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Abstract
Lipids foster energy production and their altered levels have been coupled with metabolic ailments. Indians feature high
prevalence of metabolic diseases, yet uncharacterized for genes regulating lipid homeostasis. We performed first GWAS for
quantitative lipids (total cholesterol, LDL, HDL, and triglycerides) exclusively in 5271 Indians. Further to corroborate our
genetic findings, we investigated DNA methylation marks in peripheral blood in Indians at the identified loci (N= 233) and
retrieved gene regulatory features from public domains. Recurrent GWAS loci—CELSR2, CETP, LPL, ZNF259, and
BUD13 cropped up as lead signals in Indians, reflecting their universal applicability. Besides established variants, we found
certain unreported variants at sub-genome-wide level—QKI, REEP3, TMCC2, FAM129C, FAM241B, and LOC100506207.
These variants though failed to attain GWAS significance in Indians, but largely turned out to be active CpG sites in human
subcutaneous adipose tissue and showed robust association to two or more lipid traits. Of which, QKI variants showed
significant association to all four lipid traits and their designated region was observed to be a key gene regulatory segment
denoting active transcription particularly in human subcutaneous adipose tissue. Both established and novel loci were
observed to be significantly associated with altered DNA methylation in Indians for specific CpGs that resided in key
regulatory elements. Further, gene-based association analysis pinpointed novel GWAS loci—LINC01340 and IQCJ-SCHIP1
for TC; IFT27, IFT88, and LINC02141 for HDL; and TEX26 for TG. Present study ascertains universality of selected known
genes and also identifies certain novel loci for lipids in Indians by integrating data from various levels of gene regulation.

Introduction

Lipids are major biomolecules that fuel energy production
of the human body. During energy-rich conditions, lipids
get stored in various human tissues and are utilized in
energy insufficiency. Abnormal lipid metabolism is asso-
ciated with obesity, type 2 diabetes (T2D), cardiovascular
diseases, Alzheimer’s disease, sleep apnea, cancers, etc.
[1–6]. Total cholesterol (TC), low-density lipoproteins
(LDL), high-density lipoproteins (HDL), and triglycerides
(TG) are vital constituents of lipid fraction in blood. Lipid
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traits exhibit strong genetic control [7–12] and are largely
modifiable by dietary intake and physical activity [13–15].

Individuals from North India, speaking the Indo-
European language are genetically a diverse population.
Their diet constitutes high intake of carbohydrates [16] and
thus are specifically vulnerable to atherogenic dyslipidemia
that is characterized by lower TC, lower HDL and higher
TG levels [17]. Atherogenic dyslipidemia is strongly asso-
ciated to several metabolic diseases [18, 19]. Indians have
been previously studied for replication of known lipid-
associated variants [20–22], however, there was a lack of
comprehensive genome-wide association study (GWAS)
conduced exclusively on Indians.

We performed a two-staged genome-wide association
study (GWAS) on 5271 healthy individuals and replicated
earlier GWAS findings—CELSR2, CETP, LPL, ZNF259,
and BUD13 and correspondingly determined independent
signals within these established lipid loci. Besides, we
identified certain novel variants that exhibited strong asso-
ciation to lipid parameters in Indians but fail to attain
GWAS significance. Majority of these variants were found
to be dynamic CpG sites in human subcutaneous adipose
tissue and pancreas. Of which, QKI variants showed
noteworthy association to all four lipid traits and their
designated region was observed to be a key gene regulatory
segment denoting dynamic transcription particularly in
human subcutaneous adipose tissue. To substantiate our
genetic findings, we investigated DNA methylation marks
in peripheral blood in Indians at the identified loci and
spotted robust associations to important genic CpG sites.
Identified signals featured key control regions of the
genome regulating lipid homeostasis.

Participants and methods

The study was conducted in accordance with principles of
Helsinki Declaration and approved by Ethics Committee of
All India Institute of Medical Sciences, New Delhi, India
and CSIR-Institute of Genomics and Integrative Biology,
New Delhi, India. Written informed consent was taken from
all study participants.

Study population

The individuals included in the study are Indo-European
speakers randomly sampled from the Northern part of
India. These individuals are also a part of the INdian
DIabetes Consortium (INDICO) [23] and were included in
the control group (normoglycemic) in T2D GWAS con-
ducted previously in the lab [24]. Apparently healthy
individuals were recruited through health awareness
camps piloted in/around Delhi. Their anthropometric and

clinical characteristics are provided in Supplementary
Table 1.

Serum TC, LDL, HDL, and TG levels were measured
enzymatically using COBAS Integra 400 plus (Roche
Diagnostics, Germany). Genomic DNA was extracted from
peripheral blood using salt precipitation method.

