Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Identification of a de novo fetal variant in osteogenesis imperfecta by targeted sequencing-based noninvasive prenatal testing

Abstract

Noninvasive prenatal testing (NIPT), which involves analysis of circulating cell-free fetal DNA (cffDNA) from maternal plasma, is highly effective for detecting feto-placental chromosome aneuploidy. However, recent studies suggested that coverage-based shallow-depth NIPT cannot accurately detect smaller single or multi-loci genetic variants. To assess the fetal genotype of any locus using maternal plasma, we developed a novel genotyping algorithm named pseudo tetraploid genotyping (PTG). We performed paired-end captured sequencing of the plasma cell-free DNA (cfDNA), in which case a phenotypically healthy woman is suspected to be carrying a fetus with genetic defect. After a series of independent filtering of 111,407 SNPs, we found one variant in COL1A1 graded with high pathogenic potential which might cause osteogenesis imperfecta (OI). Then, we verified this mutation by Sanger sequencing of fetal and parental blood cells. In addition, we evaluated the accuracy and detection rate of the PTG algorithm through direct sequencing of the genomic DNA from maternal and fetal blood cells. Collectively, our study developed an intuitive and cost-effective method for the noninvasive detection of pathogenic mutations, and successfully identified a de novo variant in COL1A1 (c.2596 G > A, p.Gly866Ser) in the fetus implicated in OI.

This is a preview of subscription content

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Dondorp W, de Wert G, Bombard Y, Bianchi DW, Bergmann C, Borry P, et al. Non-invasive prenatal testing for aneuploidy and beyond: challenges of responsible innovation in prenatal screening. Eur J Hum Genet. 2015;23:1592.

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Hayden EC. Prenatal-screening companies expand scope of DNA tests. Nature. 2014;507:19.

    Article  PubMed  CAS  Google Scholar 

  3. 3.

    Agarwal A, Sayres LC, Cho MK, Cook-Deegan R, Chandrasekharan S. Commercial landscape of noninvasive prenatal testing in the United States. Prenat Diagn. 2013;33:521–31.

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    Lo YM, Corbetta N, Chamberlain PF, Rai V, Sargent IL, Redman CW, et al. Presence of fetal DNA in maternal plasma and serum. Lancet. 1997;350:485–7.

    CAS  Article  PubMed  Google Scholar 

  5. 5.

    Lo YM, Zhang J, Leung TN, Lau TK, Chang AM, Hjelm NM. Rapid clearance of fetal DNA from maternal plasma. Am J Hum Genet. 1999;64:218–24.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  6. 6.

    Angert RM, LeShane ES, Lo YM, Chan LY, Delli-Bovi LC, Bianchi DW. Fetal cell-free plasma DNA concentrations in maternal blood are stable 24 h after collection: analysis of first- and third-trimester samples. Clin Chem. 2003;49:195–8.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Chan KC, Zhang J, Hui AB, Wong N, Lau TK, Leung TN, et al. Size distributions of maternal and fetal DNA in maternal plasma. Clin Chem. 2004;50:88–92.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Li Y, Zimmermann B, Rusterholz C, Kang A, Holzgreve W, Hahn S. Size separation of circulatory DNA in maternal plasma permits ready detection of fetal DNA polymorphisms. Clin Chem. 2004;50:1002–11.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Tong YK, Ding C, Chiu RW, Gerovassili A, Chim SS, Leung TY, et al. Noninvasive prenatal detection of fetal trisomy 18 by epigenetic allelic ratio analysis in maternal plasma. Theor Empir Consid Clin Chem. 2006;52:2194–202.

    CAS  Google Scholar 

  10. 10.

    Lo YM, Tsui NB, Chiu RW, Lau TK, Leung TN, Heung MM, et al. Plasma placental RNA allelic ratio permits noninvasive prenatal chromosomal aneuploidy detection. Nat Med. 2007;13:218–23.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Finning KM, Martin PG, Soothill PW, Avent ND. Prediction of fetal D status from maternal plasma: introduction of a new noninvasive fetal RHD genotyping service. Transfusion. 2002;42:1079–85.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Phylipsen M, Yamsri S, Treffers EE, Jansen DT, Kanhai WA, Boon EM, et al. Non-invasive prenatal diagnosis of beta-thalassemia and sickle-cell disease using pyrophosphorolysis-activated polymerization and melting curve analysis. Prenat Diagn. 2012;32:578–87.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Lam KW, Jiang P, Liao GJ, Chan KC, Leung TY, Chiu RW, et al. Noninvasive prenatal diagnosis of monogenic diseases by targeted massively parallel sequencing of maternal plasma: application to beta-thalassemia. Clin Chem. 2012;58:1467–75.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Bustamante-Aragones A, Rodriguez de Alba M, Perlado S, Trujillo-Tiebas MJ, Arranz JP, Diaz-Recasens J, et al. Non-invasive prenatal diagnosis of single-gene disorders from maternal blood. Gene. 2012;504:144–9.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Lench N, Barrett A, Fielding S, McKay F, Hill M, Jenkins L, et al. The clinical implementation of non-invasive prenatal diagnosis for single-gene disorders: challenges and progress made. Prenat Diagn. 2013;33:555–62.

