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Abstract
Spondylocostal dysostosis (SCDO) is a heterogeneous group of skeletal disorders characterized by multiple segmentation
defects involving vertebrae and ribs. Seven disease genes have been reported as causal genes for SCDO: DLL3, MESP2,
TBX6, HES7, RIPPLY2, DMRT2, and LFNG. Here we report a Japanese SCDO case with multiple severe vertebral
anomalies from cervical to sacral spine. The patient was a compound heterozygote for c.372delG (p.K124Nfs*) and
c.601G>A (p.D201N) variants of LFNG, which encodes a glycosyltransferase (O-fucosylpeptide 3-beta-N-acetylglucosa-
minyltransferase). The missense variant was in the DxD motif, an active-site motif of the glycosyltransferase, and its loss of
the enzyme function was confirmed by an in vitro enzyme assay. This is the second report of LFNG mutations in SCDO.

Introduction

Spondylocostal dysostosis (SCDO) is a heterogeneous
group of rare congenital disorders characterized by multiple
segmentation defects of vertebrae (SDV) and malformation
and/or defect of ribs. SDV of SCDO presented with hemi-
vertebrae, butterfly vertebrae, fusion, absence, and block
and mixed vertebrae. SCDO patients have short neck,
short trunk, and scoliosis, and sometimes present with

thoracic insufficiency syndrome caused by reduced size of
thorax [1, 2].

Seven types of SCDO have been identified based on their
phenotypes and disease genes: SCDO1 (OMIM#277300)
due to DLL3 mutations [3], SCDO2 (OMIM#608681) due
to MESP2 mutations [4], SCDO3 (OMIM#609813) due to a
LFNG mutation [5], SCDO4 (OMIM#613868) due to HES7
mutations [6], SCDO5 (OMIM#122600) due to TBX6
mutations [7], and SCDO6 (OMIM#616566) due to RIP-
PLY2 mutations [8]. Recently, a case of SCDO due to a
homozygous DMRT2 mutation has been reported [9]. All
but SCDO5 are autosomal recessive traits. Autosomal
dominant and autosomal recessive inheritance have been
reported in TBX6 mutations [7, 10]. TBX6 mutations have
also been reported in congenital scoliosis, a relatively
common congenital disorder of the spine which has over-
lapping phenotypes with SCDO [7, 11].

Here, we report on a case of SCDO caused by compound
heterozygous LFNG mutations. This is the second SCDO
case with LFNG mutations. Both mutations we identified
were novel and resulted in loss of LFNG function.

A 9-month-old Japanese boy was referred to us because
of spinal deformity. His family history was unremarkable.
Both parents had no apparent deformities. His height was
about −2.5 SD. He had multiple vertebral anomalies from
cervical to sacral vertebrae as well as defect and fusion of
ribs (Fig. 1). There was no scoliosis and dysplasia of tubular
bones. He had no respiratory problem, hand abnormalities,
and other comorbidities, except for inguinal herniation.
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Based on the radiographic features, he was diagnosed as
having SCDO, most likely SCDO3.

We sought the mutation of the patient. Informed consent
was obtained from the patient’s parents. The study was
approved by the ethical committee of all participating
hospitals and RIKEN. Genomic DNAs were extracted
from peripheral blood leukocytes of the patient and nails
of his parents. We examined SCDO genes by direct

sequencing using a 3730xl DNA analyzer (Applied Bio-
systems). The primer sequences are available on request.
Genetyx (Genetyx, Tokyo, Japan) was used for aligning
sequencing chromatographs to reference sequences
(NM_001040167.1). The patient had two likely pathogenic
variants in LNFG: c.372delG (p.K124Nfs*) in exon 1 and
c.601G>A (p.D201N) in exon 4 (Fig. 2a, b). The former
came from the mother and the latter from the father. We did

Fig. 1 Radiographs of the
spondylocostal dysostosis
patient with LFNG mutations. a
Multiple anomalies of the
vertebrae and ribs. Pelvis and
long tubular bones are normal. b
Lateral view of the cervical
spine showing mal-alignment
(kyphosis) and hypoplastic
odontoid process. c Antero-
posterior view of cervico-
thoracic region of the spine.
Pebble-beach appearance of the
vertebral bodies

Fig. 2 LFNG mutations in the
spondylocostal dysostosis
patient. Direct sequence of the
genomic DNA of the patient for
a c.372delG and b c.601G>A. c
The amino acid alignment
between fringe families. Black
bar, completely conserved
region; gray bar, conserved
region between two fringe
families; blue line, the
previously reported mutation
position; green line, the DxD
motif. Red arrow head, red
asterisk and red line are K124,
F188 and D201 of LFNG,
respectively
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not identify any likely disease-causing variants in other
SCDO genes.

