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Abstract
Mitochondrial fatty acid oxidation disorders (FAODs) are caused by defects in β-oxidation enzymes, including very long-
chain acyl-CoA dehydrogenase (VLCAD), trifunctional protein (TFP), carnitine palmitoyltransferase-2 (CPT2), carnitine-
acylcarnitine translocase (CACT) and others. During prolonged fasting, infection, or exercise, patients with FAODs present
with hypoglycemia, rhabdomyolysis, cardiomyopathy, liver dysfunction, and occasionally sudden death. This article
describes the diagnosis, newborn screening, and treatment of long-chain FAODs with a focus on VLCAD deficiency.
VLCAD deficiency is generally classified into three phenotypes based on onset time, but the classification should be
comprehensively determined based on genotype, residual enzyme activity, and clinical course, due to a lack of apparent
genotype–phenotype correlation. With the expansion of newborn screening for FAODs, several issues have arisen, such as
missed detection, overdiagnosis (including detection of benign/asymptomatic type), and poor prognosis of the neonatal-
onset form. Meanwhile, dietary management and restriction of exercise have been unnecessary for patients with the benign/
asymptomatic type of VLCAD deficiency with a high fatty acid oxidation flux score. Although L-carnitine therapy for
VLCAD/TFP deficiency has been controversial, supplementation with L-carnitine may be accepted for CPT2/CACT and
multiple acyl-CoA dehydrogenase deficiencies. Recently, a double-blind, randomized controlled trial of triheptanoin (seven-
carbon fatty acid triglyceride) versus trioctanoin (regular medium-chain triglyceride) was conducted and demonstrated
improvement of cardiac functions on triheptanoin. Additionally, although the clinical efficacy of bezafibrate remains
controversial, a recent open-label clinical trial showed efficacy of this drug in improving quality of life. These drugs may be
promising for the treatment of FAODs, though further studies are required.

Introduction

Mitochondrial fatty acid oxidation disorders (FAODs) are a
group of inherited metabolic diseases caused by defects in
β-oxidation enzymes [1]. The β-oxidation enzymes involved
include approximately 20 enzymes, such as very long-chain,
medium-chain, and short-chain acyl-CoA dehydrogenases
(VLCAD, MCAD, and SCAD, respectively), trifunctional
protein (TFP, which consists of long-chain enoyl-CoA
hydratase (LCEH), long-chain 3-hydroxyacyl-CoA dehy-
drogenase (LCHAD), and long-chain 3-ketoacyl-CoA

thiolase (LCKT)), carnitine palmitoyltransferase I and II
(CPT1 and CPT2), carnitine-acylcarnitine translocase
(CACT) and the carnitine transporter (Fig. 1). Electron
transfer protein (ETF) and ETF dehydrogenase (ETFDH) are
also involved. Fatty acids are mainly metabolized in the
skeletal muscle, myocardium, and liver. If malfunction of
these organs or tissues is triggered by prolonged fasting,
vomiting, diarrhea, infectious illnesses, or heavy physical
exercise, patients with FAODs often present with hypogly-
cemia, rhabdomyolysis, cardiomyopathy, arrhythmia, or
liver dysfunction and occasionally with encephalopathy or
unexpected sudden death [2].

Among FAODs, deficiencies of long-chain fatty (LC)
acids, such as VLCAD, TFP/LCHAD, CPT1/2, and CACT
deficiencies, are referred to as LC-FAODs. The symptoms
of each LC-FAOD are similar, and LC-FAODs are gen-
erally classified into three phenotypes, as shown in Table 1:
the severe form, intermediate form, and myopathic form, all
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of which exhibit autosomal recessive inheritance. More-
over, a pre-symptomatic (or asymptomatic) form, identified
by expanded newborn screening using acylcarnitine (AC)
profiles by tandem mass spectrometry (ENBS) in a non-
symptomatic condition, has been added. Herein, we
describe recent clinical topics related to LC-FAODs,
focusing mainly on VLCAD deficiency.

