Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Robust imaging and gene delivery to study human lymphoblastoid cell lines

Abstract

Lymphoblastoid cell lines (LCLs) have been by far the most prevalent cell type used to study the genetics underlying normal and disease-relevant human phenotypic variation, across personal to epidemiological scales. In contrast, only few studies have explored the use of LCLs in functional genomics and mechanistic studies. Two major reasons are technical, as (1) interrogating the sub-cellular spatial information of LCLs is challenged by their non-adherent nature, and (2) LCLs are refractory to gene transfection. Methodological details relating to techniques that overcome these limitations are scarce, largely inadequate (without additional knowledge and expertise), and optimisation has never been described. Here we compare, optimise, and convey such methods in-depth. We provide a robust method to adhere LCLs to coverslips, which maintained cellular integrity, morphology, and permitted visualisation of sub-cellular structures and protein localisation. Next, we developed the use of lentiviral-based gene delivery to LCLs. Through empirical and combinatorial testing of multiple transduction conditions, we improved transduction efficiency from 3% up to 48%. Furthermore, we established strategies to purify transduced cells, to achieve sustainable cultures containing >85% transduced cells. Collectively, our methodologies provide a vital resource that enables the use of LCLs in functional cell and molecular biology experiments. Potential applications include the characterisation of genetic variants of unknown significance, the interrogation of cellular disease pathways and mechanisms, and high-throughput discovery of genetic modifiers of disease states among others.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Neitzel H. A routine method for the establishment of permanent growing lymphoblastoid cell lines. Hum Genet. 1986;73:320–6.

    Article  PubMed  CAS  Google Scholar 

  2. 2.

    Young LS, Rickinson AB. Epstein-Barr virus: 40 years on. Nat Rev Cancer. 2004;4:757–68.

    Article  PubMed  CAS  Google Scholar 

  3. 3.

    Hussain T, Mulherkar R. Lymphoblastoid cell lines: a continuous in vitro source of cells to study carcinogen sensitivity and DNA repair. Int J Mol Cell Med. 2012;1:75–87.

    PubMed  PubMed Central  Google Scholar 

  4. 4.

    Mohyuddin A, Ayub Q, Siddiqi S, Carvalho-Silva DR, Mazhar K, Rehman S, et al. Genetic instability in EBV-transformed lymphoblastoid cell lines. Biochim Biophys Acta. 2004;1670:81–83.

    Article  PubMed  CAS  Google Scholar 

  5. 5.

    Sie L, Loong S, Tan EK. Utility of lymphoblastoid cell lines. J Neurosci Res. 2009;87:1953–9.

    Article  PubMed  CAS  Google Scholar 

  6. 6.

    International HapMap C, Altshuler DM, Gibbs RA, Peltonen L, Altshuler DM, Gibbs RA, et al. Integrating common and rare genetic variation in diverse human populations. Nature. 2010;467:52–8.

    Article  CAS  Google Scholar 

  7. 7.

    Genomes Project C, Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, et al. A global reference for human genetic variation. Nature. 2015;526:68–74.

    Article  CAS  Google Scholar 

  8. 8.

    Consortium EP. An integrated encyclopedia of DNA elements in the human genome. Nature. 2012;489:57–74.

    Article  CAS  Google Scholar 

  9. 9.

    Wheeler HE, Dolan ME. Lymphoblastoid cell lines in pharmacogenomic discovery and clinical translation. Pharmacogenomics. 2012;13:55–70.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  10. 10.

    Caron M, Imam-Sghiouar N, Poirier F, Le Caer JP, Labas V, Joubert-Caron R. Proteomic map and database of lymphoblastoid proteins. J Chromatogr B Anal Technol Biomed Life Sci. 2002;771:197–209.

    Article  CAS  Google Scholar 

  11. 11.

    Dirksen EH, Cloos J, Braakhuis BJ, Brakenhoff RH, Heck AJ, Slijper M. Human lymphoblastoid proteome analysis reveals a role for the inhibitor of acetyltransferases complex in DNA double-strand break response. Cancer Res. 2006;66:1473–80.

    Article  PubMed  CAS  Google Scholar 

  12. 12.

    Wishart DS, Knox C, Guo AC, Eisner R, Young N, Gautam B, et al. HMDB: a knowledgebase for the human metabolome. Nucleic Acids Res. 2009;37:D603–10.

    Article  PubMed  CAS  Google Scholar 

  13. 13.

    Wishart DS, Tzur D, Knox C, Eisner R, Guo AC, Young N, et al. HMDB: the Human Metabolome Database. Nucleic Acids Res. 2007;35:D521–26.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  14. 14.

    Lappalainen T, Sammeth M, Friedlander MR, t Hoen PA, Monlong J, Rivas MA, et al. Transcriptome and genome sequencing uncovers functional variation in humans. Nature. 2013;501:506–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  15. 15.

    Mele M, Ferreira PG, Reverter F, DeLuca DS, Monlong J, Sammeth M, et al. Human genomics. The human transcriptome across tissues and individuals. Science. 2015;348:660–5.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  16. 16.