    Article  PubMed  Google Scholar 

  16. 16.

    Papasavva T, van Ijcken WF, Kockx CE, van den Hout MC, Kountouris P, Kythreotis L, et al. Next generation sequencing of SNPs for non-invasive prenatal diagnosis: challenges and feasibility as illustrated by an application to beta-thalassaemia. Eur J Hum Genet. 2013;21:1403–10.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Ge H, Huang X, Li X, Chen S, Zheng J, Jiang H, et al. Noninvasive prenatal detection for pathogenic CNVs: the application in alpha-thalassemia. PLOS ONE. 2013;8:e67464.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Lo YM, Chan KC, Sun H, Chen EZ, Jiang P, Lun FM, et al. Maternal plasma DNA sequencing reveals the genome-wide genetic and mutational profile of the fetus. Sci Transl Med. 2010;2:61ra91.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Fan HC, Gu W, Wang J, Blumenfeld YJ, El-Sayed YY, Quake SR, et al. Non-invasive prenatal measurement of the fetal genome. Nature. 2012;487:320–4.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Chen S, Ge H, Wang X, Pan X, Yao X, Li X, et al. Haplotype-assisted accurate non-invasive fetal whole genome recovery through maternal plasma sequencing. Genome Med. 2013;5:18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. 21.

    Kitzman JO, Snyder MW, Ventura M, Lewis AP, Qiu R, Simmons LE, et al. Noninvasive whole-genome sequencing of a human fetus. Sci Transl Med. 2012;4:137ra176.

    Article  CAS  Google Scholar 

  22. 22.

    Liao GJ, Lun FM, Zheng YW, Chan KC, Leung TY, Lau TK, et al. Targeted massively parallel sequencing of maternal plasma DNA permits efficient and unbiased detection of fetal alleles. Clin Chem. 2011;57:92–101.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Chan KC, Ding C, Gerovassili A, Yeung SW, Chiu RW, Leung TN, et al. Hypermethylated RASSF1A in maternal plasma: A universal fetal DNA marker that improves the reliability of noninvasive prenatal diagnosis. Clin Chem. 2006;52:2211–8.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Liu L, Li Y, Li S, Hu N, He Y, Pong R, et al. Comparison of next-generation sequencing systems. J Biomed Biotechnol. 2012;2012:251364.

    PubMed  PubMed Central  Google Scholar 

  25. 25.

    Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics. 2009;25:1754–60.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. Genome project data processing S: the sequence alignment/map format and SAMtools. Bioinformatics. 2009;25:2078–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. 27.

    Wang K, Li M, Hakonarson H. ANNOVAR: functional annotation of genetic variants from high-throughput sequencing data. Nucleic Acids Res. 2010;38:e164.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. 28.

    Sherry ST, Ward MH, Kholodov M, Baker J, Phan L, Smigielski EM, et al. dbSNP: the NCBI database of genetic variation. Nucleic Acids Res. 2001;29:308–11.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  29. 29.

    Maasalu K, Nikopensius T, Koks S, Noukas M, Kals M, Prans E, et al. Whole-exome sequencing identifies de novo mutation in the COL1A1 gene to underlie the severe osteogenesis imperfecta. Hum Genom. 2015;9:6.

    Article  CAS  Google Scholar 

  30. 30.

    Cho SY, Lee JH, Ki CS, Chang MS, Jin DK, Han HS. Osteogenesis imperfecta Type I caused by a novel mutation in the start codon of the COL1A1 gene in a Korean family. Ann Clin Lab Sci. 2015;45:100–5.

    CAS  PubMed  Google Scholar 

  31. 31.

    McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A, et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-generation DNA sequencing data. Genome Res. 2010;20:1297–303.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Seo SB, King JL, Warshauer DH, Davis CP, Ge J, Budowle B. Single nucleotide polymorphism typing with massively parallel sequencing for human identification. Int J Leg Med. 2013;127:1079–86.

    Article  Google Scholar 

  33. 33.

    Beal MA, Glenn TC, Somers CM. Whole genome sequencing for quantifying germline mutation frequency in humans and model species: cautious optimism. Mutat Res. 2012;750:96–106.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Zong C, Lu S, Chapman AR, Xie XS. Genome-wide detection of single-nucleotide and copy-number variations of a single human cell. Science. 2012;338:1622–6.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Chen L, Liu P, Evans TC Jr, Ettwiller LM. DNA damage is a pervasive cause of sequencing errors, directly confounding variant identification. Science . 2017;355:752–6.

    CAS  Article  PubMed  Google Scholar 

  36. 36.

    Newman AM, Lovejoy AF, Klass DM, Kurtz DM, Chabon JJ, Scherer F, et al. Integrated digital error suppression for improved detection of circulating tumor DNA. Nat Biotechnol. 2016;34:547–55.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Van Dijk FS. Sillence DO.Osteogenesis imperfecta: clinical diagnosis, nomenclature and severity assessment. Am J Med Genet A. 2014;164A:1470–81.