VLCAD deficiency

VLCAD deficiency (OMIM 201475, EC 1.3.99.13) is the
most typical and well-known LC-FAOD. VLCAD is an
enzyme that is located in the mitochondrial inner membrane
(Fig. 1) and catalyzes the dehydrogenation of long-chain
acyl-CoA esters of 12 to 18 carbons, which is the first step
of β-oxidation [3–6]. The VLCAD enzyme is encoded by
ACADVL, which comprises 20 exons spanning approxi-
mately 5.4 kb at 17p13.1 and forms as a homodimer of 70
kDa polypeptides [7, 8]. VLCAD deficiency shows an
autosomal recessive inheritance pattern. Its prevalence dif-
fers among ethnic groups and is approximately 1:93,000
births in Japan [9], while it is estimated at 1:31,500 to
1:125,000 births in the Caucasian population [10–12]. More
than 800 cases have been reported (clir-R4S.org consortium
data) [13].

VLCAD deficiency is clinically classified into the fol-
lowing three groups, similar to other FAODs [14]. The
severe early-onset form is characterized by hypertrophic or
dilated cardiomyopathy, pericardial effusion, arrhythmia,
hypotonia, hepatomegaly, or severe hypoketotic hypogly-
cemia in early infancy and is often fatal with cardiomyo-
pathy and arrhythmias such as ventricular tachycardia,
ventricular fibrillation, and atrioventricular block [15]. This
form is also referred to as a cardiac and multiorgan failure
VLCAD deficiency. However, such cardiac symptoms
might be reversible with early intensive care and a medium-
chain triglyceride (MCT) oil-based diet [16–18]. Further-
more, extracorporeal membrane oxygenation (ECMO) may
be effective for cardiac symptoms, although there is no
consensus about the efficacy of this treatment because of the
few reports of ECMO in patients with the neonatal-onset
form of VLCAD deficiency [19, 20]. However, one case
report demonstrated that ECMO was effective for a neonate
with MCAD deficiency who experienced cardiac arrest
due to ventricular tachycardia and fibrillation [21], leading
to the conclusion that there should be no hesitation in
applying ECMO in patients with cardiomyopathy due to
inherited metabolic diseases.

The milder/intermediate form of VLCAD deficiency,
which is known as the hepatic or hypoketotic-hypoglycemic
type, is typically associated with hypoketotic hypoglycemia

Fig. 1 Metabolic pathway of mitochondrial fatty acid oxidation.
LCFAT long-chain fatty acid transporter, OCTN2 plasma membrane
sodium-dependent carnitine transporter, AS acyl-CoA synthetase, CPT
carnitine palmitoyltransferase, CACT carnitine-acylcarnitine translo-
case, VLCAD very long-chain acyl-CoA dehydrogenase, MCAD

medium-chain acyl-CoA dehydrogenase, SCAD short-chain acyl-CoA
dehydrogenase, TFP trifunctional protein, EH enoyl-CoA hydratase,
HAD 3-hydroxyacyl-CoA dehydrogenase, KAT 3-ketoacyl-CoA thio-
lase, ETF electron transfer protein, ETFDH electron transfer protein
dehydrogenase, e− electron, TCA cycle tricarboxylic acid cycle
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and hepatomegaly induced by preceding infections or long
fasting during early childhood. This form is characterized
by a delayed onset, lower mortality, and scarce or absent
cardiomyopathy compared with the severe form, which
resembles MCAD deficiency [22]. However, long fasting or
poor feeding occasionally induces acute symptoms during
the newborn period, even in patients with the milder form
[16]. Additionally, because encephalopathy or sudden
infant death is sporadically reported even for the milder
form [23–26], this form is not always “clinically milder”.

The later-onset type (myopathic form) presents mainly
with episodic symptoms, consisting of skeletal muscle
symptoms such as myalgia, muscle cramps/weakness,
exercise intolerance, and/or rhabdomyolysis. These symp-
toms often appear in adolescence or adulthood during
physical exercise or illness [27]. However, cardiomyopathy
and respiratory failure can also be found in the later-onset
form under special conditions [28, 29], and the p.V283A
(sometimes referred to as p.V243A) mutation, known as a
genotype of the later-onset type, may cause hypoglycemia
[30, 31], suggesting that even the later-onset form can cause
symptoms other than myopathy. Although it was previously
reported that the neonatal-onset form was the most common
type in VLCAD deficiency [14], the myopathic (or
asymptomatic) form is likely the most common type
according to recent ENBS data [16, 32, 33]. Indeed, among
29 Japanese patients with symptomatic VLCAD deficiency
who were diagnosed in our laboratory (Shimane Uni-
versity), 23 patients had the myopathic from (data not
published). In patients with this form, baseline creatine
kinase (CK) levels generally return to normal after treat-
ment, despite markedly elevated CK levels during the acute
phase (occasionally > 100,000 IU/L);[34] however, some
patients exhibit chronically high CK levels [35]. Moreover,
some patients who are initially diagnosed with the neonatal-
onset or milder form present only myopathic symptoms at a
later age [33]. In short, the symptoms of VLCAD deficiency
tend to improve with age regardless of the clinical form.

