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Abstract
Obesity has result in increased prevalence of type 2 diabetes (T2D) in children. The genetic mechanisms underlying their
relationship, however, are not fully understood. Here, we aim to identify novel SNPs associated with T2D and childhood
obesity (CO), especially their pleiotropic loci. We integrated the summary statistics for two independent GWASs of T2D
(n= 149,821) and childhood body mass index (CBMI) (n= 35,668) using the pleiotropy-informed conditional false discovery
rate (cFDR) method. By leveraging the information of different levels of association for CBMI, we observed a strong
enrichment of genetic variants associated with T2D. We identified 139 T2D-associated SNPs with 125 novel ones (cFDR <
0.05). Conditioned on T2D, we identified 37 significant SNPs for CBMI (cFDR < 0.05), including 25 novel ones. The
conjunctional cFDR (ccFDR) analysis showed ten novel pleiotropic loci for T2D and CBMI (ccFDR < 0.05). Interestingly,
the novel SNP rs1996023 is located at protein coding gene GNPDA2 (ccFDR= 1.28E-02), which has been reported to
influence the risk of T2D and CO through central nervous system. Our findings may help to explain a greater proportion of the
heritability for human traits and advance the understanding of the common pathophysiology between T2D and CO.

Introduction

Type 2 diabetes (T2D) is a progressive disorder character-
ized by aberrant metabolism of fat and protein and
chronic hyperglycemia resulting from deficiency of insulin
action [1]. During the past decade, the prevalence of T2D
has increased dramatically and it has become a serious
global public health issue. In 2014, T2D caused more
than 4.9 million deaths over the world [2] and 439 million
people may suffer T2D by 2030 [3]. It has become
one of the major causes of disability and the rising cost of
health care.

Clinical and epidemiological studies showed that
experiences in early life (e.g., childhood obesity (CO)), may
have long-term impact on adult health [4]. Several groups
have demonstrated that CO is associated with increased risk
of T2D development in later life. For instance, a prospective
cohort study including 2,294,139 Israeli adolescents illu-
strated that participants suffer from overweight and obesity
had significantly increased susceptibility to T2D than those
with referential body mass index (BMI) [5]. A recent meta-
analysis of 26 independent cohorts showed that high
childhood body mass index (CBMI) results in an increased
incidence of T2D in later life (Odds ratio= 1.70; 95% CI=
1.30–2.22) [6].
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Genome-wide association studies (GWASs) have
revealed a number of single-nucleotide polymorphisms
(SNPs) for T2D and CO, and common genetic variants were
reported in both traits [7]. However, these SNPs only
account for 5% and 1.5% heritability for T2D and CBMI,
respectively [8, 9], and few studies directly tackled the
challenge to identify common shared pleiotropic genes of
T2D and CO. New information on the nature of the genetic
foundations underlying these highly correlated phenotypes
should be investigated. Recently, several innovative analy-
tical techniques [10, 11] were developed to identify the
missing novel variants/genes, especially the novel pleio-
tropic loci associated with both T2D and CO. The
pleiotropy-informed conditional false discovery rate (cFDR)
method [12], which integrated independent GWASs with
summary statistics, could increase the power in detection of
genetic variants and elucidate mechanism of genetic rela-
tionships between related phenotypes. The application of
this approach has successfully identified genetic over-
lapping between several diseases and phenotypes. For
example, Desikan et al. have innovatively reported novel
variants associated with Alzheimer’s disease and Parkin-
son’s disease etc. [13].

In the present study, we integrated two independent
GWASs with summary statistics of T2D and CBMI using
cFDR method to identify novel genetic loci for these phe-
notypes and test whether T2D shares common susceptibility
loci with CO [14, 15]. Our study gains insights into the
genetic mechanism of these correlated phenotypes and
highlights the potential common pathophysiology between
T2D and CO.