Genome-wide association study

Discovery phase

Illumina Human610-Quad BeadChips (Illumina Inc., San
Diego, CA) were used for the genome-wide scan as part of
GWAS studies earlier conducted for T2D and related
metabolic traits in our laboratory [24–27]. GenCall algo-
rithm was employed to ascertain genotype calls (Geno-
meStudio, Illumina Inc.). Quality control and association
analysis is charted in Supplementary Fig. 1. In brief, indi-
viduals under lipid-lowering medication, samples with
genotype call rate <95%, extremely low or high hetero-
zygosity (3 SD from mean value) and discordant sex were
removed. SNP calls with missing rate >5%, MAF <0.01 or
with MAF 0.01–0.05 but Hardy–Weinberg equilibrium
(HWE) p < 10−6 were removed. Identity-by-descent was
checked using the following parameters (pi_hat >0.1875
{relatedness} and pi_hat >0.98 {duplication}). Principal
component analysis (PCA) was used to detect population
outliers. We ran PCA on a LD-pruned, reduced set of
markers. LD pruning of SNPs was performed with auto-
somal SNPs exercising the “–indep-pairwise” option of
PLINK v1.07 (http://pngu.mgh.harvard.edu/~purcell/plink)
[28] with r² of 0.2 and window size of 50 SNPs. First ten
principal components were used to identify 31 subjects as
population outliers (6 SD away from mean value) and were
removed. Serum lipid values were inverse normalized using
R (http://www.r-project.org/). After QC, association testing
was performed for 551825 SNPs with inverse-normalized
lipid values in 1036 individuals by linear regression ana-
lysis under additive model adjusting for age, sex, BMI, and
first two principal components using PLINK. Median
χ²-statistics were used to compute genomic inflation factor
λ. QQ and Manhattan plots were constructed using qqman
package in R (http://www.r-project.org/).

Replication phase

The present study was conducted as a part of a large study to
identify genetic determinants of different quantitative traits
(glycemic, lipids, anthropometric, nitrogen metabolites, etc.) in
Indians [25–27]. To select a decent and creditable number of
variants for replication as per our available resources, we
selected all markers that were strongly associated (p < 10−4) to
any of the studied quantitative trait, entailing that certain
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markers with discovery p > 10−4 for lipids were also genotyped
for replication in an independent sample-set (N= 4235) using
Illumina Golden Gate assay. Overall 204 samples (6%) were
genotyped as replicates to assess experimental accuracy
(replication error <0.01 was detected between technical repli-
cates). Samples with call rate <90% were excluded. SNPs with
genotype call rate <90%, genotype confidence score <0.25,
GenTrans score <0.60, cluster separation score <0.40, MAF
<0.01 and HWE p < 1 × 10−6 were discarded. Lipid values
were inverse normalized. Association analysis was performed
using linear regression model adjusted for age, sex, and BMI.

An inverse variance method was used to meta-analyze
discovery and replication phase results under a fixed
effect model by METAL (www.sph.umich.edu/csg/abecasis/
Metal) [29]. Conditional analysis for signals in CETP, LPL,
and ZNF259 loci was carried in combined data (discovery
and replication phases) using additive linear model and was
adjusted for age, sex, BMI, and respective SNP genotypes as
covariates using PLINK.

Statistical power of the study

Statistical power of study was calculated for meta-analysis
for allele frequencies ranging from 0.01 to 0.50 at different
effect sizes assuming log-additive model. Power has been
plotted in y-axis for corresponding MAF in x-axis. Two-
tailed test at significance level of 0.05 and effect sizes
ranging from 0.001 to 8.63 (TC), 0.001 to 7.01 ( LDL),
0.0001 to 3.18 (HDL), and 0.009 to 18.69 (TG) obtained
from literature was utilized for power calculation. Average
TC levels of 183.42 mg/dl, LDL levels of 115.74 mg/dl,
HDL levels of 46.13 mg/dl and TG levels of 121.82 mg/dl
and a mean standard deviation of 42.32 mg/dl (TC), 33.32
mg/dl (LDL), 12.25 mg/dl (HDL) and 71.26 mg/dl (TG)
were used.

In silico replication

We performed in silico replication of novel signals by
combining summary statistics in Indians and Global Lipids
Genetics Consortium (GLGC) dataset that constituted
GWAS data of quantitative lipids from 188,577 Europeans
and 7898 non-Europeans (East-Asians, South-Asians, and
Africans) [11]. The effect sizes were converted to uniform
unit by absolute conversion factor before meta-analysis by
METAL.

Imputation analysis

Imputation was carried out as described previously [24]. In
brief, 1000Genomes Phase 3 was used as the reference
panel. Pre-phasing was done using SHAPEIT [30] for the
respective chromosomes. A region of 2Mb on either side of

the variant was imputed using IMPUTE2 [31] which also
covered its respective LD block. Imputed SNPs were sub-
jected to a stringent QC: Certainty ≥0.90, Info ≥0.5, and
MAF ≥0.01. Finally, the QC passed SNPs were tested for
association in Indians using PLINK, adjusting for age, sex,
BMI, PC1, and PC2.

Correlation among lipid traits and SNPs

Correlations among lipid traits were computed using R
corrplot package (http://www.r-project.org/). R corrplot
function was used to plot the graph of the correlation
matrix. Correlation among association p-values for SNPs
were calculated for at least 2 lipid traits in combined gen-
otype dataset of discovery and replication phases exercising
available commands in Microsoft Excel.

Pathway analysis

We used the shared genes among at least 2 lipid traits as an
input for STRING analysis (version 10.5 {https://string-db.
org}) [32] to explore known or predicted protein–protein
interactions between query genes and their additional
functional interactors. All interactions were scored at the
highest confidence (0.90) and only 10 more interactors of
strongest interaction evidence with the query genes were
allowed in the network. Identified genes were also analyzed
using Reactome [33] and GeneMANIA [34].