Overview of other LC-FAODs

TFP/LCHAD deficiency

Complete TFP deficiency involves defects in all three
enzymes associated with the final three steps of LC-fatty
acid β-oxidation (LCEH, LCHAD, and LCKT). Isolated
LCHAD deficiency is due to a defect exclusively in
LCHAD [36], while the other two enzymes, LCEH and
LCKT are preserved. TFP deficiency and LCHAD defi-
ciency show similar phenotypes and are usually grouped as
TFP/LCHAD deficiency. However, it was recently reported
that hypoparathyroidism is a common complication inTa
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Japanese patients with TFP deficiency but is not associated
with LCHAD deficiency [37]. Moreover, LCHAD defi-
ciency has never been detected in Japanese individuals,
while the prevalence of LCHAD deficiency is relatively
high in the Caucasian population, in which the common
HADHA gene mutation, c.1528 G > C, is found [38]. The
prognosis of TFP/LCHAD deficiency is likely more severe
compared with that of VLCAD deficiency [33]. Neuropathy
and retinopathy are specific for TFP/LCHAD deficiency
and irreversible.

CPT2/CACT deficiency

CPT2 and CACT deficiencies present similar AC profiles
and clinical symptoms, although CACT deficiency is col-
lectively more severe compared with CPT2 deficiency. The
myopathic form is frequently found in Caucasian patients
with the common p.S113L mutation in the CPT2 gene [39].
We previously reported that CPT2 deficiency is an inherited
metabolic disease that sometimes causes unexpected sudden
death in Japan [40], suggesting that CPT2 deficiency should
be carefully managed with attention to sudden infant death.
In Japan, CPT2 deficiency was included in the core targets
of ENBS since 2018. Although CACT deficiency is also a
detectable disease associated with CPT2 deficiency in
ENBS, it is very rare and has never been detected in ENBS
of Japanese individuals so far [9]. There are a few case
reports in Japan, while at least 30 patients with CACT
deficiency have been described worlwide [41].

CPT1 deficiency

CPT1 deficiency is caused by a defect in CPT1A, which is
locally expressed in the liver, kidney, lymphocytes, and
fibroblasts. Therefore, muscle symptoms are not observed,
unlike other LC-FAODs. The clinical phenotypes of CPT1
deficiency are rather similar to those of MCAD deficiency.
The main symptoms include hypoketotic hypoglycemia,
hyperammonemia, and fatty liver, but hepatic encephalo-
pathy and sudden death have also been reported [42].

Multiple acyl-CoA dehydrogenase deficiency (MADD)

MADD is caused by a congenital defect in ETF or ETFDH,
resulting in disturbance of the short- to long-chain acyl-CoA
dehydrogenases and other mitochondrial dehydrogenases,
such as glutaryl-CoA, isovaleryl-CoA, and sarcosine
dehydrogenases, that are functionally regulated by ETF/
ETFDH. MADD is also known as glutaric acidemia type II
and is a unique FAOD that is categorized as a type of
organic acidemia. Unlike other LC-FAODs, MADD is
classically classified into distinct three phenotypes based on
onset time and severity: neonatal onset with anomalies (type

1), neonatal onset without anomalies (type2), and mild and/
or later onset (type 3) [43]. However, we previously pro-
posed that MADD should be also classified into three forms
(neonatal-onset, intermediate, and late-onset forms), similar
to LC-FAODs [44], because the main symptoms of MADD
are similar to those of LC-FAODs. The majority of patients
with the late-onset type, particularly those with a defect in
ETFDH, respond well to riboflavin administration [43].