Methods

GWAS datasets

We downloaded two independent GWASs with summary
statistics for T2D and CBMI from publicly available data-
sets. The Diabetes Genetics Replication and Meta-analysis
(DIAGRAM) consortium dataset (http://diagram-
consortium.org/downloads.html), which currently is the
largest meta-analysis study for T2D (n= 149,821), involves
34,840 cases and 114,981 controls, overwhelmingly of
European descent. The Early Growth Genetics (EGG)
Consortium dataset (http://egg-consortium.org/childhood-
bmi.html) represents a collaborative effort to combine
over 20 European-based GWASs (n= 35,668) to identify
additional genetic variation that have an importance on a
variety of traits related to early growth. These two datasets
include p-values and effects direction at up to 2.5 million
directly genotyped or imputed SNPs using CEU samples
from the International HapMap Project (Phase 2, release

22). There is no overlap between subjects in these two
datasets. The detailed inclusion/exclusion criteria and
characteristics of phenotype in each GWAS are described in
the original publications [14, 15].

Data processing

The data processing was performed as described in our
previous study [16], we annotated 92,752 shared SNPs by
integrating two GWAS Meta-analysis summary statistics,
then calculated linkage disequilibrium (LD) between each
pair of SNPs in a window of 50 SNPs. If pairwise SNPs
have R2 > 0.2, then we removed the SNP with the smaller
minor allele frequency. Following this initial SNP
removing process, we shifted the window in each five
SNPs forwardly and repeated this procedure until there
was no pairwise SNPs in high LD. The HapMap 3 gen-
otypes were used during the pruning procedure. In total,
there were 31,209 variants remaining to be used in the
cFDR analysis. Genomic control corrects for population
structure by adjusting GWAS statistics at each SNP using
a uniform overall inflation factor [17]. This procedure was
previously processed by the original publications [14, 15],
therefore we did not repeat and reapply this correction in
this study.

Statistical analysis

The evaluation of pleiotropic enrichment and genetic
correlation

The quantile–quantile plot (Q–Q plot) is a common
approach for GWAS to show the observed values (y-axis)
comparing to the expected distribution of test statistics (x-
axis) across millions of SNPs. The deviation from the x= y
line indicates either an incorrect assumed distribution or
true associations across the whole genome. To evaluate the
pleiotropic enrichment of association, we constructed con-
ditional Q–Q plots as Andreasson et al. [12] mentioned by
continuously conditioning the principal trait on SNPs across
different level of significance threshold for the conditional
trait. Specifically, we plot quantiles of empirical −log10(q)
values on x-axis and quantiles of nominal −log10(p) values
on y-axis for T2D and CO, respectively. The strength of
pleiotropy enrichment was evaluated from the degree of
leftward shift from line x= y as the principal trait is suc-
cessively conditioned on more stringent significance
thresholds in the conditional trait.

Meanwhile, we used linkage disequilibrium score
regression (LDSC) for estimating genetic correlation from
GWAS summary statistics [18, 19]. We followed the
instructions (https://github.com/bulik/ldsc/) and performed
this analysis in python 3 software.
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The calculation of the cFDR

We employed cFDR method [12], an revision of the FDR
approach, to determine the novel loci for T2D and CO. The
detailed procedures were given by Desikan et al. [12].
Generally, this approach integrated independent GWASs
with summary statistics to assess whether a random SNP is
related to the principal phenotype given the observed
p-values for two traits are smaller than the pre-defined
disease-specific significance levels [20]. Specifically, we
calculated the cFDR for each SNP where principal trait T2D
is conditioned on the association with CO (T2D|CO) and
vice versa (CO|T2D). To test the enrichment of the specific
loci, we successively confined the strata of SNPs being
assessed according to the significance level for the asso-
ciation of each SNP with the conditional phenotype under
the following threshold: p-value < 1 for all SNPs, p-value <
0.1, p-value < 0.01, and p-value < 0.001. A significance
threshold of 0.05 was applied to distinguish the principal
trait associated SNPs. The cFDR Manhattan plot was used
to illustrate the chromosomal location of various significant
SNPs, which was associated with T2D conditioned the
association with CO and vice versa.