    Article  PubMed  Google Scholar 

  38. 38.

    Forlino A, Cabral WA, Barnes AM, Marini JC. New perspectives on osteogenesis imperfecta. Nat Rev Endocrinol. 2011;7:540–57.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Zhytnik L, Maasalu K, Reimann E, Prans E, Koks S, Martson A. Mutational analysis of COL1A1 and COL1A2 genes among Estonian osteogenesis imperfecta patients. Hum Genom. 2017;11:19.

    Article  CAS  Google Scholar 

  40. 40.

    Rolvien T, Kornak U, Sturznickel J, Schinke T, Amling M, Mundlos S, et al. A novel COL1A2 C-propeptide cleavage site mutation causing high bone mass osteogenesis imperfecta with a regional distribution pattern. Osteoporos Int. 2018;29:243–6.

    CAS  Article  PubMed  Google Scholar 

  41. 41.

    Andersson K, Dahllof G, Lindahl K, Kindmark A, Grigelioniene G, Astrom E, et al. Mutations in COL1A1 and COL1A2 and dental aberrations in children and adolescents with osteogenesis imperfecta - a retrospective cohort study. PLOS ONE. 2017;12:e0176466.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  42. 42.

    Kantaputra PN, Sirirungruangsarn Y, Intachai W, Ngamphiw C, Tongsima S, Dejkhamron P. Osteogenesis imperfecta with ectopic mineralizations in dentin and cementum and a COL1A2 mutation. J Hum Genet. 2018;63:811–820.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Monti E, Mottes M, Fraschini P, Brunelli P, Forlino A, Venturi G, et al. Current and emerging treatments for the management of osteogenesis imperfecta. Ther Clin Risk Manag. 2010;6:367–81.

    PubMed  PubMed Central  Google Scholar 

  44. 44.

    Marini JC, Forlino A, Cabral WA, Barnes AM, San Antonio JD, Milgrom S, et al. Consortium for osteogenesis imperfecta mutations in the helical domain of type I collagen: regions rich in lethal mutations align with collagen binding sites for integrins and proteoglycans. Hum Mutat. 2007;28:209–21.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Ma D, Ge H, Li X, Jiang T, Chen F, Zhang Y, et al. Haplotype-based approach for noninvasive prenatal diagnosis of congenital adrenal hyperplasia by maternal plasma DNA sequencing. Gene. 2014;544:252–8.

    CAS  Article  PubMed  Google Scholar 

  46. 46.

    Meng M, Li X, Ge H, Chen F, Han M, Zhang Y, et al. Noninvasive prenatal testing for autosomal recessive conditions by maternal plasma sequencing in a case of congenital deafness. Genet Med. 2014;16:972–6.

    Article  PubMed  Google Scholar 

  47. 47.

    New MI, Tong YK, Yuen T, Jiang P, Pina C, Chan KC, et al. Noninvasive prenatal diagnosis of congenital adrenal hyperplasia using cell-free fetal DNA in maternal plasma. J Clin Endocrinol Metab. 2014;99:E1022–1030.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Xu Y, Li X, Ge HJ, Xiao B, Zhang YY, Ying XM, et al. Haplotype-based approach for noninvasive prenatal tests of Duchenne muscular dystrophy using cell-free fetal DNA in maternal plasma. Genet Med. 2015;17:889–96.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Yoo SK, Lim BC, Byeun J, Hwang H, Kim KJ, Hwang YS, et al. Noninvasive prenatal diagnosis of duchenne muscular dystrophy: comprehensive genetic diagnosis in carrier, proband, and fetus. Clin Chem. 2015;61:829–37.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Xiong L, Barrett AN, Hua R, Tan TZ, Ho SS, Chan JK, et al. Non-invasive prenatal diagnostic testing for beta-thalassaemia using cell-free fetal DNA and next generation sequencing. Prenat Diagn. 2015;35:258–65.

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Xiong L, Barrett AN, Hua R, Ho S, Jun L, Chan K, et al. Non-invasive prenatal testing for fetal inheritance of maternal beta-thalassaemia mutations using targetted sequencing and relative mutation dosage: a feasibility study. BJOG. 2018;125:461–8.

    CAS  Article  Google Scholar 

  52. 52.

    Tanner L, Vainio P, Sandell M, Laine J. Novel COL1A1 mutation c.3290G>T associated with severe form of osteogenesis imperfecta in a fetus. Pediatr Dev Pathol. 2017;20:455–9.

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank the patients and their families for their participation in this study.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Zhaoling Xuan or Xiaohong Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yin, X., Du, Y., Zhang, H. et al. Identification of a de novo fetal variant in osteogenesis imperfecta by targeted sequencing-based noninvasive prenatal testing. J Hum Genet 63, 1129–1137 (2018). https://doi.org/10.1038/s10038-018-0489-9

Download citation

Further reading

Search

Quick links