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Abstract
Recurrent pregnancy loss is newly defined as more than two consecutive miscarriages. Recurrent pregnancy loss occurs in
<5% of total pregnancies. The cause in approximately 40–60% of recurrent pregnancy loss cases remains elusive and must
be determined. We investigated two unrelated Iranian consanguineous families with recurrent pregnancy loss. We performed
exome sequencing using DNA from a miscarriage tissue and identified a homozygous NOP14 missense variant
(c.[136C>G];[136C>G]) in both families. NOP14 is an evolutionally conserved protein among eukaryotes and is required
for 18S rRNA processing and 40S ribosome biogenesis. Interestingly, in zebrafish, homozygous mutation of nop14 (possibly
loss of function) resulting from retrovirus-mediated insertional mutagenesis led to embryonic lethality at 5 days after
fertilization, mimicking early pregnancy loss in humans. Similarly, it is known that the nop14-null yeast is inviable. These
data suggest that the homozygous NOP14 mutation is likely to cause recurrent pregnancy loss. Furthermore, this study
shows that exome sequencing is very useful to determine the etiology of unsolved recurrent pregnancy loss.

Introduction

Recurrent pregnancy loss (RPL) is a painful and frustrating
problem for reproductive-aged couples wishing to have
children. Spontaneous abortion occurs in approximately
15–25% of clinically diagnosed pregnancies [1]. RPL was
traditionally defined as three or more spontaneous con-
secutive pregnancy losses, but not including ectopic, molar
and biochemical pregnancies [2]. In 2012, RPL was newly
defined as two or more failed clinical pregnancies [1]. It has
been estimated that rates of more than two and three failed
clinical pregnancies are <5 and 1% of total pregnancies,
respectively [1].

The risk factors of RPL include maternal factors (such as
endocrine abnormalities, anatomical factors, immunological
disorders, inherited thrombophilic disorders), parental
genetic factors (such as balanced structural chromosome
rearrangements), and fetal genetic disorders [3, 4]. Parental
and fetal genetic factors were estimated to be approximately
3–5% of all RPL risk factors [5]. Recently, the causative
mutation for RPL were first discovered by exome
sequencing [6]. Subsequently, various causative variants
have been found in genes essential for embryonic devel-
opment, including genes related to ciliogenesis (KIF14 and
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IFT122) [7, 8], and RNA export mediation (GLE1) [9].
However, the cause of approximately 40–60% of RPL
remains unknown [3, 5].

Here we describe two consanguineous families with RPL
and their possible causative variant is discussed.

Materials and methods

Subjects

In this study, we recruited two unrelated consanguineous
Iranian families with RPL. Genomic DNA was extracted
from miscarried fetal tissues and blood samples of parents
and family members, collected after obtaining written
informed consent. The institutional review board of Yoko-
hama City University School of Medicine approved this
study protocol.

Whole exome sequencing and confirmatory Sanger
sequencing

Whole exome sequencing (WES) was performed using
tissues from a miscarriage of each RPL family as previously
described [10]. In brief, 3 µg genomic DNA was sheared
using the Covaris model S2 system sonicator (Covaris,
Woburn, MA, USA). The target size of sheared DNA was
200 bp. Genomic DNA was captured using the Sur-
eSelectXT Human All Exon v5 kit (Agilent Technologies,
Santa Clara, CA, USA). WES was performed on a HiSeq