Recently, other metabolic disorders involving riboflavin
have been reported, such as riboflavin transporter defi-
ciency, flavin adenine dinucleotide (FAD) transporter defi-
ciency, or FAD synthase deficiency [45–48], which show
similar biochemical and clinical findings to MADD. These
diseases respond to riboflavin therapy. Therefore, when
MADD is biochemically suspected, riboflavin should be
administered first.

Diagnosis

Acylcarnitine analysis using tandem mass
spectrometry

When the above symptoms suggestive of an FAOD, such as
hypoketotic hypoglycemia, liver dysfunction, and rhabdo-
myolysis, are present, AC analysis is the first step in diag-
nosis. AC analysis reveals a specific profile for each
disease. For example, VLCAD deficiency is suspected by
an increase in tetradecenoylcarnitine (C14:1) and in the
C14:1/C2, C14:1/C16, and C14:1/C12:1 ratios [49].
Although dried blood spots are usually used, serum/plasma
AC analysis is more sensitive for the detection of LC-
FAODs except for CPT1 deficiency [50–52]. However, the
diagnosis should not be determined based on only clinical
features and the blood AC profile. We identified a patient
with asymptomatic VLCAD deficiency whose serum C14:1
levels were normal in a stable condition (not published).
Additionally, AC analysis cannot distinguish CPT2 defi-
ciency from CACT deficiency. Therefore, the following
analysis is essential to confirm a definitive diagnosis.

Genetic analysis

Genetic analysis is most useful for diagnosing FAODs
because it is relatively quick, precise, and convenient.
Recently, a multigene panel evaluated through next-
generation sequencing has also been applied for genetic
diagnosis [53]. However, while genetic analysis is easy to
perform, the interpretation of results, particularly with
regard to novel mutation detection, is difficult. As a general
rule, missense mutations cause milder phenotypes,
and splice variants and nonsense mutations that are
almost truncating result in severe phenotypes. However,
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LC-FAODs are actually heterogeneous diseases, and the
phenotype-genotype correlation is poor, whereas it had been
formerly believed that there was a clear phenotype-
genotype correlation associated with VLCAD deficiency
[14]. In fact, severe phenotypes may be presented even in
cases involving missense mutations [54, 55]. Moreover, it
has been reported that the onset time and symptoms differ
among siblings [56, 57], indicating that it is difficult to
accurately predict the clinical course and outcome by
genetic information. Meanwhile, if only a single pathogenic
variant is identified, heterozygous carriers cannot be dis-
tinguished from affected patients with non-detectable
mutations. In cases where a definite diagnosis cannot be
made by genetic analysis, functional assessment of β-
oxidation and other biochemical tests, such as an enzyme
activity assay, fatty acid oxidation (FAO) flux, in vitro
probe (IVP) assay, and immunoblotting, may be helpful.

Enzyme assay, FAO flux, IVP assay, and
immunoblotting

The methods of measuring residual β-oxidation enzyme,
such as MCAD or VLCAD, activity using fibroblasts or
lymphocytes were previously reported [58, 59]. Because the
enzyme assay using lymphocytes is easy and quick, the
combination of genetic and enzyme analyses is recom-
mended for diagnosis of VLCAD, MCAD, and CPT2
deficiencies in Japan. Meanwhile, the activity of some
enzymes, such as ETF, CACT, and carnitine transporter, is
technically difficult to measure. Moreover, if residual
enzyme activity is not particularly low in a case with novel
mutations, confirming a definitive diagnosis will not be

reached by the combination of genetic analysis and enzyme
assay. For such cases, further specialized biochemical
examinations may be necessary.

FAO flux is determined by measuring the production of
radiolabeled H2O from [9,10-3H(N)]-oleic (or palmitic) acid
using fibroblasts as a whole β-oxidation capacity [60].
While the FAO flux cannot be used to identify which
enzyme is defective, it can be used to determine whether β-
oxidation disorder is present or absent. Recently, it was
reported that FAO flux is more strongly correlated with
severity than VLCAD enzyme activity [54]. FAO flux may
be a useful tool to predict the pathogenicity of novel
mutations in ACADVL.

