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Abstract
Cathepsin C (CatC) is a cysteine protease involved in a variety of immune and inflammatory pathways such as activation of
cytotoxicity of various immune cells. Homozygous or compound heterozygous variants in the CatC coding gene CTSC
cause different conditions that have in common severe periodontitis. Periodontitis may occur as part of Papillon–Lefèvre
syndrome (PLS; OMIM#245000) or Haim–Munk syndrome (HMS; OMIM#245010), or may present as an isolated finding
named aggressive periodontitis (AP1; OMIM#170650). AP1 generally affects young children and results in destruction of
the periodontal support of the primary dentition. In the present study we report exome sequencing of a three generation
consanguineous Turkish family with a recessive form of early-onset AP1. We identified a novel homozygous missense
variant in exon 2 of CTSC (NM_148170, c.G302C, p.Trp101Ser) predicted to disrupt protein structure and to be disease
causing. This is the first described CTSC variant specific to the nonsyndromic AP1 form. Given the broad phenotypic
spectrum associated with CTSC variants, reporting this novel variant gives new insights on genotype/phenotype correlations
and might improve diagnosis of patients with early-onset AP1.

Introduction

Cathepsin C (CatC), also known as dipeptidyl peptidase I, is
a papain-like cysteine protease involved in a variety of
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immune and inflammatory pathways, including activation
of granule-associated proinflammatory serine proteinases in T
lymphocytes, natural killers, and neutrophils [1]. Besides
activation of immune cells, the proteolytic activity of CatC
has been proposed to play a role in epithelial differentiation
and desquamation [2]. CatC is processed into a proteolytically
mature enzyme composed of three subunits (exclusion
domain, light, and heavy chain) and acts as tetramers [3]. The
exclusion domain is non-covalently attached to the heavy and
light chains forming a heterodimeric structure [4].

Homozygous or compound heterozygous loss-of-function
variants in the CatC coding gene, i.e., CTSC, cause
Papillon–Lefèvre syndrome (PLS; OMIM#245000), a rare
condition characterized by the combination of diverse degrees
of palmoplantar keratoderma and prepubertal aggressive
periodontitis leading to premature loss of both deciduous and
permanent dentition [2, 5]. To date, over 75 causal variants
have been identified in ethnically diverse populations [6].
While the vast majority (~97%) of the described variants
cause typical PLS, a broad phenotypic spectrum has been
described [6, 7]. CTSC variants have indeed also been
reported in patients with Haim–Munk syndrome (HMS;
OMIM#245010) that is characterized by palmoplantar
hyperkeratosis, periodontal inflammation, arachnodactly,
acroosteolysis, pesplanus, and onychogryposis [8]. In addi-
tion, CTSC variants were associated with isolated aggressive
periodontitis (AP1; OMIM#170650), a nonsyndromic form of
periodontitis which also leads to tooth loss due to severe
periodontal inflammation [7, 9]. While additional genetic or
environmental factors probably impact the expression of the
disease [10, 11], the observed phenotypic heterogeneity,
sometimes even observed for the same variant, complicates
differential clinical diagnosis [7, 8, 12]. Despite the important
number of known variants, to date no CTSC variant has been
reported to be causing only AP1 without being also associated
with the syndromic form PLS in other families.

In the present study we report a novel homozygous mis-
sense mutation in the CTSC gene (NM_148170; c.G302C;
p.Trp101Ser) identified by whole exome sequencing in a
three generations consanguineous Turkish family with AP1.

Subjects and methods

Subjects and whole exome sequencing

The subjects reported in this study were members of a three
generation consanguineous family of Turkish origin. To
determine the genetic etiology of aggressive periodontitis
within the family we performed whole exome sequencing of
the affected son (III-c, proband), his affected mother (II-b),
as well as of four non-affected relatives: paternal grand-
mother (I-a), father (II-a), and two sisters (III-a, b). All

subjects gave written informed consent to participate in the
study. Genomic DNA was isolated from peripheral blood
using standard protocols. The TruSeq Exome Kit (Illumina,
San Diego, CA, USA) was used for the preparation and
enrichment of exonic DNA libraries. Paired-end (2 × 75 bp)
sequencing was performed on a NextSeq500 sequencer
(Illumina, San Diego, CA, USA).