    Lim ET, Wurtz P, Havulinna AS, Palta P, Tukiainen T, Rehnstrom K, et al. Distribution and medical impact of loss-of-function variants in the Finnish founder population. PLoS Genet. 2014;10:e1004494.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  17. 17.

    Gamazon ER, Duan S, Zhang W, Huang RS, Kistner EO, Dolan ME, et al. PACdb: a database for cell-based pharmacogenomics. Pharm Genom. 2010;20:269–73.

    CAS  Google Scholar 

  18. 18.

    Min JL, Taylor JM, Richards JB, Watts T, Pettersson FH, Broxholme J, et al. The use of genome-wide eQTL associations in lymphoblastoid cell lines to identify novel genetic pathways involved in complex traits. PLoS ONE. 2011;6:e22070.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  19. 19.

    Welsh M, Mangravite L, Medina MW, Tantisira K, Zhang W, Huang RS, et al. Pharmacogenomic discovery using cell-based models. Pharmacol Rev. 2009;61:413–29.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  20. 20.

    Izawa K, Martin E, Soudais C, Bruneau J, Boutboul D, Rodriguez R, et al. Inherited CD70 deficiency in humans reveals a critical role for the CD70-CD27 pathway in immunity to Epstein-Barr virus infection. J Exp Med. 2017;214:73–89.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  21. 21.

    Jiang S, Zhou H, Liang J, Gerdt C, Wang C, Ke L, et al. The Epstein-Barr virus regulome in lymphoblastoid cells. Cell Host Microbe. 2017;22:561–73. e564

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. 22.

    Ma Y, Walsh MJ, Bernhardt K, Ashbaugh CW, Trudeau SJ, Ashbaugh IY, et al. CRISPR/Cas9 screens reveal epstein-Barr virus-transformed B cell host dependency factors. Cell Host Microbe. 2017;21:580–91. e587

    Article  PubMed  CAS  Google Scholar 

  23. 23.

    Chandra S, Levran O, Jurickova I, Maas C, Kapur R, Schindler D, et al. A rapid method for retrovirus-mediated identification of complementation groups in Fanconi anemia patients. Mol Ther. 2005;12:976–84.

    Article  PubMed  CAS  Google Scholar 

  24. 24.

    Muller LU, Milsom MD, Kim MO, Schambach A, Schuesler T, Williams DA. Rapid lentiviral transduction preserves the engraftment potential of Fanca-/- hematopoietic stem cells. Mol Ther. 2008;16:1154–60.

    Article  CAS  PubMed  Google Scholar 

  25. 25.

    Portal D, Zhao B, Calderwood MA, Sommermann T, Johannsen E, Kieff E. EBV nuclear antigen EBNALP dismisses transcription repressors NCoR and RBPJ from enhancers and EBNA2 increases NCoR-deficient RBPJ DNA binding. Proc Natl Acad Sci USA. 2011;108:7808–13.

    Article  PubMed  Google Scholar 

  26. 26.

    Sommermann TG, O’Neill K, Plas DR, Cahir-McFarland E. IKKbeta and NF-kappaB transcription govern lymphoma cell survival through AKT-induced plasma membrane trafficking of GLUT1. Cancer Res. 2011;71:7291–300.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. 27.

    Wang X, Berger C, Wong CW, Forman SJ, Riddell SR, Jensen MC. Engraftment of human central memory-derived effector CD8 +T cells in immunodeficient mice. Blood. 2011;117:1888–98.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. 28.

    Arvey A, Tempera I, Tsai K, Chen HS, Tikhmyanova N, Klichinsky M, et al. An atlas of the Epstein-Barr virus transcriptome and epigenome reveals host-virus regulatory interactions. Cell Host Microbe. 2012;12:233–45.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. 29.

    White RE, Ramer PC, Naresh KN, Meixlsperger S, Pinaud L, Rooney C, et al. EBNA3B-deficient EBV promotes B cell lymphomagenesis in humanized mice and is found in human tumors. J Clin Invest. 2012;122:1487–502.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  30. 30.

    Banzhaf-Strathmann J, Claus R, Mucke O, Rentzsch K, van der Zee J, Engelborghs S, et al. Promoter DNA methylation regulates progranulin expression and is altered in FTLD. Acta Neuropathol Commun. 2013;1:16.

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Zhao B, Barrera LA, Ersing I, Willox B, Schmidt SC, Greenfeld H, et al. The NF-kappaB genomic landscape in lymphoblastoid B cells. Cell Rep. 2014;8:1595–606.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  32. 32.

    Greenfeld H, Takasaki K, Walsh MJ, Ersing I, Bernhardt K, Ma Y, et al. TRAF1 coordinates polyubiquitin signaling to enhance Epstein-Barr virus LMP1-mediated growth and survival pathway activation. PLoS Pathog. 2015;11:e1004890.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. 33.

    Ohashi M, Holthaus AM, Calderwood MA, Lai CY, Krastins B, Sarracino D, et al. The EBNA3 family of Epstein-Barr virus nuclear proteins associates with the USP46/USP12 deubiquitination complexes to regulate lymphoblastoid cell line growth. PLoS Pathog. 2015;11:e1004822.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  34. 34.