The IVP assay can indirectly estimate the β-oxidation
capacity and defective sites of FAO, using fibroblasts cul-
tured with unlabeled palmitate (carbon number is 16) and
MS/MS for AC profiling [61]. In each FAOD, specific AC
profiles can be observed. Elevation of LC-ACs (C10 to
C16) is observed in cases of VLCAD deficiency, while C16
is elevated only in cases of CPT2/CACT deficiency (Fig. 2).
Elevation in C16-OH, but a small peak, is characteristic of
TFP/LCHAD deficiency in the IVP assay. Additionally, the
IVP assay can distinguish the severity of some FAODs [62].
Whereas short- to long-chain ACs are elevated in milder
form of MADD, only C16 accumulates in severe form of
MADD, indicating that palmitate added as a substrate
cannot be metabolized at all due to null mutations. In
VLCAD deficiency, the peak of C16 tends to rise if the
severity is significant, but other LC-ACs also rise even in
severe forms. This result indicates that other acyl-CoA
dehydrogenases, such as MCAD, compensate for the
metabolism of long-chain fatty acids. Meanwhile, the IVP

Fig. 2 Comparison of in vitro probe assays between individual phe-
notypes of each type of fatty acid oxidation disorder. The Y-axis
represents the amount of acylcarnitines expressed in nmol/mg of
protein. M, myopathic form; I, intermediate form; S severe form,

VLCADD very long-chain acyl-CoA dehydrogenase deficiency,
MADD multiple acyl-CoA dehydrogenase deficiency, TFPD trifunc-
tional protein deficiency, CACTD carnitine-acylcarnitine transporter
deficiency; Control: mean values from 4 healthy volunteers
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assay may not be sensitive enough to detect the myopathic
form because the profile of the myopathic form is often
scanty and similar to that of healthy controls [44]. However,
the IVP assay is preferentially employed in our laboratory
because of its usefulness not only for the diagnosis of
FAODs but also for investigation of the effectiveness of
several drugs and factors [63, 64].

Immunoblotting can be used for the diagnosis of FAODs
when enzyme activity cannot be analyzed or such analyses
are challenging, although specific antibodies are required.
Immunoblotting reveals no band for either the TFP-α or
TFP-β subunit in cases of TFP deficiency, despite a defect
in either HADHA or HADHB [37]. Similarly, in MADD due
to a defect in either ETFA or ETFB, both ETFA and ETFB
bands are not present [44]. Therefore, genetic testing is also
required for the definite diagnosis of such diseases.
Although the pathogenicity of mutations can be partially
predicted by in silico analysis [65], comprehensive ana-
lyses, such as the FAO flus, IVP assay and immunoblotting,
are recommended to determine whether the mutation is truly
pathogenic.

Problems in ENBS for VLCAD deficiency

ENBS for FAODs using tandem mass spectrometry has
been implemented worldwide since the 1990s [12, 66],
while nationwide ENBS has been implemented in Japan
since 2014 [9]. Although the target diseases of ENBS have
been a subject of debate [67], VLCAD deficiency is con-
sistently recommended as a target of ENBS;[16] however,
several problems remain to be solved.

Misdiagnosis and overdiagnosis

The first problem is the degree of accuracy. Affected
patients are occasionally missed [10, 68, 69]. Physicians
should not forget that AC profiles can be influenced by
conditions such as time of sampling. To increase accuracy,
various markers and the cutoffs are considered worldwide
[70]. For example, elevated C14:1, C14:2, C14, C12,
C14:1/C2, C14:1/C12:1, and C14:1/C16 ratios and combi-
nations of these markers have been considered useful for the
diagnosis of VLCAD deficiency [49]. Meanwhile, healthy
individuals and heterozygous carriers can be sometimes
detected as false-positives in ENBS [31, 71, 72]. In Japan, if
the first ENBS using DBS performed on 4 to 6 days after
birth indicates positive results for LC-FAODs, re-evaluation
of serum AC is recommended to avoid missed detection
because C14:1 levels in DBS gradually decrease after birth.
Accordingly, a number of heterozygous carriers are detected
because the sensitivity of serum AC analysis is too high.
Therefore, when serum AC analysis shows positive results,

enzyme activity assays and/or genetic testing should be
immediately considered for definite diagnosis.