Variant analysis strategy

Sequence data was mapped on the hg19 reference genome
using Isaac Genome Alignment Software 2.1.0 (Illumina,
San Diego, CA, USA). For each sample, median coverage
was at least 190-fold, and over 97% of target sequences were
covered at a minimum of 10× (Supp. Table 1). Sequence
variants were called using the Isaac Variant Caller 2.1.0
(Illumina, San Diego, CA, USA). Annotation was performed
with the KGGSeq software package based on dbSNP build
135 [13]. Consecutive filtering steps were applied to variants
identified in the proband (III-c) in order to focus on: (i) low
frequency variants (minor allele frequency < 0.005 in 1000
Genomes project (http://www.internationalgenome.org/
1000-genomes-browsers/), the genome aggregation data-
base (gnomAD; http://gnomad.broadinstitute.org/), and an
internal exome database with ~600 exomes accessed in
october 2018); (ii) protein-altering variants (noncoding and
synonymous variants were excluded); (iii) variants compa-
tible with a recessive mode of transmission.

Targeted sequencing

Conventional capillary Sanger sequencing was performed to
analyze and validate the genotype of the identified candi-
date variant in all family members. A 254 bp fragment
spanning the missense mutation in position chr11:88068121
was amplified using the Expand Long Template PCR Sys-
tem (Roche Diagnostics, Rotkreuz, Switzerland) according
to the manufacturer’s recommendations and using the fol-
lowing PCR primers, forward: 5′-AGTGGTGTACCTTCA
GAAGCTGGATACA-3′; reverse: 5′-GGGAAGAGTGGT
GTCAATTCCGGT-3′. After purification with the Exostar
Kit (GE Healthcare Life Sciences, Marlborough, MA,
USA), PCR products were bidirectionally sequenced using
the same primers and the Big Dye Terminator Kit v3.1
(Thermo Fisher Scientific, Waltham, MA, USA). All tar-
geted sequencing reactions were run on an ABI PRISM
3730xl (Thermo Fisher Scientific, Waltham, MA, USA).

3D modeling of CatC variants

The crystal structure solved at 1.4 Å, PDB 4OEL [14], was
used as the model structure for the analysis. Structure
visualization, distance measurement, and mutagenesis
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analysis were performed with the PyMOL program (DeLano
Scientific, San Carlos, CA, USA). The RASP program was
used for side-chain analysis [15].

Results

Clinical report

The index patient is a 6-year-old boy from a con-
sanguineous family of Turkish origin. His parents are first
cousins and his mother was also born from related parents
(Fig. 1a). Premature loss of deciduous teeth started at the
age of 3 years and a first orthopantomogram was performed
at the age of 4 (Fig. 1b). At that time, deciduous teeth,
except canines were prematurely lost. Oral hygiene was
progressively introduced and mechanical periodontal treat-
ment (root scaling with ultrasonic devices) as well as
intensive maintenance therapy was combined to prevent
adverse periodontal evolution [16, 17]. At the time of last
examination (6 years of age), the patient presented his four
permanent first molars and central incisors without detect-
able mobility or probing depths >2 mm (Fig. 1c, d). The
patient showed additional dental abnormalities: hypodontia
(agenesis of the two mandibular lateral incisors), taur-
odontism on the first right maxillary molar and molar
incisor hypomineralization (Fig. 1c, d). Except aggressive
periodontitis, physical, and intellectual development was
unremarkable. Pregnancy, delivery, and neonatal period
were normal except that the umbilical cord fell off relatively
late (1 month). Language delay with absence of sentence
construction was observed at the age of 3 years, motor
development was normal. Complete blood count was

normal, and the patient had no history of infections at the
time of presentation. Importantly, no signs of palmoplantar
hyperkeratosis could be detected.

The patient’s mother (II-b; 39 years old) presented,
according to her statements, severe periodontitis in early
childhood, requiring dental implants, bone graft, and dental
prosthesis early in adolescence (Supp. Fig. 1a). Other
relatives, paternal grandmother (I-a), father (II-a), and sis-
ters (III-a, III-b) were clinically unaffected (Supp.
Fig. 1b–d). The first sister (16 years old, III-a) however
showed slight gingivitis and small restorations (Supp.
Fig. 1c). The second sister (14 years old, III-b) showed
slight gingivitis, small restorations, and microdontia on the
right maxillary lateral incisor (Supp. Fig. 1d).