    Nguyen LS, Jolly L, Shoubridge C, Chan WK, Huang L, Laumonnier F, et al. Transcriptome profiling of UPF3B/NMD-deficient lymphoblastoid cells from patients with various forms of intellectual disability. Mol Psychiatry. 2012;17:1103–15.

    Article  PubMed  CAS  Google Scholar 

  35. 35.

    Jolly LA, Homan CC, Jacob R, Barry S, Gecz J. The UPF3B gene, implicated in intellectual disability, autism, ADHD and childhood onset schizophrenia regulates neural progenitor cell behaviour and neuronal outgrowth. Hum Mol Genet. 2013;22:4673–87.

    Article  PubMed  CAS  Google Scholar 

  36. 36.

    Weber K, Bartsch U, Stocking C, Fehse B. A multicolor panel of novel lentiviral “gene ontology” (LeGO) vectors for functional gene analysis. Mol Ther. 2008;16:698–706.

    Article  PubMed  CAS  Google Scholar 

  37. 37.

    Weber K, Mock U, Petrowitz B, Bartsch U, Fehse B. Lentiviral gene ontology (LeGO) vectors equipped with novel drug-selectable fluorescent proteins: new building blocks for cell marking and multi-gene analysis. Gene Ther. 2010;17:511–20.

    Article  PubMed  CAS  Google Scholar 

  38. 38.

    Koh CM. Preparation of cells for microscopy using cytospin. Methods Enzymol. 2013;533:235–40.

    Article  PubMed  CAS  Google Scholar 

  39. 39.

    Kumar R, Corbett MA, van Bon BW, Woenig JA, Weir L, Douglas E, et al. THOC2 mutations implicate mRNA-export pathway in X-linked intellectual disability. Am J Hum Genet. 2015;97:302–10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  40. 40.

    Corbett MA, Schwake M, Bahlo M, Dibbens LM, Lin M, Gandolfo LC, et al. A mutation in the Golgi Qb-SNARE gene GOSR2 causes progressive myoclonus epilepsy with early ataxia. Am J Hum Genet. 2011;88:657–63.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. 41.

    Maruo S, Wu Y, Ishikawa S, Kanda T, Iwakiri D, Takada K. Epstein-Barr virus nuclear protein EBNA3C is required for cell cycle progression and growth maintenance of lymphoblastoid cells. Proc Natl Acad Sci USA. 2006;103:19500–5.

    Article  PubMed  CAS  Google Scholar 

  42. 42.

    Weber K, Thomaschewski M, Benten D, Fehse B. RGB marking with lentiviral vectors for multicolor clonal cell tracking. Nat Protoc. 2012;7:839–49.

    Article  PubMed  CAS  Google Scholar 

  43. 43.

    Weber K, Thomaschewski M, Warlich M, Volz T, Cornils K, Niebuhr B, et al. RGB marking facilitates multicolor clonal cell tracking. Nat Med. 2011;17:504–9.

    Article  PubMed  CAS  Google Scholar 

  44. 44.

    Bell JT, Pai AA, Pickrell JK, Gaffney DJ, Pique-Regi R, Degner JF, et al. DNA methylation patterns associate with genetic and gene expression variation in HapMap cell lines. Genome Biol. 2011;12:R10.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  45. 45.

    Consortium GT. Human genomics. The Genotype-Tissue Expression (GTEx) pilot analysis: multitissue gene regulation in humans. Science. 2015;348:648–60.

    Article  CAS  Google Scholar 

  46. 46.

    Kabadi AM, Ousterout DG, Hilton IB, Gersbach CA. Multiplex CRISPR/Cas9-based genome engineering from a single lentiviral vector. Nucleic Acids Res. 2014;42:e147.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. 47.

    Koike-Yusa H, Li Y, Tan EP, Velasco-Herrera Mdel C, Yusa K. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat Biotechnol. 2014;32:267–73.

    Article  PubMed  CAS  Google Scholar 

  48. 48.

    Boutros M, Ahringer J. The art and design of genetic screens: RNA interference. Nat Rev Genet. 2008;9:554–66.

    Article  PubMed  CAS  Google Scholar 

  49. 49.

    Sander JD, Joung JK. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat Biotechnol. 2014;32:347–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

L.A.J. is supported by Australian Research Council DE160100620. J.G. is supported by National Health and Medical Research Council (NHMRC) of Australia grants 1041920 and 1091593. This work was supported by NHMRC GNT1063808 to J.G. and L.A.J.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Lachlan A. Jolly or Jozef Gecz.

Ethics declarations

Conflict of interest

This Research was prospectively reviewed and approved by the Women’s and Children’s Hospital Human Research Ethics Committee, South Australia, Australia, 5006. Informed consent was obtained from all individual participants included in the study. The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jolly, L.A., Sun, Y., Carroll, R. et al. Robust imaging and gene delivery to study human lymphoblastoid cell lines. J Hum Genet 63, 945–955 (2018). https://doi.org/10.1038/s10038-018-0483-2

Download citation

Search

Quick links