The calculation of conjunctional cFDR (ccFDR)

We computed the ccFDR, the maximum cFDR values (i.e.,
T2D|CO and CO|T2D) of both the principal trait and con-
ditional trait, to assess the pleiotropic loci where a given
SNP has a false positive association with the two pheno-
types. The threshold for a significant pleiotropic locus was
defined as ccFDR of 0.05. To visualize the chromosomal
position of identified pleiotropic loci, we constructed
ccFDR Manhattan plots by ranking the ccFDR for each
SNPs.

Function annotation of pleiotropic SNPs

The GOEAST (http://omicslab.genetics.ac.cn/GOEAST/), a
web based software toolkit, was applied to identify sig-
nificantly enriched gene ontology terms among a given list
of novel SNPs annotated genes. The p-values were com-
puted by hyper-geometric tests and adjusted for multiple
comparisons by stringent Yekutieli (FDR under depen-
dency) method [21]. In order to partially explore and
visualize the functional partnership and interaction of the
identified genes for T2D and CBMI, the corresponding
protein association networks were constructed using the
STRING 10.0 database (http://string-db.org/).

In order to characterize the functional role of identified
pleiotropic SNPs for T2D and CO, we annotated each
pleiotropic SNP to corresponding known or predicted reg-
ulatory regions (e.g., DNAase hypersensitivity) in the

intergenic regions of the human genome using Reg-
ulomeDB (Version 1.1, http://www.regulomedb.org/index),
Kyoto Encyclopedia of Genes and Genomes (KEGG)
(https://www.genome.jp/kegg/), GeneCards (https://www.
genecards.org/), and HaploReg (Version 4.1, http://www.
broadinstitute.org/mammals/haploreg/haploreg.php) tools.
RegulomeDB retrieves the functional annotation from
ENCODE/GEO database and calculates a score for the
regional regulatory potential. HaploReg visualizes the
linked interesting SNPs and small indels to chromatin state
and protein binding; the user can configure parameters
(such as the LD threshold and the reference population
used) from 1000 genomes project.

Results

Pleiotropic enrichment and genetic correlation of
T2D SNPs and CBMI SNPs

We applied conditional Q–Q plot to graphically test pleio-
tropic enrichment of genetic loci. A higher proportion of
true associations was demonstrated as earlier shift to left. A
greater spacing between each curve intuitively shows a
stronger pleiotropic enrichment shared by both traits. As
shown in Fig. 1a, a great separation between each curve was
observed, which indicates a strong enrichment of T2D-
associated SNPs. The proportion of true association in T2D
varies across different levels of effects for CBMI. We also
observed a moderate enrichment for CBMI conditioned on
T2D (Fig. 1b) contrast with the profile for T2D conditioned
on CBMI. According to the linkage disequilibrium score
regression (LDSC), we also found that there was genetic
correlation between T2D and CO (genetic correlation=
0.21, p= 0.002).

T2D loci identified by cFDR

We constructed a cFDR Manhattan plot to illustrate the
various chromosomal locations of significant SNPs, which
are associated with T2D conditioned on CBMI (Fig. S1). We
identified 139 significant SNPs with a cFDR significance
threshold <0.05 (Table S1), and 14 of these SNPs reached to
genome-wide significance threshold (p < 5 × 10-8) in the
original meta-analysis for T2D [14]. Importantly, we iden-
tified 125 novel SNPs missed in the original study. By
applying a strict conservative threshold with cFDR <0.01,
59 loci remained (Table S1). Notably five SNPs, including
three novel SNPs, rs231354 (cFDR= 6.80E-04), rs3852527
(cFDR= 4.30E-03), and rs234857 (cFDR= 1.19E-02),
were mapped to the gene KCNQ1 (11p15.4). This gene has
been reported to be associated with increased susceptibility
to T2D in previous studies [22, 23].
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In order to partially test and characterize the functional
partnership in the identified T2D target genes and their
biological interaction networks, the 139 significant SNPs
annotated genes were scanned by the STRING 10.0.
Notably, the network consisted of genes that play a key role
in multicellular organismal development, anatomical struc-
ture development and positive regulation of cellular com-
ponent organization. These results revealed significant
association between the topological features and biological
function of T2D target genes (Fig. 2a). To systematically
investigate the functional enrichment of the observed novel
SNPs target genes, we conduct gene ontology analysis
using GOEAST (Table 1). Interestingly, the results showed
a cluster of biological processes in central nervous system,
e.g., regulation of glial cell differentiation (p= 3.67E-18),
regulation of neurogenesis (p= 1.73E-11), and central
nervous system neuron differentiation (p= 4.65E-10),
which may play a potential function in the pathogenesis
of T2D.