Whole exome sequencing and variant interpretation

We used whole exome sequencing to identify pathogenetic
variants with autosomal recessive inheritance in a three
generation consanguineous family of Turkish origin with
isolated AP1. Appling a consecutive filtering strategy based
on variant frequency, functional consequences on coding
sequence and heredity, a single missense variant in
the CTSC gene was uncovered (NM_148170; c.G302C;
p.Trp101Ser). This suspected pathogenic variant was con-
firmed by Sanger sequencing. It was found homozygous in
the two affected individuals (patients III-c and II-b), while
clinically unaffected family members (I-a, II-a, III-a, b)
were heterozygous carriers of the variant (Fig. 2). To our
best knowledge the missense variant has not been reported
so far and is absent in public databases including the 1000
Genomes project (http://www.internationalgenome.org/
1000-genomes-browsers/), the genome aggregation

Fig. 1 Pedigree and clinical findings. a Pedigree of the three genera-
tion consanguineous family with autosomal recessive inheritance of
aggressive periodontitis. DNA from individuals indicated by numbers
was analyzed by whole exome and Sanger sequencing. The arrow
denotes the proband. Solid symbols refer to affected individuals,

half-solid symbols indicate unaffected, heterozygote carriers of the
variant. b–d Clinical findings in proband (III-c). Orthopantomogram at
the age of 4 (b) and 6 years (c). Photograph at the age of 6 years (d).
Additional dental abnormalities are highlighted: hypodontia (*), taur-
odontism (→), and hypomineralization (↓)
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database (gnomAD; http://gnomad.broadinstitute.org/) and
our internal exome database with ~600 exomes. Moreover,
the variant is highly conserved and predicted to be disease
causing by several bioinformatics tools (Table 1).

The substituted residue, Trp101 is localized at the
interface between the exclusion domain and the light and
heavy chains of the mature CatC enzyme (Fig. 3a). Trp101
forms π–π interactions with Phe78, Trp110, and Tyr270,
where lies the hydrophobic core of the protein complex. It
may form a water-mediated sulfhydryl bond with Cys30 (at
a distance of 3.6 Å) that stabilizes the structure of the CatC
monomer (Fig. 3b). The Trp101Ser substitution is predicted
to disrupt the π–π interaction based hydrophobic core and
destruct the intimate interaction with Cys30, destabilizing
both the three-dimensional structure of the exclusion
domain and its interaction with the light and heavy chains of

the mature CatC enzyme, which suggest complete or at least
partially reduced enzyme function.

Discussion

In the present study, we identified by whole exome
sequencing a novel homozygous missense variant in the
CatC coding gene CTSC (NM_148170; c.G302C;
p.Trp101Ser) causing isolated AP1 in a consanguineous
family of Turkish origin.

Most homozygous or compound heterozygous CTSC
variants reported in the literature are associated with PLS. To
date, only three studies reported CTSC variants (p.Tyr347Cys,
p.Arg272His, and p.Thr189fs*10) associated with the non-
syndromic form AP1 [7, 9, 12]. All of these variants have
however also been reported by other groups in the context of
PLS [2, 18–20], suggesting that these variants may rather be
linked to PLS with variable penetrance.

Here we report the first variant that is associated with
only AP1 and no other syndromic form. The absence of skin
manifestations cannot be explained by a potentially weak
CTSC mutation, since predictive bioinformatics tools and
the predicted effect of the Trp101Ser substitution on protein
structure suggest a dramatic impact on CatC function. This

Fig. 2 Sanger validation of the disease associated c.G302C missense
mutation. The electropherograms show single base pair substitutions
G302C of the CTSC coding sequence (NM_148170). Affected indi-
viduals (II-a and III-c) are homozygous, all unaffected individual (I-a,
II-a, III-a) are heterozygous carriers of the nucleotide substitution

Table 1 Details of the variant of interest

Position (GRCh37/hg19) Chr11:88068121

Gene symbol CTSC

Refseq number NM_001814.4

Nucleotide alteration G>C

Genotypes of subjects

I-a G/C

II-a G/C

II-b C/C

III-a G/C

III-b G/C

III-c (proband) C/C

Mutation type Missence

Coding sequence alteration c.302G>C

Amino acid alteration p.Trp101Ser

GERP++a 5.840

PhyloPb 3.879

Polyphenc 0.999

MutationTaster Disease causing

aGERP++NR score: DNA conservation score. Deleterious threshold:
>4.4
bValues vary between −14 and +6. Sites predicted to be conserved are
assigned positive scores, while sites predicted to be fast-evolving are
assigned negative scores
cPolyphen2_HDIV_score: variants with scores between 0.85 and 1.0
are highly confidently predicted to be damaging
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observation is in line with previous functional studies
reporting significantly reduced CatC activity regardless of
the phenotypic penetrance in PLS patients [7]. We can
however not exclude that the Trp101Ser variant could
potentially lead to PLS in other so far unknown cases.

In conclusion, our finding might contribute to decipher
the complex genotype–phenotype correlation of CTSC
pathogenicity. Furthermore, it highlights the importance to
consider CTSC in genetic screening of subjects or families
with aggressive periodontitis without other symptoms.
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