2500 (Illumina, San Diego, CA, USA) with 101 bp paired-
end reads. Quality-controlled reads were mapped to the
human reference genome (UCSC hg19, NCBI build 37.1)
using NovoAlign (http://www.novocraft.com/products/
novoalign/). After removal of PCR duplication by Picard
(https://broadinstitute.github.io/picard/), variants were
called and genotyped using Genome Analysis Toolkit
(https://software.broadinstitute.org/gatk/). Called variants
were annotated using ANNOVAR (http://annovar.
openbioinformatics.org/en/latest/). Among total variants
within coding exons and intronic regions ±30 bp from
exon–intron borders, synonymous variants and common
variants with minor allele frequency (MAF) of more than
1% in our in-house exome database (Japanese population, n
= 575) or the Exome Aggregation Consortium (ExAC:
http://exac.broadinstitute.org/) [11] were removed. The
missense mutation was assessed using in silico prediction
tools: SIFT, PolyPhen2, MutaionTaster, and pRec in ExAC
[11]. The allele frequencies of candidate variants were
checked using NHLBI GO Exome Sequencing Project
(ESP: http://evs.gs.washington.edu/EVS/), our in-house 575
Japanese database, the Human Genetic Variation Browser
(HGVD: http://www.hgvd.genome.med.kyoto-u.ac.jp/)
[12], ExAC, and the Greater Middle East Variome Project
(GME Variome: http://igm.ucsd.edu/gme/index.php) [13]
which is a public database of the Middle Eastern population
including 87 Iranian subjects. In addition, we checked the
allele frequencies for candidate causative variants using 55
Iranian exome database and another set of 115 Iranian
control samples by Sanger method. Finally, we checked the
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called variants against known disease genes registered in
The Human Gene Mutation Database (HGMD: http://www.
hgmd.cf.ac.uk/ac/index.phpversion). Segregation of var-
iants was evaluated by Sanger sequencing.

Copy number variation analysis

Copy number analysis was performed using WES data with
the modified eXome Hidden Markov Model (XHMM) [14].
The results were visualized with SignalMap (Roche Nim-
bleGen, Madison, WI, USA). Among candidate copy
number variations (CNVs), we focused only on those
regions involving known disease-related genes registered in
HGMD.

Homozygosity mapping

Homozygosity mapping was performed by Homo-
zygosityMapper (http://www.homozygositymapper.org/)
using WES genotype data. The exome read counts for each
called homozygous variant were checked manually using
the Integrative Genomics Viewer. The variants were defined
as “confidential SNPs” if covered by 10 reads and more.

Results

Clinical information for two RPL families

We analyzed miscarriage tissues from each Iranian family
with RPL (Fig. 1). Families 1 and 2 had nine and two
spontaneous abortions, respectively. All spontaneous abor-
tions occurred in the first and second trimester of preg-
nancies (Fig. 1). Clinical information of parents in families
1 and 2 is summarized in Supplementary Information
(Supplementary Table 1). In families 1 and 2, RPL risk
factors (uterine malformation, thyroid abnormality, gesta-
tional diabetes, and abnormalities in blood coagulation)
were all excluded (Supplementary Table 1). G-band kar-
yotyping indicated that the mother in family 1 had 46,XX,
inv(16)(p11.2q11.2), while the father had a normal kar-
yotype. Karyotype tests were not performed on parents of
family 2 (Supplementary Table 1). In family 1, IV-1 was

born at 30 weeks’ gestation because of non-reassuring fetal
status, and died at 13 days because of respiratory distress.
After that, nine consecutive miscarriages occurred. IV-2,
showing fetal swelling, miscarried at 8 weeks’ gestation. IV-
7 with oligohydramnios miscarried at 16 weeks’ gestation.
IV-10 with fetal growth restriction and oligohydramnios
miscarried at 16 weeks’ gestation. In IV-3, IV-4, IV5, IV-6,
IV-8, and IV-9, fetal heart beats were undetected by ultra-
sound test and karyotyping of aborted samples was not
done. As materials were available only from IV-2 in family
1 and IV-1 in family 2, no further genetic information was
obtained in other aborted products. In family 2, fetal
abnormality of IV-1 and IV-2 could not be detected by
ultrasound examinations. We obtained parental samples and
miscarriage tissue from only one fetus from each family
(IV-2 in family 1 and IV-1 in family 2). No further clinical
information was available.