CBMI loci identified by cFDR

As illustrated in the cFDR Manhattan plot for CBMI
(Fig. S2), we identified a total of 37 significant SNPs
including 31 novel loci (cFDR < 0.05) for CBMI variation
based on T2D (Table S2). These loci were mapped to 17
different chromosomes. Interestingly, the novel SNP
rs934778 located at gene POMC has been reported to be
associated with T2D earlier [24]. By applying a strict con-
servative threshold with cFDR <0.01, 25 loci remained.
More importantly, the current method validated six loci
(rs4883723, rs1344840, rs2635727, rs1031477, rs7553348,

and rs17024393), which were identified in the original
CBMI GWAS study [15]. Functional interaction network
analysis among the 37 significant SNPs corresponding
genes showed a weaker gene–gene interaction (Fig. 2b)
compared with T2D SNPs corresponding genes, gene
enrichment analysis shows that the network consisted of
genes, which play an important role in cyclic nucleotide
biosynthetic process, sensory organ development and
intracellular signal transduction (Table S3).

Pleiotropic loci for T2D and CBMI

In order to test the SNPs that were associated with
both T2D and CBMI, we computed ccFDR and con-
structed a ccFDR Manhattan plot (Fig. 3). Ten novel
pleiotropic SNPs mapped to eight regions, which reached
a significance level of ccFDR < 0.05 (Table 2). These
10 loci were annotated to 16 different genes, of
which 15 (LOC100133285, LOC387930, KIAA1602,
GNAT2, GNPDA2, LOC100131309, MFAP3, GALNT10,
MTCO1P2, NPAS3, LOC400652, LOC342784,
LOC390415, LOC100128339, PDILT, and FRAP1) were
novel ones, and gene GNPDA2 was previously reported in
both T2D and CBMI GWASs [7].

We performed a series of functional analyses to explore
the potential regulatory function for ten pleiotropic SNPs.
By using RegulomeDB and HaploReg databases,
rs1031477 (NCKAP5L), rs649721 (LOC400652),
rs17024393 (GNAT2), rs4883723 (LOC387930), rs1441264
(LOC100128339), and rs1996023 (GNPDA2) overlapped
with open chromatin in different cell lines, e.g., monocyte
CD14+ and fibroblasts, which are potentially related to the

Fig. 1 Conditional Q–Q plot. Stratified Q–Q plots of enrichment vs.
nominal −log10(p-values) (corrected for inflation) in a T2D below the
standard GWAS threshold of p < 5 × 10−8 as a function of significance
of the association with CBMI at the level of −log10(p) > 0, −log10(p)
> 1, −log10(p) > 2, −log10(p) > 3 corresponding to p < 1, p < 0.1, p <

0.01, p < 0.001, respectively, and in b CBMI below the standard
GWAS threshold of p < 5 × 10−8 as a function of significance of the
association with T2D at the level of −log10(p) > 0, −log10(p) > 1,
−log10(p) > 2, −log10(p) > 3 corresponding to p < 1, p < 0.1, p < 0.01,
p < 0.001, respectively. Dashed lines indicate the null-hypothesis
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pathogenesis of T2D and/or CO. Furthermore, the DNA
regions containing rs17024393 (GNAT2), rs649721
(LOC400652), and rs7715256 (MFAP3) overlapped with
enhancer regions in several tissues/cell lines, such as pri-
mary mononuclear cells, heart and muscle etc., confirming
that our pleiotropic SNPs are strongly clustered in regions
with active chromatin state. By using KEGG database, we

found that rs1996023 (GNPDA2) was in the metabolic
pathway, especially related to amino sugar and nucleotide
sugar metabolism. By investigating the GeneCards anno-
tation results (https://www.genecards.org/), we observed
that FRAP1 was a central regulator of cellular metabolism,
growth, and survival in response to hormones, growth
factors, nutrients, energy, and stress signals.