Gene-based association analysis

We also performed Univariate gene-based association ana-
lysis using effective chi-squared test (ECS) implemented in
knowledge-based mining system for genome-wide genetic
studies (KGG v4) available at http://statgenpro.psychiatry.
hku.hk/limx/kgg/download.php. SNPs within each gene for
the respectively associated lipid trait were used as an input
for the KGG v4.

For QKI, we performed multivariate gene-based asso-
ciation test by extended Simes procedure (MGAS) in our
GWAS dataset [35]. Association p-values of markers within
2Mb region of QKI loci for all 4 lipid traits and trait cor-
relation information were incorporated in MGAS based
model using KGG v4.

1000Genomes Phase III data that constitutes Europeans,
Africans, Americans, East-Asians, and South-Asians was
used for computing LD between all tested markers within
the studied region.

DNA methylation analysis

We searched for associated meth-QTLs in peripheral blood
using Infinium HumanMethylation450 BeadChips of 233
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normoglycemic Indians studied in the discovery phase of
GWAS. Data generation has been described previously
[36]. QC method is charted in Supplementary Fig. 1.
Briefly, sample QC involved sex disparity checks and
samples with failed bisulphite conversion (samples having
intensity 3 SD away from mean intensity for C1, C2, C3,
and C4 probes). CpGs with bead count less than 3 in 5% of
samples and detection p-value >0.01 for less than 1% of
samples were excluded. CpGs in sex chromosomes (X and
Y), established cross-hybridization probes and polymorphic
CpGs were also removed. CpGs with 100% call rate in all
the samples have only been considered for analysis.
Methylation outlier value for CpGs was fixed by fixMeth-
Outliers command in minifi. Methylation data were
regressed for confounders such as cell composition, age,
sex, BMI, bisulphite conversion efficiency, and plate
number. Methylation data were extracted for identified
GWAS variants and tested for SNP-CpG association using
linear regression model in PLINK.

Gene regulatory information

Global expression-QTL (eQTL) data was retrieved from
GTEx-portal-v7 (The Broad-institute of MIT and Harvard)
[37]. Whole Genome Bisulphite Sequencing (WGBS) data
was retrieved from ENCODE dataset [38] for human sub-
cutaneous adipose tissue and pancreas of a female aged 30
years and blood monocytes of a male aged 37 years. Human
ATAC-seq and histone marks H3K36me3 or H3K27me3 data
is obtained from female individuals aged 49 years (sub-
cutaneous adipose tissue) and 30 years (pancreas) [38].
ChIP-seq data of CTCF binding was acquired from a female
aged 51 years for both the tissues [38]. ENCODE data for
K562 cell-line (DNase I hypersensitivity, Histone mod-
ifications, chromatin state segmentation, Transcription
Factor (TF) binding sites, etc.) was also examined. Pre-
dicted sites for TF binding were retrieved from JASPAR
database [39]. All gene regulatory data was plotted in
UCSC genome-browser [40].

Fig. 1 Manhattan plots of associated P-values for lipid traits. The
−log10 p-values for the association of directly genotyped SNPs are
plotted as a function of genomic position (National Center for

Biotechnology Information Build 37). P-values were determined using
linear regression adjusted for age, sex, BMI, PC1, and PC2 in dis-
covery phase analysis

576 K. Bandesh et al.
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Results

The present study was observed to be sufficiently powered
to detect truly associated variants for quantitative lipid traits
in Indians (Supplementary Fig. 2). Under the null dis-
tribution QQ plots of all four lipid traits reflected a good
agreement (Supplementary Fig. 3). Genomic inflation factor
(λ) was observed to be 1 thereby indicating homogeneity of
the studied population.

Genome-wide association analysis of total
cholesterol (TC)

In discovery phase, the strongest association was observed
for variant rs134221 that resided in a strong enhancer ele-
ment within a long non-coding RNA gene LINC01399 (p=
2.05 × 10−6) (Fig. 1). However, in replication phase, the
association with LINC01399 appeared nominal (rs134221 p
= 0.04 and rs80731 p= 0.02). Meta-analysis of discovery
and replication phases revealed genome-wide significance
at a previously known locus—CELSR2 harboring SNP
rs646776 (p= 1.03 × 10−9) (Table 1). Loci QKI
(rs9458854, rs9458855) and REEP3 (rs7083226) showed
sub-genome-wide significance and surfaced for the first
time in association with TC (respective p-values= 3.71 ×
10−5, 9.78 × 10−5 and 9.89 × 10−5, respectively) (Table 2).

Amongst the variants that were tested only in replication
phase, earlier reported SNPs rs10401969 (SUGP1 gene) and
rs599839 (PSRC1 locus) featured genome-wide association
to TC levels in Indians (Supplementary Table 2). Addi-
tionally, a novel variant rs16996148 falling near CILP2
gene turned out to be nearly genome-wide significant (p=
6.47 × 10−8) (Supplementary Table 2).

