Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Clinical phenotype and molecular analysis of a homozygous ABCB11 mutation responsible for progressive infantile cholestasis

Abstract

The bile salt export pump (BSEP) plays an important role in biliary secretion. Mutations in ABCB11, the gene encoding BSEP, induce progressive familial intrahepatic cholestasis type 2 (PFIC2), which presents with severe jaundice and liver dysfunction. A less severe phenotype, called benign recurrent intrahepatic cholestasis type 2, is also known. About 200 missense mutations in ABCB11 have been reported. However, the phenotype–genotype correlation has not been clarified. Furthermore, the frequencies of ABCB11 mutations differ between Asian and European populations. We report a patient with PFIC2 carrying a homozygous ABCB11 mutation c.386G>A (p.C129Y) that is most frequently reported in Japan. The pathogenicity of BSEPC129Y has not been investigated. In this study, we performed the molecular analysis of this ABCB11 mutation using cells expressing BSEPC129Y. We found that trafficking of BSEPC129Y to the plasma membrane was impaired and that the expression of BSEPC129Y on the cell surface was significantly lower than that in the control. The amount of bile acids transported via BSEPC129Y was also significantly lower than that via BSEPWT. The transport activity of BSEPC129Y may be conserved because the amount of membrane BSEPC129Y corresponded to the uptake of taurocholate into membrane vesicles. In conclusion, we demonstrated that c.386G>A (p.C129Y) in ABCB11 was a causative mutation correlating with the phenotype of patients with PFIC2, impairment of biliary excretion from hepatocytes, and the absence of canalicular BSEP expression in liver histological assessments. Mutational analysis in ABCB11 could facilitate the elucidation of the molecular mechanisms underlying the development of intrahepatic cholestasis.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1
Fig. 2
Fig. 3

References

  1. 1.

    Gerloff T, et al. The sister of P-glycoprotein represents the canalicular bile salt export pump of mammalian liver. J Biol Chem. 1998;273:10046–50. https://doi.org/10.1074/jbc.273.16.10046.

    CAS  Article  PubMed  Google Scholar 

  2. 2.

    Jansen PL, et al. Hepatocanalicular bile salt export pump deficiency in patients with progressive familial intrahepatic cholestasis. Gastroenterology. 1999;117:1370–9. https://doi.org/10.1016/S0016-5085(99)70287-8.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Davit-Spraul A, et al. ATP8B1 and ABCB11 analysis in 62 children with normal gamma-glutamyl transferase progressive familial intrahepatic cholestasis (PFIC): phenotypic differences between PFIC1 and PFIC2 and natural history. Hepatology. 2010;51:1645–55. https://doi.org/10.1002/hep.23539.

    CAS  Article  PubMed  Google Scholar 

  4. 4.

    de Vree JML, et al. Mutations in the MDR3 gene cause progressive familial intrahepatic cholestasis. Proc Natl Acad Sci USA. 1998;95:282–7.

    Article  PubMed  PubMed Central  Google Scholar 

  5. 5.

    Gonzales E, Spraul A, Jacquemin E. Clinical utility gene card for: progressive familial intrahepatic cholestasis type 2. Eur J Hum Genet. 2014;22. https://doi.org/10.1038/ejhg.2013.187.

  6. 6.

    Scheimann AO, et al. Mutations in bile salt export pump (ABCB11) in two children with progressive familial intrahepatic cholestasis and cholangiocarcinoma. J Pediatr. 2007;150:556–9. https://doi.org/10.1016/j.jpeds.2007.02.030.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Knisely AS, et al. Hepatocellular carcinoma in ten children under five years of age with bile salt export pump deficiency. Hepatology. 2006;44:478–86. https://doi.org/10.1002/hep.21287.

    CAS  Article  PubMed  Google Scholar 

  8. 8.

    Strautnieks SS, et al. Severe bile salt export pump deficiency: 82 different ABCB11 mutations in 109 families. Gastroenterology. 2008;134:1203–14. https://doi.org/10.1053/j.gastro.2008.01.038.

    CAS  Article  PubMed  Google Scholar 

  9. 9.

    Hayashi H, Takada T, Suzuki H, Akita H, Sugiyama Y. Two common PFIC2 mutations are associated with the impaired membrane trafficking of BSEP/ABCB11. Hepatology. 2005;41:916–24. https://doi.org/10.1002/hep.20627.

    CAS  Article  PubMed  Google Scholar 

  10. 10.

    Hayashi H, Sugiyama Y. 4-phenylbutyrate enhances the cell surface expression and the transport capacity of wild-type and mutated bile salt export pumps. Hepatology. 2007;45:1506–16. https://doi.org/10.1002/hep.21630.

    CAS  Article  PubMed  Google Scholar 

  11. 11.

    Togawa T, et al. Molecular genetic dissection and neonatal/infantile intrahepatic cholestasis using targeted next-generation sequencing. J Pediatr. 2016;171:171–7. https://doi.org/10.1016/j.jpeds.2016.01.006.