Fig. 2 A functional protein association network analysis for T2D (a)
and CBMI (b) susceptibility genes. Connections are based on co-
expression and experimental evidence with a STRING 10.0 summary
score above 0.4. Each filled node denotes a gene; edges between nodes

indicate protein–protein interactions between protein products of the
corresponding genes. Different edge colors represent the types of
evidence for the association
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Discussion

Here, by applying the cFDR method to two independent
GWASs with summary statistics of T2D and CBMI, we
identified 139 T2D susceptibility SNPs including 125 novel
SNPs, which were overlooked in the original study [14].
Furthermore, we identified 37 SNPs located in 17 chro-
mosomes were significantly associated with CBMI condi-
tioned on T2D (cFDR < 0.05). Importantly, there were ten
pleiotropic SNPs, which suggested a shared genetic
mechanism among T2D and CBMI. Our results demon-
strated that GWAS from CBMI can enhance the identifi-
cation of T2D susceptibility loci and improve our
understanding of the influence of pleiotropic on both
phenotypes.

The cFDR method shows that rs9366354 is most sig-
nificant novel T2D susceptibility SNP. It was mapped to the
intron of gene CDKAL1 (6p22), CDKAL1 is a member of
the methylthiotransferase family and it plays a key role in
transferase activity and iron-sulfur cluster binding.
CDKAL1 has been reported to be associated with insulin

resistance, which is a clinical marker related to T2D [25].
There is an interesting SNP rs3760511 located at the gene
HNF1B (17q12). This gene encodes a homeodomain-
containing transcription factor and it is a critical regulator
for the differentiation in the embryonic pancreas develop-
ment [26–28]. Mutations in HNF1B result in maturity-onset
diabetes of the young type 5 (MODY5) [29] and early-onset
T2D [30]. Previous study reported that this gene can induce
abnormal glucose tolerance and reduced insulin sensitivity,
it may cause the enhancement of insulin secretion and the
activation of the IGF1 pathway associated with the patho-
genesis of T2D [31]. In addition, Kornfeld et al. [32] found
that direct silencing of HNF1B results from obesity-induced
overexpression of miR-802, which may cause glucose
intolerance, impaired insulin signaling, and stimulated
gluconeogenesis in the liver and suggested a critical role for
HNF1B in the process of developing hepatic insulin resis-
tance and modulating glucose metabolism. Another inter-
esting SNP rs1326941 located in the APIP gene (11p13),
although APIP was not reported to be associated with the
susceptibility of T2D. However, the gene APIP involves in
many physiological and pathophysiological activities
through affecting ERK1/2 signaling pathway activation
[33, 34]. For example, ERK1/2 signaling pathway has an
important influence on the pathogenesis of T2D by con-
trolling phosphorylation amount of cAMP-responsive ele-
ment-binding protein, which plays an important role in
glucose-mediated pancreatic beta-cell survival [34].

In addition, the present cFDR approach observed 37
SNPs for CBMI conditioned on T2D (cFDR < 0.05), and 6
SNPs were reported to be associated with CBMI in the
original CBMI GWAS study [15]. We discovered 31 new
loci, e.g., the novel significant SNP rs934778 was annotated
to gene POMC. This gene is a precursor polypeptide hor-
mone, the brainstem nucleus neurons and the pituitary gland
etc. [35]. It is reported that POMC-expressing neurons has
an important role in the maintenance of homeostatic

Table 1 The top ten most
significant gene ontology (GO)
terms enriched for T2D SNPs
annotated genes