Moreover, “asymptomatic/benign VLCAD deficiency”
detected by ENBS is problematic. The prevalence of
VLCAD deficiency diagnosed by ENBS is significantly
higher than that of clinically diagnosed VLCAD deficiency
[12]. This finding suggests that a number of patients with
the asymptomatic form are detected [67]. In many countries
and regions, most patients with VLCAD deficiency detected
by ENBS remain asymptomatic during follow-up for at least
several years [16, 33, 49]. However, some initially
asymptomatic children manifest myopathic symptoms after
extensive physical exercise at a later age, despite early
treatment [22]. This result suggests that early intervention
may not be effective for preventing the onset of myopathy;
i.e., it may be meaningless to detect myopathic VLCAD
deficiency by ENBS. Additionally, Ryder B, et al. reported
that a mutation (p.T409M) that is commonly found in Maori
or Pacific populations in New Zealand is a benign variant of
VLCAD deficiency, despite the presence of elevated C14:1
levels in ENBS [73]. This study indicates that mutations,
which have never been identified in the database of clini-
cally diagnosed cases but are often identified by ENBS, are
likely benign variants. Although the problem of “over-
diagnosis of asymptomatic/benign disease” may be excused
at present, over treatment and intervention should be avoi-
ded for such patients.

One additional problem could occur in familial screen-
ing. When VLCAD deficiency is detected in a baby through
ENBS, older children in the family should undergo sibling
screening, regardless of the presence or absence of symp-
toms. If the older children also have asymptomatic/benign
VLCAD deficiency, it will be very difficult to determine
what management strategy should be applied to the siblings
who are strongly suspected of remaining asymptomatic
without treatment.

Poor outcomes of the neonatal-onset form

The second problem is the difficulty of rescuing patients
with the neonatal-onset form. Twenty-three of a group of 37
Saudi Arabian patients with VLCAD deficiency including
31 patients with a homozygous nonsense mutation (p.
Ser22X) died before the age of 2 years, despite early
detection and early intervention with MCT supplementation
[74]. One infantile case involving a patient with the
neonatal-onset form who died suddenly due to respiratory
syncytial virus infection, in spite of early detection, has also
been reported [75]. These findings may indicate that ENBS
contributes little to improving the survivability of cases with
the neonatal-onset form. New approaches or management
strategies other than MCT are expected to be developed in
the future.
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In conclusion, the two above problems are applicable not
only to VLCAD deficiency but also to a number of inherited
metabolic diseases detected by ENBS. However, ENBS
significantly prevents infantile death due to inherited
metabolic diseases. Moreover, Landau YE, et al. reported
that patients who have been clinically diagnosed during the
ENBS era are identified at younger ages because of the
spread of information about metabolic diseases [67].
Briefly, ENBS is useful not only for diagnosis but also for
education.

Current topics concerning treatments for LC-
FAODs

There is no permanent treatment, such as gene therapy, for
LC-FAODs. The most important treatment strategy is
avoidance of triggers (e.g., fever, diarrhea, vomiting, hard
exercise, prolonged fasting, and/or overloading of long-
chain fatty acids) and the use of intravenous glucose as an
energy source during the acute phase [76]. Intravenous
glucose infusions on “sick days”, such as during infection
and loss of appetite, are useful for preventing severe
metabolic decompensation.

Dietary management

The avoidance of prolonged fasting, restriction of LC-fatty
acids, and supplementation with MCT are generally
recommended as dietary management strategies. The
acceptable maximum fasting periods according to Japanese
guideline are modified based on European recommenda-
tions [77]. The period should be shortened during an illness
or in severe symptomatic patients. However, restriction of
LC-fatty acids and supplementation with MCT are pre-
sumably unnecessary in patients with asymptomatic
VLCAD deficiency. Moreover, even avoidance of pro-
longed fasting may not be needed for VLCAD-deficient
patients with LC-FAO flux score greater than 90% of nor-
mal, who are strongly predicted to remain asymptomatic
[78]. In contrast, all patients with FAODs excluding such
asymptomatic VLCAD deficiency should comply with the
avoidance of prolonged fasting, even if they are asympto-
matic at diagnosis because other LC-FAODs are generally
more severe than VLCAD deficiency.