Genome-wide association analysis of LDL

In discovery phase of LDL GWAS, variant rs4979205, a
highly significant cis-eQTL for ZNF833 in human brain,
appeared as lead signal (p= 4.52 × 10−6) (Fig. 1). The
association with ZNF833 was reinforced by other variants
rs10981574, rs1886525 and an exonic variant rs10981592
(p-values= 3.05 × 10−5, 3.26 × 10−5 and 3.27 × 10−5).
However, this association was lost after meta-analysis of
discovery and replication phases (rs4979205, p= 0.12).
Another locus LYZL1, represented by four SNPs rs1858571,
rs12412488, rs2256713, and rs10491049, showed up
strongly in discovery phase (p-values= 5.64 × 10−6, 5.88 ×
10−6, 1.54 × 10−5 and 2.6 × 10−5, respectively) but not
when meta-analyzed (rs12412488, p= 0.31). Besides, var-
iants rs1862859 and rs1846697 residing near microRNA
gene MIR4426 (respective p= 7.65 × 10−6, 1.87 × 10−5),
SNPs rs10519042 and rs7180578 in SQOL locus (p-values
= 7.9 × 10−6, 3.37 × 10−5), and cis-eQTLs rs11168524 and

rs1471997 for H1FNT (p= 8.96 × 10−6 and 2 × 10−5,
respectively) featured strong association to LDL levels in
discovery phase (Fig. 1) but not after meta-analysis.

Established GWAS signal CELSR2 (rs646776) was the
strongest signal after meta-analysis (p= 1.08 × 10−13)
(Table 1). Two novel loci—REEP3 (rs7083226) and
TMCC2 (rs2290265) presented robust association to LDL
levels but failed to attain GWAS significance (Table 2).
Previously known variants—rs599839 (PSRC1) and
rs10401969 (SUGP1) staged genome-wide significance
when tested in the replication phase (Supplementary
Table 2).

Genome-wide association analysis of HDL

Known HDL signal—CETP was observed as the strongest
signal in Indians throughout the study (Fig. 1, Table 1). In
discovery phase, the locus was represented by five variants
rs3764261 (p= 6.29 × 10−12), rs1800775 (p= 3.97 × 10−10),
rs1532624 (p= 5.28 × 10−9), rs708272 (p= 3.41 × 10−7),
and rs7499892 (p= 3.12 × 10−6). In meta-analysis, variants
—rs3764261, rs1532624, rs1800775, rs9989419, and
rs4783961 defined CETP locus (p-values ≤ 10−8).
Novel variants rs2009667 and rs1048015, highly significant
cis-eQTLs for IFT27 gene in several human tissues, were
observed amongst lead signals in the discovery phase
(respective p= 1.63 × 10−6 and 1.41 × 10−5) but persisted
after meta-analysis (rs2009667 p= 1.22 × 10−4). Further,
the variants falling in NCS1 gene (rs7873936 and rs7852859)
sustained significance after meta-analysis (p-values=
1.23 × 10−4 and 6.32 × 10−4). However, association of other
discovery phase leads diminished after meta-analysis—
rs4804386 (MUC16); rs3094471 and rs1859137 (KCTD5);
rs1151452 and rs1151457 (LINC02337); and rs6068695
(SUMO1P1). Besides CETP, LPL surfaced as another strong
GWAS signal after meta-analysis (Table 1) and also amongst
variants tested only in the replication phase (Supplementary
Table 2). Though not genome-wide significant, we observed
novel variant (rs4544358) residing within FAM129C to show
strong association to HDL levels after meta-analysis (p=
9.96 × 10−5) (Table 2).

Genome-wide association analysis of triglycerides
(TG)

The strongest association with triglyceride levels was seen for
GUCY1A2 variant rs12574588 in the discovery phase (p=
1.48 × 10−7) (Fig. 1). This association however receded in
meta-analysis (p= 0.003). Reported TG variants- rs7350481
(BUD13), rs964184 and rs6589567 (ZNF259) and
rs10096633 (LPL) persisted as lead signals throughout the
study (respective meta-analysis p-values= 1.12 × 10−20,
7.64 × 10−30, 1.01 × 10−16, 1.71 × 10−9) (Table 1).
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Conversely, association of another discovery phase
lead rs6857945 (LDB2) regressed in meta-analysis (p= 4.2 ×
10−4). Strong discovery phase SNPs in VAPB and GNPTAB
perished in meta-analysis. We identified an unreported SNP
(rs4128744) near LPL to feature robust genome-wide asso-
ciation to serum TG levels in Indians (p= 2.32 × 10−9)
(Table 1). Variant rs4128744 is in strong linkage-
disequilibrium (r2 > 0.9) with earlier reported TG GWAS
variants rs9644568 and rs115849089. All through study,
novel variants rs12771265 and rs4746882 (FAM241B), and
rs9393071 (LOC100506207) exhibited strong association to
TG but could not reach genome-wide significance (respective
meta-analysis p values= 1.16 × 10−6, 3.1 × 10−5 and 4.07 ×
10−5) (Table 2).

Conditional analysis to identify independent GWAS
signals

To identify effective independent variants within CETP,
LPL, and ZNF259 loci, we performed conditional
analysis of the combined data (discovery and validation
phase) using additive linear model. We found rs3764261
as the leading signal in the HDL-associated CETP locus
(Table 3). Association testing after adjusting for variant
rs3764261 resulted in loss of genome-wide significance
of other four variants in CETP locus (rs1532624,
rs1800775, rs4783961, and rs9989419), though nominal
significance retained (rs1532624, p= 8.13 × 10−4;
rs1800775 p= 1.03 × 10−4; rs4783961, p= 2.99 × 10−4

and rs9989419, p= 0.03) (Table 3). Conditional analysis
of LPL signals pinpointed SNP rs10096633 as the
key variant to dismiss the genetic significance of variants
rs12678919 and rs4128744 with HDL levels (Table 3).
Furthermore, this LPL variant turned out to be a central
variant for TG levels also. Correspondingly, for ZNF259
locus, we noticed that variant rs6589567 fail to attain
genetic significance upon conditioning of association
analysis for genotypes of variant rs964184 (p= 0.25)
(Table 3).