GOID Term Log_odds_ratio p

GO:0045685 Regulation of glial cell differentiation 5.06 3.67E-18

GO:0014013 Regulation of gliogenesis 4.54 1.87E-15

GO:0048713 Regulation of oligodendrocyte differentiation 5.13 8.59E-12

GO:0050767 Regulation of neurogenesis 2.69 1.73E-11

GO:0051960 Regulation of nervous system development 2.59 2.56E-11

GO:0050768 Negative regulation of neurogenesis 3.40 3.21E-11

GO:0051961 Negative regulation of nervous system development 3.32 8.68E-11

GO:0010721 Negative regulation of cell development 3.27 1.46E-10

GO:0060284 Regulation of cell development 2.49 2.73E-10

GO:0021953 Central nervous system neuron differentiation 3.54 4.65E-10

Gene ontology enrichment analysis was carried out using the GOEAST program, which gave “p-value > 0”
when the obtained p-value is less than the minimum float value (1.18E-38).

Fig. 3 Conjunctional Manhattan plot for T2D and CBMI. SNPs with
conjunctional-log10(cFDR) > 1.3 (i.e., cFDR < 0.05) are shown above
the red line. The figure marks the chromosomal locations of significant
loci. Details about all significant loci are offered in Table 2 (color
figure online)

374 C.-P. Zeng et al.



mechanisms [36, 37]. Recent study showed that gene
POMC, as a possible additional link, play an important role
between T2D and central obesity [24].

Importantly, we identified ten novel pleiotropic loci
(rs4883723 in LOC100133285 (LOC387930), rs1031477 in
KIAA1602, rs17024393 in GNAT2, rs1996023 in GNPDA2
(LOC100131309), rs7715256 in MFAP3 (GALNT10),
rs17522122 in MTCO1P2 (NPAS3), rs649721 in
LOC400652 (LOC342784), rs1441264 in LOC390415
(LOC100128339), rs11864909 in PDILT, and rs1010447 in
FRAP1) that have not been reported in previous publica-
tions in association with T2D or CO. GNPDA2 increases
the risk of susceptibility for T2D and CO through the
central nervous system processes in weight regulation [7].
The central nervous system has several possible roles in the
regulation of body weight, energy metabolism, and other
behaviors [38].

We should also notice that the heritability should be
verified in different population [39]. Therefore, we can
repeat the analysis in an independent population. If the
validation failed, it might be caused by genetic diversity. In
this study, we chose the largest sample size of GWASs in
the research field, and other populations (such as Hispanics,
Africans) can also be applied to this work in the future. The
inter-ethnic study can provide an important information
about relationship between T2D and CO among different
populations.

The major advance of this study is that we enhanced the
identification of novel T2D SNPs and pleiotropic SNPs by
integrating GWAS summary statistics from T2D and CO
phenotypes. Our results not only present novel insights for
exploring common molecular mechanisms underlying T2D
and CBMI, but also provide promising candidates for fur-
ther experimental validation. Results presented, however,
may have some limitations. First, we cannot associate the
genetic variation with outcomes as our inability to access
the clinical and genotype data. Whereas, the main objective
of our study is to enhance the detection of disease asso-
ciated genes and identify the common biological mechan-
isms in the two traits. Second, we only identified partial of
previously reported genes in T2D and CO, as current study
used a subset of the public available meta-analysis to reveal
the missing heritability in T2D and CO. Therefore, further
replication analysis and functional biological experiments
are necessary to confirm our results. SNPs within a gene can
affect other genes, which limited our precise gene annota-
tion. In this study, we aim to find a potential gene for
functional discussion, we chose the corresponded or nearest
one. But in the future, we can integrate other information,
such as expression quantitative trait loci (eQTL) data to get
a more accurate gene annotation [40].

In conclusion, we illustrated the enhanced efficiency
of the cFDR approach in identification of novelTa
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SNPs for T2D and CO. Our results provide an insight
into the common genetic mechanisms in two traits,
which provide prominent loci for further functional
biological experiments and clinical replication.
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