Restriction of exercise

Extensive or sustained exercise (e.g., military training or
climbing a mountain) may trigger metabolic decompensa-
tion in patients with LC-FAODs. Additionally, some
patients with an initially asymptomatic type of VLCAD
deficiency may develop muscle symptoms during exercise

in later life, despite treatment [27, 79]. However, restriction
of exercise is not always necessary for patients with LC-
FAODs. Because pre-exercise supplementation with MCT
improves exercise tolerance among patients with LC-
FAODs [80], participating sports and routine physical
activity should not be avoided for patients who can imple-
ment pre-exercise supplementation with MCT. In contrast,
oral glucose supplementation immediately before exercise
might worsen the exercise capacity, most likely due to the
sympathoadrenal response, which increases the heart
rate and blocks gluconeogenesis [81]. Nevertheless, glucose
supplementation, rest, and rehydration are important during
exercise. Exercise restriction should be determined based on
an individual’s exercise tolerance level.

Supplementation with L-carnitine

L-carnitine supplementation for FAODs is considered to
maintain the serum-free carnitine concentration and elim-
inate toxic ACs [82]. However, the use of L-carnitine
supplementation is controversial at present. For example, it
is not recommended for either LC-FAODs or MCAD
deficiency because the beneficial effect of L-carnitine
supplementation is not proven [76]. In particular,
L-carnitine supplementation should be avoided at times of
severe metabolic dysfunction in patients with VLCAD and
TFP/LCHAD deficiencies because of a risk of arrhythmia
provoked by the accumulation of LC-ACs [77]. We pre-
viously described two siblings with VLCAD deficiency
suffering from recurrent rhabdomyolysis only during
L-carnitine supplementation [57]. This case report sug-
gested that L-carnitine supplementation may cause the
pathological conditions of patients with VLCAD deficiency
to deteriorate. By contrast, it has been reported that
L-carnitine supplementation does not increase LC-AC
levels in patients with LC-FAODs on a triheptanoin diet,
while it facilitates the export of excessive toxic LC-acyl-
CoA intermediates as ACs and preserves the levels of free
CoA [83].

Regarding how L-carnitine supplementation should be
viewed in the context of MADD or CPT2/CACT defi-
ciency, there are few recommendations. Because these
diseases often result in severe secondary carnitine defi-
ciency, a certain level of L-carnitine supplementation may
be necessary. Indeed, for MADD, L-carnitine supple-
mentation is not always discouraged [84, 85]. Additionally,
we found that the frequency of rhabdomyolysis decreased
after high-dose L-carnitine supplementation in a patient
with CPT2 deficiency, although other treatments, such as
dietary management, MCT, and bezafibrate, might have had
synergistic effects [86]. However, it should be considered
that L-carnitine supplementation could result in the accu-
mulation of LC-ACs even in patients with these diseases.
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Hence, further studies on the application of L-carnitine
therapy for the above diseases are required.

Triheptanoin

Triheptanoin, a seven-carbon fatty acid triglyceride (C7), is
a promising drug for LC-FAODs. Anaplerotic metabolites
of C7 are hypothesized to have the potential to replace
deficient Krebs cycle intermediates through conversion to
succinyl-CoA, resulting in net glucose production as a
novel energy source [87]. Recently, a double-blind rando-
mized controlled trial of the use of C7 versus trioctanoin
(regular MCT) in LC-FAODs was conducted in the United
States [88]. This trial concluded that C7 significantly
improved the left ventricle (LV) ejection fraction and
reduced the LV mass at rest and the heart rate during
exercise compared to regular MCT. In a retrospective study,
the same research group revealed that C7 decreased the
duration and rate of hospitalization and the frequency of
hypoglycemia [89] and improved the endurance and toler-
ance of exercise and quality of life (QOL) in an open-label
trial [87]. The adverse effects of C7 consist almost exclu-
sively of gastrointestinal symptoms, such as diarrhea, nau-
sea, and abdominal pain, although the frequency of adverse
events is similar to that of regular MCT. In contrast, in
VLCAD knockout mice, long-term application of dietary
C7 was found to have no positive effect and failed to pre-
vent the development of systolic dysfunction in the cardiac
phenotype [90]. Although CACT and CPT-1 deficiencies
were excluded in the above studies, and the efficacy of C7
for the neonatal-onset type of LC-FAODs is unknown in
humans, C7 may improve several clinical manifestations
compared with regular MCT in all patients with LC-
FAODs.