In silico replication of novel variants in GLGC
population

Meta-analysis of summary statistics of the identified novel
variants in publicly available high-throughput dataset of
quantitative lipid traits in diverse human populations
(Global Lipids Genetics Consortium Data-GLGC) did not
improve their association status (Supplementary Table 3).
All identified novel variants (Table 2) were observed to lack
association in other populations but few (QKI and TMCC2
variants) were nevertheless seen to follow a similar direc-
tionality for the effect.

Imputation of novel loci

For QKI, we identified certain variants that displayed higher
significance for association to total cholesterol (discovery
p= 10−3) than index variants rs9458854 and rs9458855
(Supplementary Table 4a, Supplementary Fig. 4). These
imputed variants resided in key regulatory elements of QKI
gene (other introns and an upstream enhancer). An inter-
esting variant rs76779527 within an upstream bivalent
enhancer of QKI gene in human adipose tissue featured a
strong binding site for GATA2, a TF that inhibits adipo-
genesis. Apart from this, some imputed intronic variants
also constituted strong binding sites for important TFs
involved in lipid metabolism (STAT1, STAT2, FOXD3,
IRF1, and TGIF1). Further for REEP3 locus, in association
to total cholesterol, p-value significance sustained 10−3 after
imputation (Supplementary Table 4b) but marginally
improved from 10−2 to 10−3 for LDL (Supplementary
Table 4c). None of the later variants seemed to constitute
regions vital for a gene’s activity. At TMCC2 locus, two
intergenic variants were found to be associated with LDL at
a marginally higher significance than the index SNP
rs2290265 (Supplementary Table 4d). These imputed var-
iants along with the two other genotyped variants in the
region were observed as highly significant cis-eQTLs for
TMCC2 gene in human subcutaneous adipose and skeletal
muscle tissues. For loci FAM129C, FAM241B, and
LOC100506207, no variant other than the index SNPs
turned out to be strongly associated to the respective trait
after imputation.

Shared variants for lipid traits

We next looked for shared associated variants among stu-
died lipid traits and observed significant correlations among
all four lipid traits (Supplementary Fig. 5) that remained
unaffected by the transformations. TC levels were seen to
strongly correlate with LDL levels (correlation coefficient:
0.88) and modestly with HDL and TG levels (correlation
coefficients: 0.21{HDL} and 0.33{TG}). LDL levels
showed suggestive correlation with TG levels (correlation
coefficient: 0.22) and a relatively weaker one with HDL
levels (correlation coefficient: 0.09). Furthermore, as
reported in earlier studies, HDL and TG levels featured a
reasonable inverse correlation (correlation coefficient:
−0.27).

Taking into consideration that lipid traits are well-
correlated and can dictate the likely overlap of certain
variants in Indians, we next calculated the pair-wise corre-
lation between the association p-values for all the SNPs for
at least 2 traits in the combined genotype data. We observed
very little overall correlation (data not shown). Interestingly,
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three novel variants within the QKI gene—rs9458854,
rs9458855, and rs9458846 showed robust association to all
the four studied lipid traits (Fig. 2a). Also, we found that
there are minimum of 99 SNPs that are simultaneously
associated to at least 2 lipid traits (p-value < 0.05) (Sup-
plementary Table 5), reflecting that these genomic regions
administer the levels of multiple quantitative lipids at a
time.

QKI as a novel locus for lipid traits

Subsequent to observing QKI locus to be associated with all
lipid traits, we looked for all reported genetic variants in the
region. The strongest reported association for TC was for
SNP rs190262954 (p= 1.14 × 10−4) (Fig. 2b). There was
no other stronger variant in the region documented for any
of four blood lipids (Supplementary Fig. 6). QKI gene was
observed to be highly expressed in human subcutaneous
adipose tissue (Fig. 2c). To speculate the functional role for
our identified QKI variants, we studied the open chromatin
signatures, active and repressive histone marks (H3K36me3
and H3K27me3, respectively), CTCF binding and TF bind-
ing in human subcutaneous adipose tissue and pancreas.
Both tissues featured an open chromatin at QKI gene
(Fig. 2d). However, in comparison to pancreas where the
expression of QKI is spare (Fig. 2c), adipose tissue exhib-
ited remarkably higher enrichment for H3K36me3 marks and

an absence of H3K27me3 marks, which is essentially a sig-
nature for active gene transcription (Fig. 2d). Additionally,
the region located immediate downstream of the associated
variants featured an abolition of CTCF binding in adipose
tissue although present in the pancreas (Fig. 2d). The
associated variants were seen to display high TF bit-scores
at their respective positions (Supplementary Fig. 7), thereby
denoting highly conserved elements of the strong predicted
motifs for key transcription factors—GCM1, GCM2, SPIC,
FOXK1, Foxo1, FOXP2 (Fig. 2e), and ESR2 (data not
shown).

Exploring the WGBS data, we observed that the variant
rs9458854 is a dynamic hypermethylated CpG site in both
the human adipose tissue and the pancreas (Fig. 2e). Indeed,
100% of the sequenced were found to be methylated.
Besides QKI, majority of the other identified novel variants
were also found to be active CpG sites in human adipose or
pancreas tissue (Supplementary Fig. 8).