A homozygous NOP14 mutation was identified in
two families

WES was performed using DNA from two miscarriages
(IV-2 in family 1 and IV-1 in family 2). Read coverage of
coding regions is summarized in Supplementary Informa-
tion (Supplementary Table 2). Considering the recurrence
of miscarriages and consanguineous marriage in both
families, autosomal recessive inheritance of pathogenic
variants was first considered (Supplementary Tables 3 and
4). We checked homozygous and compound heterozygous
variants in known disease genes registered in HGMD.
However, we could not find any candidate variants in
registered genes associated with RPL. Next, we checked the
candidate genes shared by both families, and found an
identical homozygous variant in a gene encoding NOP14
nucleolar protein (NOP14, MIM611526, NM_003703.2, c.
[136C>G]; [136C>G], p.[Arg46Gly];[Arg46Gly]) in both
families. Sanger sequencing confirmed that both mis-
carriages were homozygous for this variant and that their
parents were heterozygous for the variant (Fig. 1). This
variant had been unregistered in our in-house Japanese and
Iranian exome data, ESP6500, HGVD, and GME Variome
including 87 Iranian exome data [13], but was registered in
ExAC with an extremely low MAF of 0.006% (7/118,514

Table 1 NOP14 mutation identified in two Iranian families

Gene Mutationa Amino
acid
change

Grantham
score

SIFT PolyPhen2 Mutaton
Taster

pRec dbSNP142
(MAF%)

ESP
(MAF
%)

HGVD
(MAF%)

ExAC
(MAF%)

GME
Variome

In-house 55
Iranian exomes

In-house
575
exomes

NOP14 c.136C>G p.
Arg46Gly

125 Deleterious Probably
damaging

Disease
causing

0.98 rs199574576
(0.006)

0 0 0.005906 0 0 0

ESP NHLBI GO Exome Sequencing Project, ExAC Exome Aggregation Consortium, HGVD Human Genetic Vatiation Database, MAF minor
allele frequency
a The mutation description is based on human genome reference build hg19
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alleles, all as heterozygotes) (Table 1 and Supplementary
Table 5). In addition, only one of 170 Iranian control
individual had this variant as heterozygous state; thus, the
MAF of this variant was calculated to be (1/340 alleles,
0.29%) in this ethnic population (Table 1). In addition, this
amino acid change was predicted as pathogenic by SIFT,
PolyPhen2, and MutationTaster (Table 1). This altered
amino acid residue is highly evolutionarily conserved from
zebrafish to human, and is located within the nucleolar
protein 14 domain by Pfam (http://pfam.xfam.org/) (Fig. 2).
The pRec score in ExAC, representing the probability of
intolerance of homozygous loss of function variants, was
0.98 (pathogenic if the pRec score is more than 0.9)
(Table 1) [11].

Because the two consanguineous families are of the same
ethnic background and had an identical missense variant,
we checked haplotype blocks that include the variant. As
expected, the NOP14 variant was located within the same
526 kb haplotype block which was easily confirmed as a
homozygously stretched region (chr4:
2,513,615–3,039,150) (Supplementary Table 6). No other
pathogenic CNVs involving NOP14 or genes known to be
associated with RPL or Mendelian disorders were detected.

Discussion

We enrolled two consanguineous families with RPL. In
family 1, fetal hydrops, oligohydramnios, and fetal growth
restriction occurred, but in family 2, no such anomalous
condition was recognized. Consanguinity in families 1 and
2 prompted us to investigate genetic factors, regardless of
clinically different presentation. Interestingly, we identified
a homozygous NOP14 variant possibly contributing to RPL
in two families. Identified variant (c.136C>G) with NOP14
was unregistered at least in 142 Iranian exome data (total
284 alleles) from both in-house and GME variome data-
bases. Additionally, this mutation of MAF was also rare
(0.29%) in Iranian controls. Therefore, this mutation was
denied as a common variant in Iranian population. NOP14
is evolutionally conserved among eukaryotes and is a
nuclear protein required for processing 18S rRNA and for
40S ribosome biogenesis [15]. Ribosomes are the site of
protein synthesis and consist of 79 ribosomal proteins that
form two subunits, known as small (40S) and large (60S)
subunits [16]. The 40S subunit contains the 18S rRNA and
33 ribosomal proteins [16]. NOP14 is essential for the
embryonic development of different organs and structures.
It was previously reported in zebrafish that homozygous
nop14 mutation (likely loss of function) using retroviral-
mediated insertional mutagenesis led to a lethal phenotype
with a slightly thinner body, a rudimentary liver and gut,