Bezafibrate

Bezafibrate [2-(p-(2-(p-chlorobenzamido)ethyl)-phenoxy)-
2-methyl propionic acid] is a peroxisome proliferator-
activated receptor agonist that decreases human serum lipid
levels. By enhancing the transcription of several β-oxidation
enzymes in vitro, bezafibrate has been reported as a pro-
mising drug for FAODs [91–93]. We previously reported
the effect of bezafibrate for several FAODs in in vitro stu-
dies and case reports [41, 64, 86, 94, 95]. However, its
in vivo efficacy remains controversial, although the in vitro
efficacy of bezafibrate has been reported from numerous
studies.

As shown in Table 2, three clinical trials of bezafibrate
have been conducted to date. A French group (Bonnefont
JP, et al.) first reported the efficacy and long-term safety of
bezafibrate in patients with the myopathic form of CPT2
deficiency [96, 97]. These clinical trials revealed that

bezafibrate increased the level of oxidation of palmitoyl L-
carnitine in isolated muscle mitochondria, the expression of
CPT2 messenger RNA and protein in the skeletal muscle,
and subjective QOL scores based on the SF-36 ques-
tionnaire, while it decreased the number of rhabdomyolysis
episodes and plasma CK levels. Recently, we also reported
that bezafibrate significantly improved subjective QOL
scores in a small population trial whose study design imi-
tated those of the open-label French trials [98]. Although
the primary end point (the frequency of myopathic attacks)
and the other outcomes (e.g., levels of serum CK, ACs, and
myalgia during myopathic attacks) were not changed in our
trial, we concluded that these end points could not be
evaluated due to several limitations, such as problems in the
definition of myopathic attack. Only QOL scores using SF-
36 were significantly improved, but this result may have
been due to the placebo effect because of the open-label trial
design. In contrast, a Danish group (Ørngreen MC, et al.)
reported that bezafibrate did not improve clinical symptoms
or FAO capacity during exercise in patients with CPT2 and
VLCAD deficiencies [99]. Because this trial was designed
as a double-blind, randomized, placebo-controlled, parallel,
crossover study, meaning that its results constitute Class 1
evidence, the clinical efficacy of bezafibrate has been
questioned. The French group had a heated debate about the
end points and investigations applied in this trial with the
Danish group [100, 101]. Because the participants in this
trial experienced almost no rhabdomyolysis episodes before
and after the administration of bezafibrate, we also doubt
that such subjects are appropriate for evaluating its clinical
efficacy. Based on the results of our trial, more than half of
the participants subjectively experienced the efficacy of
bezafibrate, even if the frequency of myopathic attacks was
not reduced. However, these subjective feelings are not easy
to quantify and estimate, particularly in open-label trials.
Because it cannot be concluded that bezafibrate does not
currently have any clinical efficacy, further double-blind,
randomized, placebo-controlled clinical trials in which QOL
is included as an endpoint are necessary to elucidate the
efficacy of bezafibrate.

In addition, bezafibrate is considered to be ineffective for
patients with the neonatal-onset form, such as subjects with
null mutations even in in vitro. Therefore, it will be pre-
ferable to evaluate the efficacy of bezafibrate in vitro if its
administration is initiated. For the prediction of in vitro
efficacy, FAO flux is a better tool than the IVP assay. As
shown in Fig. 3, the IVP assay revealed that the accumu-
lation of C16 decreased in the presence of high-dose
bezafibrate, apparently indicating that bezafibrate is effec-
tive even for the severe form of MADD. By contrast, FAO
flux showed no efficacy in the severe form. Because this
MADD patient with the severe form had a null mutation and
bezafibrate was not effective in this individual, the result of
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the IVP assay for the severe form was considered an error.
These findings suggest that overdose of bezafibrate might
deteriorate FAO flux and production of ACs although the
causes are unknown.

Conclusion

With the expansion of ENBS for FAODs, an increasing
number of patients with milder phenotypes, including
asymptomatic form, have been identified. Because the
outcomes of such patients cannot be accurately predicted,
careful management without overtreatment is required. In
the myopathic or asymptomatic form of VLCAD defi-
ciency, dietary therapy and exercise restriction can be more
moderate. While the efficacy of bezafibrate remains con-
troversial, triheptanoin has shown therapeutic potential in
patients with FAODs; however, the extent of the improve-
ment of clinical symptoms or the reduction of the degree of
management remains unknown. The prognosis of the
neonatal-onset form remains poor, despite early diagnosis
and intervention. The accumulation of evidence obtained
from clinical and basic investigations will reveal strategies
for addressing issues associated with the management of
FAODs.
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