Pathway analysis of shared genes

In view of a substantial number of shared SNPs among lipid
traits, we then performed a gene-set enrichment analysis to
identify associated biological pathways. We used a total of
80 genes (listed in Supplementary Table 5) as an input for a
STRING database search. The analysis revealed significant
enrichment of crucial biological processes such as citric

Fig. 2 QKI as a novel locus for lipid traits. a Association analysis of
QKI variants with all four lipid traits in Indians. TC: total cholesterol,
TG: triglycerides. b Reported genetic variants for TC in QKI locus.
The highlighted area shows the associated region in Indians (present
study). Information has been obtained from T2D knowledge portal. c
Gene expression of QKI in human subcutaneous adipose tissue and
pancreas (mRNA levels). [GTEx portal]. d Comparison of gene reg-
ulatory signatures in human subcutaneous adipose and pancreas tissue.

H3K36me3: active gene body mark signifies active transcription;
H3K27me3: mark for repressed transcription; ATAC-seq peaks: open
chromatin region; CTCF: TF that binds to repressed genic regions.
[ENCODE data]. e QKI region harboring associated variants
rs9458854 and rs9458855. Predicted motifs for respective TFs. The
gray scale reflects enrichment where black color denotes strongest
binding and light gray as weak binding [JASPAR data]
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acid cycle (TCA cycle), lipid homeostasis or remodeling,
acyl-CoA metabolism, macrophage colony-stimulating
factor signaling pathway and RIG-I signaling (Supplemen-
tary Fig. 9, Supplementary Table 6a). Besides STRING, we
analyzed the identified genes using two other high-
performance tools – pathway analysis by Reactome and
biological function prediction by GeneMANIA. Here too
we observed significant enrichment (FDR ≤ 0.05) of lipid-
related processes pertaining to lipid homeostasis, lipopro-
tein remodeling, foam cell differentiation and assembly of
active LPL and LIPC lipase complexes (Supplementary
Tables 6b, 6c).

Gene-based association analysis

In order to avoid missing out any important genetic loci for
the studied lipid traits, we also performed gene-based ana-
lysis based on associated marker accumulation on whole
genes. The analysis revealed certain novel GWAS loci
which were not captured previously by SNP-based asso-
ciation testing. TC lead signal CELSR2 as captured by SNP-
based GWAS, retained significance in gene-based testing
(p= 0.02). Additionally, genes—LINC01340 and IQCJ-
SCHIP1 turned out be genome-wide significant for TC in
gene-based testing (Supplementary Table 7). For LDL
levels, both CELSR2 and TMCC2 remained significant (p=
0.01). Gene PCBP3 showed near genome-wide significance
to LDL levels in Indians (p= 5.52 × 10−7) (Supplementary
Table 7). In agreement with SNP-based testing for HDL,
gene-based analysis also featured CETP as the lead signal
(p= 1.03 × 10−16), and LPL sustained nominal significance
(p= 0.04). Besides, previously unreported genes—FT27,
IFT88, and LINC02141 exhibited genome-wide significance

for HDL levels in Indians (Supplementary Table 7). For
TG, ZNF259 maintained strong association in gene-based
analysis (p= 1.90 × 10−6) (Supplementary Table 7). Fur-
thermore, genes BUD13 and LPL also sustained sig-
nificance for TG in Indians (respective p= 1.15 × 10−3 and
0.02). The analysis also revealed TEX26 as a strong GWAS
loci for TG for the first time (p= 9.0 × 10−8) (Supplemen-
tary Table 7).

In conjunction with our findings indicating QKI as an
important locus for all four studied quantitative lipids in
Indians, we performed a multivariate gene-based associa-
tion test for QKI by extended Simes procedure (MGAS)
implementing gene-based testing of multiple correlated
phenotypes in unrelated individuals. This gene-based test-
ing also set out QKI as the lead gene in the associated loci
(2 Mb genomic region) retaining statistical significance (p
= 0.05) (Supplementary Table 8).

DNA methylation study in Indians

To pinpoint putative functional variants in identified
GWAS and sub-GWAS signals, we investigated and
integrated DNA methylation data from peripheral blood in
Indians. Both, known and novel genetic variants were
profoundly enriched as meth-QTLs that tend to regulate
methylation pattern at related CpG sites within associated
genes (Supplementary Table 9, Table 4). Amongst novel
signals, FAM129C variant rs4544358 was observed to be
significantly associated with differential methylation of
five different CpG sites in Indians (Table 4). TMCC2 SNP
rs2290265 and REEP3 variant rs7083226 portrayed
robust association to DNA methylation at specific genic
CpG sites.