    Article  PubMed  Google Scholar 

  12. 12.

    Park JS, Ko JS, Seo JK, Moon JS, Park SS. Clinical and ABCB11 profiles in Korean infants with progressive familial intrahepatic cholestasis. World J Gastroenterol. 2016;22:4901–7. https://doi.org/10.3748/wjg.v22.i20.4901.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. 13.

    Wang N-L, et al. The features of GGT in patients with ATP8B1 or ABCB11 deficiency improve the diagnostic efficiency. PloS ONE. 2016;11:e0153114 https://doi.org/10.1371/journal.pone.0153114.

    Article  PubMed  PubMed Central  Google Scholar 

  14. 14.

    Liu LY, Wang ZL, Wang XH, Zhu QR, Wang JS. ABCB11 gene mutations in Chinese children with progressive intrahepatic cholestasis and low gamma glutamyltransferase. Liver Int. 2010;30:809–15. https://doi.org/10.1111/j.1478-3231.2009.02112.x.

    CAS  Article  PubMed  Google Scholar 

  15. 15.

    Ananthanarayanan M, Li Y. PFIC2 and ethnicity-specific bile salt export pump (BSEP, ABCB11) mutations: where do we go from here? Liver Int. 2010;30:777–9. https://doi.org/10.1111/j.1478-3231.2010.02227.x.

    CAS  Article  PubMed  Google Scholar 

  16. 16.

    Verkade HJ, et al. Biliary atresia and other cholestatic childhood diseases: advances and future challenges. J Hepatol. 2016;65:631–42. https://doi.org/10.1016/j.jhep.2016.04.032.

    Article  PubMed  Google Scholar 

  17. 17.

    Naoi S, et al. Improved liver function and relieved pruritus after 4-phenylbutyrate therapy in a patient with progressive familial intrahepatic cholestasis type 2. J Pediatr. 2014;164:1219–27. https://doi.org/10.1016/j.jpeds.2013.12.032. e1213.

    Article  PubMed  Google Scholar 

  18. 18.

    Hayashi H, et al. AP2 adaptor complex mediates bile salt export pump internalization and modulates its hepatocanalicular expression and transport function. Hepatology. 2012;55:1889–1900. https://doi.org/10.1002/hep.25591.

    CAS  Article  PubMed  Google Scholar 

  19. 19.

    Hayashi H, et al. Transport by vesicles of glycine- and taurine-conjugated bile salts and taurolithocholate 3-sulfate: a comparison of human BSEP with rat Bsep. Biochim Biophys Acta. 2005;1738:54–62. https://doi.org/10.1016/j.bbalip.2005.10.006.

    CAS  Article  PubMed  Google Scholar 

  20. 20.

    Biasini M, et al. SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary information. Nucleic Acids Res. 2014;42:W252–W258. https://doi.org/10.1093/nar/gku340.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Arnold K, Bordoli L, Kopp J, Schwede T. The SWISS-MODEL workspace: a web-based environment for protein structure homology modelling. Bioinformatics. 2006;22:195–201. https://doi.org/10.1093/bioinformatics/bti770.

    CAS  Article  PubMed  Google Scholar 

  22. 22.

    Benkert P, Biasini M, Schwede T. Toward the estimation of the absolute quality of individual protein structure models. Bioinformatics. 2011;27:343–50. https://doi.org/10.1093/bioinformatics/btq662.

    CAS  Article  PubMed  Google Scholar 

  23. 23.

    Evason K, et al. Morphologic findings in progressive familial intrahepatic cholestasis 2 (PFIC2): correlation with genetic and immunohistochemical studies. Am J Surg Pathol. 2011;35:687–96. https://doi.org/10.1097/PAS.0b013e318212ec87.

    Article  PubMed  PubMed Central  Google Scholar 

  24. 24.

    Stindt J, et al. Bile salt export pump-reactive antibodies form a polyclonal, multi-inhibitory response in antibody-induced bile salt export pump deficiency. Hepatology. 2016;63:524–37. https://doi.org/10.1002/hep.28311.

    CAS  Article  PubMed  Google Scholar 

  25. 25.

    Maggiore G, et al. Relapsing features of bile salt export pump deficiency after liver transplantation in two patients with progressive familial intrahepatic cholestasis type 2. J Hepatol. 2010;53:981–6. https://doi.org/10.1016/j.jhep.2010.05.025.

    CAS  Article  PubMed  Google Scholar 

  26. 26.

    Jara P, et al. Recurrence of bile salt export pump deficiency after liver transplantation. New Engl J Med. 2009;361:1359–67. https://doi.org/10.1056/NEJMoa0901075.

    CAS  Article  PubMed  Google Scholar 

  27. 27.