Fig. 2 The NOP14 variant and
its evolutionary conservation. a
Electropherograms of the
NOP14 variant (c.136C>G) in
two families. b NOP14 protein
structure and evolutionary
conservation of the variant. p.
Arg46Gly occurs within the
nucleolar protein 14 domain, as
determined by Pfam (http://pfa
m.xfam.org/protein/P78316).
(Color figure online)
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and pericardial edema at 5 days after fertilization, indicating
that nop14 is essential for early embryonic development
[17–19]. Similarly, it is known that nop14-null yeast is
inviable [20]. Therefore, NOP14 should be essential for
early developments in various species.

In addition, it is known that interaction between NOP14
and EMG1 (essential for mitotic growth 1, MIM611531,
NM_006331.7) is required for maturation of 18S rRNA and
40S ribosome biogenesis in yeast and human [15, 21, 22].
EMG1 is an essential nucleolar RNA methyltransferase in
humans. One homozygous EMG1 mutation (p.Asp86Gly)
causes a lethal autosomal recessive disorder,
Bowen–Conradi syndrome (MIM 211180), characterized by
severe pre-natal and post-natal growth restriction, profound
psychomotor restriction, bone marrow failure, and lethality
in the early infantile period [22]. EMG1 is recruited to the
nucleolus by a complex comprising NOP14, NOC4L, and
UTP14A, and plays an essential function in the develop-
ment of the 40S ribosomal subunit [21].

The mother of family 1 has a pericentric inversion, 46,
XX,inv(16)(p11.2q11.2). This inversion has been reported
as a polymorphism [23]. Karyotyping of II-3 and II-4 in
family 1 was not examined because they were already
deceased, and two pregnancy losses occurred between II-3
and II-4. Therefore, it is possible that 46,XX,inv(16)
(p11.2q11.2) may potentially contribute to the RPL between
III-1 and III-2 as well as between II-3 and II-4 in family 1,
but we could not confirm the karyotype of II-3 and II-4. To
our knowledge, four individuals with a pericentric inversion
between 16p11.2 and 16q11.2 have been reported with the
following phenotypes: a 13-year-old boy with hypogenit-
alism and his phenotypically normal father in one family
[24], and a girl with no abnormal phenotype and her healthy
father in another family [25]. However, there is no clear
evidence as to whether the female with this inversion has
PRL or not. Pericentric inversion of chromosome 16 should
be extremely rare [26]. In addition, recent studies suggest
that parents with chromosomal polymorphisms experience
higher rates of RPL compared with the normal population
[27–29]. Therefore, we cannot rule out the possibility that
the inversion might have additive effects on RPL in family
1. In family 1, nine consecutive miscarriages occurred. If
the homozygous variant is a sole factor for these excep-
tional events, the incidence should be extremely rare, [(1/4)
9= 1/262,144]. We should have examined other aborted
samples, but unfortunately no other samples were available
for further testing.

In conclusion, we identified an identical homozygous
NOP14 variant as a possible contributing factor for RPL in
two Iranian families. In genetic counseling for both famil-
ies, preimplantation genetic diagnosis might be an option to
avoid the homozygous variant. As our data are based on

only two families, further investigations are needed to
determine NOP14 functions in human development.
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