Table 4 Meth-QTL analysis for novel variants in 233 Indians who have been genotyped in discovery phase

SNP CpG

Name CHR BP Gene A1 Name CHR BP Gene BETA SE p-value

rs4544358 19 17642759 FAM129C A cg14024889 19 17633904 FAM129C 0.016 0.004 5.81 × 10−5

rs4544358 19 17642759 FAM129C A cg12550597 19 17664483 FAM129C 0.014 0.004 1.61 × 10−3

rs2290265 1 205199570 TMCC2 A cg21785384 1 205231416 TMCC2 −0.014 0.004 1.64 × 10−3

rs2290265 1 205199570 TMCC2 A cg11703745 1 205199292 TMCC2 0.014 0.004 1.73 × 10−3

rs4544358 19 17642759 FAM129C A cg12847399 19 17650165 FAM129C −0.015 0.005 4.94 × 10−3

rs4544358 19 17642759 FAM129C A cg12585966 19 17650008 FAM129C −0.014 0.005 5.66 × 10−3

rs2290265 1 205199570 TMCC2 A cg03212480 1 205214842 TMCC2 −0.01 0.004 0.01

rs7083226 10 65558896 REEP3 A cg13801670 10 65347895 REEP3 −0.003 0.001 0.01

rs7083226 10 65558896 REEP3 A cg26029786 10 65280951 REEP3 −0.006 0.003 0.01

rs2290265 1 205199570 TMCC2 A cg11752894 1 205196011 TMCC2 −0.005 0.003 0.03

rs4544358 19 17642759 FAM129C A cg04331601 19 17633879 FAM129C 0.008 0.004 0.04

Association results showing SNPs affecting CpGs of associated gene. P-value has been obtained from association of SNPs with methylation level
as corresponding CpGs (Beta value) using PLINK. CpG ids has been given based on annotation file of Illumina 450K BeadChip

BP base position, SE standard error, A1 minor allele
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We observed that all three unreported genes (FAM129C,
TMCC2, and REEP3) are expressed moderately in human
blood (Supplementary Fig. 10). Therefore, we layered our
genetic and epigenetic data from peripheral human blood
with gene regulatory information from leukemia cell-line
K562. We found that the associated CpG sites for meth-
QTL rs4544358 resided in FAM129C promoter, exons, and
3′UTR; and constituted strong binding-sites for REST,
ZBTB7A, RAD21, and NRSF (Supplementary Table 10).
Likewise, meth-QTLs rs2290265 (TMCC2) and rs7083226
(REEP3) were significantly associated with CpGs that
comprise key regulatory elements.

Though QKI is fairly expressed in human blood (8.12
transcripts per million), we did not find any association
between alternative alleles of variant rs9458854 and level of
DNA methylation at the overlapping CpG site in blood in
Indians. To validate our observation, we looked at the
publicly available WGBS data of classical monocytes
(CD14+) in human blood. Consistent with our observation
in peripheral blood in Indians, classical monocytes in blood
also showed lack of DNA methylation at variant rs9458854
wherein none of the sequenced reads were found to be
methylated (Supplementary Fig. 11) in contrast to be a
definite hypermethylated site in adipose tissue.

Discussion

This is first GWAS conducted for serum lipid traits (total
cholesterol, LDL, HDL, and triglycerides) exclusively in
Indians. Recurrent GWAS signals found in studies in Eur-
opean, Hispanic, African, South Asian, and East Asian
populations, namely—CELSR2, CETP, LPL, ZNF259, and
BUD13 [9, 11, 12, 41–43], also constituted the most sig-
nificantly associated SNPs in our study as well. It signifies
universality of these variants, thereby confirming the exis-
tence of an independent genetic control that governs lipid
traits regardless of vast genetic diversity and differential
food habits in varied human populations.

CELSR2 (Cadherin EGF LAG seven-pass G-type
receptor 2) is a receptor protein in which cadherin domains
act as homophilic-binding regions and EGF-like domains
exhibit cell adhesion and receptor-ligand interactions [44].
CETP is a Cholesteryl Ester Transfer Protein, involved in
transfer of neutral lipids among lipoprotein particles [44].
LPL encodes for lipoprotein lipase that breaks down stored
triglycerides for energy production whereas BUD13 and
ZNF259 are involved in modification and cellular transport
of pre-mRNAs [44]. Previously, a few candidate studies
have individually replicated these variants in Indians [20–
22] but not at genome-wide before.

Within these ubiquitously associated loci, we identified
independent variants. SNP rs3764261 residing within

repressed element of CETP promoter, is highly significant
cis-eQTL for CETP in human lungs, liver, and stomach
[37]. Prime variant rs10096633 is significant cis-eQTL for
LPL in blood and SNP rs964184 located in 3′UTR of
ZNF259 is cis-eQTL for pseudogene RP11-109L13.1 situ-
ated downstream of BUD13 [37]. Evidently, eQTL findings
justify observed genetic associations on biological grounds.

Besides established variants, we found certain novel
variants at sub-genome-wide significance in Indians—QKI,
REEP3, TMCC2, FAM129C, FAM241B, and
LOC100506207. It is well known that genetic variance is
mainly contributed by multiple SNPs with small effects that
may often be missed out due to stringent GWAS p-value
thresholds and multiple testing corrections [45].

We recognized convincing genetic variants that simul-
taneously presented association to at least two of the four
studied lipid traits. Majority of such variants were often
seen associated with HDL, TG levels and LDL, TC levels
simultaneously. This trend resembles our previous reported
observation in African-Americans where we employed a
completely different disease gene mapping method
(admixture mapping) to study quantitative lipids [12]. This
concurrent finding in two entirely diverse populations in
terms of both the genetic and environmental influences,
further conforms the universality of lipid variants. The
discovered novel variants though not associated to respec-
tive lipid traits in other populations yet revealed similarity
in the direction of the effect and robust association to
multiple other related traits such as BMI, adipose tissue
volume, adiponectin, hip circumference, fasting insulin,
fasting glucose, HbA1c, and creatinine [46].