    Lam C-W, et al. A patient with novel ABCB11 gene mutations with phenotypic transition between BRIC2 and PFIC2. J Hepatol. 2006;44:240–2. https://doi.org/10.1016/j.jhep.2005.09.013.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Takahashi A, et al. Gradual improvement of liver function after administration of ursodeoxycholic acid in an infant with a novel ABCB11 gene mutation with phenotypic continuum between BRIC2 and PFIC2. Eur J Gastroenterol Hepatol. 2007;19:942–6. https://doi.org/10.1097/MEG.0b013e3282ef4795.

    Article  PubMed  Google Scholar 

  29. 29.

    Sambrotta M, et al. Mutations in TJP2 cause progressive cholestatic liver disease. Nat Genet. 2014;46:326–8. https://doi.org/10.1038/ng.2918.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  30. 30.

    Gomez-Ospina N, et al. Mutations in the nuclear bile acid receptor FXR cause progressive familial intrahepatic cholestasis. Nat Commun. 2016;7:10713. https://doi.org/10.1038/ncomms10713.

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Hayashi H, Sugiyama Y. Short-chain ubiquitination is associated with the degradation rate of a cell-surface-resident bile salt export pump (BSEP/ABCB11). Mol Pharmacol. 2009;75:143–50. https://doi.org/10.1124/mol.108.049288.

    CAS  Article  PubMed  Google Scholar 

  32. 32.

    Aida K, Hayashi H, Inamura K, Mizuno T, Sugiyama Y. Differential roles of ubiquitination in the degradation mechanism of cell surface-resident bile salt export pump and multidrug resistance-associated protein 2. Mol Pharmacol. 2014;85:482–91. https://doi.org/10.1124/mol.113.091090.

    Article  PubMed  Google Scholar 

  33. 33.

    Hayashi H, et al. Successful treatment with 4-phenylbutyrate in a patient with benign recurrent intrahepatic cholestasis type 2 refractory to biliary drainage and bilirubin absorption. Hepatol Res. 2016;46:192–200. https://doi.org/10.1111/hepr.12561.

    CAS  Article  PubMed  Google Scholar 

  34. 34.

    Gonzales E, et al. Targeted pharmacotherapy in progressive familial intrahepatic cholestasis type 2: Evidence for improvement of cholestasis with 4-phenylbutyrate. Hepatology. 2015;62:558–66. https://doi.org/10.1002/hep.27767.

    CAS  Article  PubMed  Google Scholar 

  35. 35.

    Gonzales E, et al. Successful mutation-specific chaperone therapy with 4-phenylbutyrate in a child with progressive familial intrahepatic cholestasis type 2. J Hepatol. 2012;57:695–8. https://doi.org/10.1016/j.jhep.2012.04.017.

    Article  PubMed  Google Scholar 

  36. 36.

    Ito S, et al. Effects of 4-phenylbutyrate therapy in a preterm infant with cholestasis and liver fibrosis. Pediatr Int. 2016;58:506–9. https://doi.org/10.1111/ped.12839.

    CAS  Article  PubMed  Google Scholar 

  37. 37.

    Hasegawa Y, et al. Intractable itch relieved by 4-phenylbutyrate therapy in patients with progressive familial intrahepatic cholestasis type 1. Orphanet J Rare Dis. 2014;9:89. https://doi.org/10.1186/1750-1172-9-89.

    Article  PubMed  PubMed Central  Google Scholar 

  38. 38.

    Wang R, et al. Compensatory role of P-glycoproteins in knockout mice lacking the bile salt export pump. Hepatology. 2009;50:948–56. https://doi.org/10.1002/hep.23089.

    CAS  Article  PubMed  Google Scholar 

  39. 39.

    Goto K, et al. Bile salt export pump gene mutations in two Japanese patients with progressive familial intrahepatic cholestasis. J Pediatr Gastroenterol Nutr. 2003;36:647–50.

    Article  PubMed  Google Scholar 

  40. 40.

    Shimizu H, et al. Living-related liver transplantation for siblings with progressive familial intrahepatic cholestasis 2, with novel genetic findings. Am J Transplant. 2011;11:394–8. https://doi.org/10.1111/j.1600-6143.2010.03397.x.

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Dr. Hiroko Fukushima, Dr. Aiko Sakai, and Dr. Hisato Suzuki for critical discussions. We also thank all the members of our laboratory for constructive comments, suggestions, and discussions. We would like to thank Enago (www.enago.jp) for the English language review. We would like to thank Editage (www.editage.jp) for English language editing.

Funding

KI is supported by JSPS KAKENHI Grant Number 17K16240. This work is supported by Japan Agency for Medical Research and Development, AMED, under Grant Number JP17ak0101036 to HH. This research is also funded by Japan Agency for Medical Research and development, AMED, to RS.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Kazuo Imagawa or Hisamitsu Hayashi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Imagawa, K., Hayashi, H., Sabu, Y. et al. Clinical phenotype and molecular analysis of a homozygous ABCB11 mutation responsible for progressive infantile cholestasis. J Hum Genet 63, 569–577 (2018). https://doi.org/10.1038/s10038-018-0431-1

Download citation

Further reading

Search

Quick links