidence
suggests that this gene is associated with bipolar disorder, a
mental health condition that causes extreme shifts in mood,
energy, and behavior [21]. FOXO?3 is involved in the pre-
servation of neural stem cells and the development of
human intelligence [24]. Although the SNP rs6568547 is
located in an intergenic region, the two closest genes are
related to human intelligence and mental dysfunction.

Finally, the SNP rs138592330 has a posterior probability
of 0.60 and resides in the intergenic region between elF3C
and NPIPBY. The gene elF3C is one of the three evolu-
tionarily conserved subunits of elF3 (elF3a, elF3b, and
elF3c), which binds to a highly specific program of mRNAs
involved in cell growth control processes such as cell
cycling, differentiation, and apoptosis [25]. Specifically,
this gene may affect the development of the brain cells
related to human intelligence. We note that this SNP was
not detected by the original GWAS analysis (p=1.2x
107°). This suggests that GWASs may easily miss true
causal variants, indicating a need for novel approaches to
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improve the accuracy of the selection of variants that exert a
true biological effect.

A major advantage of PAINTOR is that it can up-weight
the SNPs that reside in the functional elements where causal
SNPs are enriched. Previous studies have shown that the
most significant gain from considering functional informa-
tion occurs at those loci where the association signal is
weaker, and the most critical SNPs have smaller effect sizes
[16]. In this analysis, we found that the causal SNPs were
not enriched in any particular functional elements, and that
the posterior probabilities of the SNPs mainly depend on the
Z-scores and the regional correlation structure. In this par-
ticular case, the functional elements may not have a sub-
stantial effect on the analysis; however, we still believe the
accuracy of causal variant detection may be improved by
including this information.

There are also several important limitations of this sta-
tistical fine-mapping approach. For instance, it is not pos-
sible to determine the proportion of variability in human
intelligence that is explained by these five candidate causal
SNPs without access to the individual-level data. Addi-
tionally, this statistical exercise cannot be used for the
definitive identification of causal variants without further
functional validation. However, we believe this analysis is a
crucial step for further understanding the genetic determi-
nants contributing to human intelligence. These results
should serve as a reference for molecular biologists in
prioritizing the genetic loci for performing function
mechanistic experiments related to human intelligence.

In summary, we used a Bayesian approach to determine
the SNPs with the highest probability to be causal variants
for human intelligence, based on the summary statistics
from existing GWAS data. Through the identification of
these causal variants, we may be able to gain novel insight
into the mechanisms involved in the development of ele-
vated levels of intelligence and pathogenic cognitive
conditions.
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