QKI gene surfaced as a lead hit featuring significant
associations with all the four studied lipid traits in Indians.
QKI or Protein Quaking is an RNA binding protein that
regulates pre-mRNA splicing, mRNA nuclear export, sta-
bility, and protein translation [44]. Changes in QKI
expression are reported to significantly alter the expression
of known genes involved in lipid metabolism (IDOL,
ABCG1, PPARG, NR1H3/LXRA, CD36, LDLR, etc.) in
primary monocytes in humans and mouse [47]. Expression
of QKI is remarkably higher in macrophages [47] and its
depletion impairs differentiation of monocytes into macro-
phages by triggering alternative splicing events [47]. Mac-
rophages, the key cells of innate immunity, differ extremely
from monocytes in terms of lipid metabolism [48] and their
chronic accumulation is at the site of tissue injury is a
hallmark of numerous complex diseases [47]. Liver and
adipose tissue are the primary sites for resident macro-
phages. Adipose tissue macrophages (ATM) administer
obesity-related metabolic dysfunction by secreting LPL
(lipoprotein lipase) to enhance their ability to sequester
excess lipids [49]. We observed drastically higher enrich-
ment of gene activation histone mark (H3K36me3) for QKI
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transcription in human subcutaneous adipose tissue
encompassing the identified variants. In addition, QKI
variants were observed to be strong seats for known tran-
scription factors that are well-established in lipid-related-
diseases, especially FOXO1, FOXK1, and GCM2. FOXO1
regulates lipid metabolism by promoting lipolysis and
governing adipocyte differentiation and its activity is
pivotal in obesity, non-alcoholic fatty liver disease and type
2 diabetes [50, 51]. FOXK1 is a critical mediator of
mTORC1-driven gene expression, a process that plays an
important role in metabolic diseases [51, 52]. Activity of
GCM2 is associated with hyperactivity of parathyroid gland
wherein an excessive amount of parathyroid hormone has
been proved to adversely affect lipid metabolism [53, 54].
Alleles of QKI variants can effectively influence the binding
of these TFs to govern their activity to regulate a gene’s
expression which eventually will result in a drastic varia-
bility in the levels of expressed QKI protein. A higher
expression of QKI in adipose tissue will lead to the pro-
duction of more macrophages and thus attribute to an
enhanced quarantine for free lipids.

Previously, genetic variants within QKI locus have been
documented to portray genome-wide significance for
height, BMI and T2D [46] but not with quantitative lipids.
Certain QKI variants show strong association to classical
lipid-related diseases—type 2 diabetes, coronary artery
disease, bipolar disorder and measures of obesity (BMI and
WHR) [46]. Our identified QKI variants rs9458854 and
rs9458855 earlier presented robust association with bipolar
disorder (p ≤ 10−4) in a mixed ancestry GWAS comprising
16,731 individuals [55]. Many studies associate state of
dyslipidemia with bipolar disorder. A recent study in Asians
suffering from bipolar disorder [56], revealed drastic state-
dependent alterations in blood lipid profiles (especially
cholesterol and triglyceride levels). Considering indepen-
dently, a strong association with bipolar disease and lipid
metabolism, we anticipate that our identified QKI variants
do play an important role in certain dyslipidemia-related
diseases and hence propose QKI as an essential gene
involved in lipid metabolism.

Aside from QKI, our gene-based association analysis
revealed certain novel GWAS loci for quantitative lipids in
Indians—LINC01340 and IQCJ-SCHIP1 for TC; IFT27,
IFT88, and LINC02141 for HDL; and TEX26 for TG. These
genes have never been earlier reported as a GWAS hit for
the respective lipid trait [46] and shall now be explored
further for replication in different human populations.

Further to infer the downstream effects of the identified
genetic variants, we followed an integrative approach. We
layered our GWAS findings with DNA methylation data
from peripheral blood in Indians and examined the gene
regulatory signatures. We found that the presence of alter-
nate alleles of these variants significantly influenced

methylation levels of several genic CpG sites in Indians.
Alterations in DNA methylation modifies binding of spe-
cific transcriptional factors and recruitment of methyl CpG
binding proteins that affect gene transcription. Gene-
specific DNA methylation has been documented to
explain inter-individual variability in blood lipid profiles. In
context, methylation levels of CpG sites within specific
lipid metabolism genes correlate with plasma lipid levels.
For instance, DNA methylation in the promoter region of
LPL gene is positively correlated with HDL levels in blood
leukocytes, however negatively correlated with relative LPL
mRNA levels in visceral adipose tissue [57]. CETP DNA
methylation is negatively associated with LDL levels [57].
Further, we observed an overlap of meth-QTLs and eQTLs
indicating that certain variants within these globally asso-
ciated loci relate to both DNA methylation and gene
expression variation. Associated CpG sites of FAM129C,
TMCC2, and REEP3 variants reside in active chromatin
regions enriched with regulatory histone modifications and
embody confirmed binding sites for essential TFs. Thence,
intensive fine mapping in different ethnicities accompanied
by functional studies will be valuable in untangling the
relevance of such loci in lipid biology.

Our study elucidates universal applicability of certain
known GWAS variants for quantitative lipid traits in human
population irrespective of diverse genetic or environmental
influences and proposes QKI as an important gene reg-
ulating lipid biology.
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