The two variants (c.372delG and c.601G>A) were absent
from ExAC (Exome Aggregation Consortium, http://exac.
broadinstitute.org), esp6500 (NHLBI Exome Sequencing
Project, http://evs.gs.washington.edu/EVS), iJGVD
(Integrative Japanese Genome Variation Database, https://
ijgvd.megabank.tohoku.ac.jp), and HGVD (Human Genetic
Variation database, http://www.hgvd.genome.med.kyoto-u.
ac.jp/index.html) databases (Table 1). c.372delG (p.
K124Nfs*21) was considered to cause nonsense-mediated
mRNA decay (NMD). c.301G>A (p.D201N) was predicted
to be pathogenic by bioinformatics prediction tools
(Table 1). LFNG is a member of the Fringe gene family
which includes MFNG and RFNG. They encode evolutio-
narily conserved glycosyltransferases that modify Notch
and its ligands in the Golgi and act to determine boundaries
during somitogenesis [12, 13]. p.D201 was located in the
DxD motif which is highly conserved within the Fringe
family (Fig. 2c) and in all known Fringe proteins from
Drosophila melanogaster to human [5, 14, 15]. The motif is
the catalytic site of many nucleoside disphosphate-binding
glycosyltransferases [16, 17]. A previous study reported that
a single amino acid alteration in the DxD motif disrupted all
Fringe activities [18].

To confirm the pathogenicity of c.301G>A (p.D201N)
variant, we assayed the GlcNAc-transferase activity of the
p.D201N mutant protein in vitro. An expression vector of
human LFNG was constructed as described previously [19]
with slight modifications. Site-specific mutagenesis to pro-
duce p.D201N-LFNG was performed by using Inverse
PCR-based site-directed mutagenesis (TOYOBO). The
expression plasmids were transfected into HEK293T cells
using FuGENE HD (Promega, Madison, WI). The condi-
tioned media and cell lysates were collected 3 days after
transfection and analyzed by western blotting after an
electroporesis on a 10% sodium dodecyl sulfate–poly-
acrylamide gel using peroxidase-conjugated anti-
DYKDDDDK antibody (Wako, Osaka, Japan) (Fig. 3a).
The amount of recombinant LFNG protein was estimated
by the standard curve from luminescent intensity of
3xFLAG-tagged bovine alkaline phosphatase (Sigma) using
ImageQuant TL (GE Healthcare). GlcNAc-transferase
activity was examined as described previously [19]. The
mutant LFNG showed a significantly reduced GlcNAc-

transferase activity compared to that of the wild-type LFNG
(Fig. 3b), indicating that c.301G>A (p.D201N) variant lost
its enzyme function.

To our knowledge, only one LFNG mutation has been
reported previously [5]: Sparrow et al. [5] found a homo-
zygous missense mutation, c.564C>A (p.F188L) in exon 3
of LFNG in a Lebanese patient with SCDO. The patient had
extensive congenital vertebral anomalies and hand anoma-
lies. Both parents heterozygous for the mutant allele had no
spine and hand anomalies. p.F188 was a highly conserved
residue (Fig. 2c). The mutant LFNG was not localized to the
correct compartment of the cell, was unable to modulate
Notch signaling in a cell-based assay, and was enzymati-
cally inactive. The loss of LFNG function is likely patho-
genesis of SCDO. Lfng-null mice show vertebral and ribs
abnormalities due to the disruption of somitogenesis [20].

In the present study, we identified two novel mutations,
c.372delG (p.K124Nfs*) and c.601G>A (p.D201N), which
were compound heterozygous in a Japanese SCDO patient.
Both mutations were also considered to cause loss of LFNG
function, although their causal mechanisms were not mis-
localization of the mutant LFNG protein, but loss of protein
by NMD (p.K124Nfs*) and loss of the enzyme activity (p.
D201N). The patient had severe vertebral anomalies from
cervical to sacral spines, which are similar to previously
reported SCDO with LFNG mutation. It is reported that

Table 1 Evaluation of two
LNFG variants identified in the
present study

Variant Frequency Prediction

Nucleotide
change

Amino acid
change

ExAC esp6500 iJGVD HGVD SIFT Ployphen−2 Mutation
Taster

c.372delG p.K124Nfs*21 0 0 0 0 – – –

c.601G>A p.D201N 0 0 0 0 Damaging Probably
damaging

Disease
causing

Fig. 3 The functional analysis of the mutant LFNG (p.D201N).
a Western blotting of FLAG-tagged wild-type (WT) and p.D201N-
LFNG proteins. b GlcNAc-transferase (GlcNAc-T) activity of the
recombinant LFNGs in the cell lysate. Values are the means ± standard
errors (n= 3). p.D201N-LFNG showed significantly decreased
enzyme activity. *P < 0.0001 versus the WT-LFNG by Student’s t-test
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SCDO3 had more severely disorganized spine than SCD1
and SCD2 [3–5]. Unlike the previous case [5], the present
case did not have hand anomalies. Further accumulations of
the cases with LFNG mutations are necessary to clarify the
range of SCDO3 phenotype.
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