Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

An epigenome-wide methylation study of healthy individuals with or without depressive symptoms

Abstract

Major depressive disorder is a common psychiatric disorder that is thought to be triggered by both genetic and environmental factors. Depressive symptoms are an important public health problem and contribute to vulnerability to major depression. Although a substantial number of genetic and epigenetic studies have been performed to date, the detailed etiology of depression remains unclear and there are no validated biomarkers. DNA methylation is one of the major epigenetic modifications that play diverse roles in the etiology of complex diseases. In this study, we performed an epigenome-wide association study (EWAS) of DNA methylation on subjects with (N = 20) or without (N = 27) depressive symptoms in order to examine whether different levels of DNA methylation were associated with depressive tendencies. Employing methylation-array technology, a total of 363,887 methylation sites across the genomes were investigated and several candidate CpG sites associated with depressive symptoms were identified, especially annotated to genes linked to a G-protein coupled receptor protein signaling pathway. These data provide a strong impetus for validation studies using a larger cohort and support the possibility that G-protein coupled receptor protein signaling pathways are involved in the pathogenesis of depression.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Fig. 1

References

  1. 1.

    Lohoff FW. Overview of the genetics of major depressive disorder. Curr Psychiatry Rep. 2010;12:539–46.

    Article  PubMed  PubMed Central  Google Scholar 

  2. 2.

    Sullivan PF, Neale MC, Kendler KS. Genetic epidemiology of major depression: review and meta-analysis. Am J Psychiatry. 2000;157:1552–62.

    CAS  Article  PubMed  Google Scholar 

  3. 3.

    Yang L, Jia CX, Qin P. Reliability and validity of the Center for Epidemiologic Studies Depression Scale (CES-D) among suicide attempters and comparison residents in rural China. BMC Psychiatry. 2015;15:76.

    Article  PubMed  PubMed Central  Google Scholar 

  4. 4.

    World Health Organization Preventing suicide: a global imperative. WHO Library Cataloguing-in-Publication Data. 2014. ISBN: 978 92 4 156477 9.

  5. 5.

    Nock MK, Borges G. Ono Y Suicide: Global Perspectives from the WHO World Mental Health Surveys. Cambridge Medicine. 2012. ISBN-13: 978-0521765008.

  6. 6.

    Mann JJ. Neurobiology of suicidal behaviour. Nat Rev Neurosci. 2003;4:819–28.

    CAS  Article  PubMed  Google Scholar 

  7. 7.

    Muñoz RF, Cuijpers P, Smit F, Barrera AZ, Leykin Y. Prevention of major depression. Annu Rev Clin Psychol. 2010;6:181–12.

    Article  PubMed  Google Scholar 

  8. 8.

    Aarø LE, Herbeć A, Bjørngaard JH, Mańczuk M, Zatoński WA. Depressive episodes and depressive tendencies among a sample of adults in Kielce, south-eastern Poland. Ann Agric Environ Med. 2011;18:273–78.

    PubMed  Google Scholar 

  9. 9.

    Dunn EC, Brown RC, Dai Y, Rosand J, Nugent NR, Amstadter AB, et al. Genetic determinants of depression: recent findings and future directions. Harv Rev Psychiatry. 2015;23:1–18.

    Article  PubMed  PubMed Central  Google Scholar 

  10. 10.

    Okbay A, Baselmans BM, De Neve JE, Turley P, Nivard MG, Fontana MA, et al. Genetic variants associated with subjective well-being, depressive symptoms, and neuroticism identified through genome-wide analyses. Nat Genet. 2016;48:624–33.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  11. 11.

    Bird A. Perceptions of epigenetics. Nature. 2007;447:396–98.

    CAS  Article  PubMed  Google Scholar 

  12. 12.

    Portela A, Esteller M. Epigenetic modifications and human disease. Nat Biotechnol. 2010;28:1057–68.

    CAS  Article  PubMed  Google Scholar 

  13. 13.

    Klengel T, Pape J, Binder EB, Mehta D. The role of DNA methylation in stress-related psychiatric disorders. Neuropharmacology. 2014;80:115–32.

    CAS  Article  PubMed  Google Scholar 

  14. 14.

    Menke A, Binder EB. Epigenetic alterations in depression and antidepressant treatment. Dialogues Clin Neurosci. 2014;16:395–404.

    PubMed  PubMed Central  Google Scholar 

  15. 15.

    Lisoway AJ, Zai CC, Tiwari AK, Kennedy JL. DNA methylation and clinical response to antidepressant medication in major depressive disorder: A review and recommendations. Neurosci Lett. 2017.

  16. 16.

    Córdova-Palomera A, Fatjó-Vilas M, Gastó C, Navarro V, Krebs MO, Fañanás L. Genome-wide methylation study on depression: differential methylation and variable methylation in monozygotic twins. Transl Psychiatry. 2015;5:e557.

    Article  PubMed  PubMed Central  Google Scholar 

  17. 17.

    Sabunciyan S, Aryee MJ, Irizarry RA, Rongione M, Webster MJ, Kaufman WE, et al. Genome-wide DNA methylation scan in major depressive disorder. PLoS ONE. 2012;7:e34451.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. 18.

    Dempster EL, Wong CC, Lester KJ, Burrage J, Gregory AM, Mill J, et al. Genome-wide methylomic analysis of monozygotic twins discordant for adolescent depression. Biol Psychiatry. 2014;76:977–83.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  19. 19.

    Weder N, Zhang H, Jensen K, Yang BZ, Simen A, Jackowski A, et al. Child abuse, depression, and methylation in genes involved with stress, neural plasticity, and brain circuitry. J Am Acad Child Adolesc Psychiatry. 2014;53:417–24.e415.

    Article  PubMed  PubMed Central  Google Scholar 

  20. 20.

    Davies MN, Krause L, Bell JT, Gao F, Ward KJ, Wu H, et al. Hypermethylation in the ZBTB20 gene is associated with major depressive disorder. Genome Biol. 2014;15:R56.

    Article  PubMed  PubMed Central  Google Scholar 

  21. 21.

    Byrne EM, Carrillo-Roa T, Henders AK, Bowdler L, McRae AF, Heath AC, et al. Monozygotic twins affected with major depressive disorder have greater variance in methylation than their unaffected co-twin. Transl Psychiatry. 2013;3:e269.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  22. 22.

    Sheehan DV, Lecrubier Y, Sheehan KH, Amorim P, Janavs J, Weiller E, et al. The Mini-International Neuropsychiatric Interview (M.I.N.I.): the development and validation of a structured diagnostic psychiatric interview for DSM-IV and ICD-10. J Clin Psychiatry. 1998;59:22–33. quiz34–57

    PubMed  Google Scholar 

  23. 23.

    Radloff LS. The use of the Center for Epidemiologic Studies Depression Scale in adolescents and young adults. J Youth Adolesc. 1991;20:149–66.

    CAS  Article  PubMed  Google Scholar 

  24. 24.

    Shimada-Sugimoto M, Otowa T, Miyagawa T, Umekage T, Kawamura Y, Bundo M, et al. Epigenome-wide association study of DNA methylation in panic disorder. Clin Epigenetics. 2017;9:6.

    Article  PubMed  PubMed Central  Google Scholar 

  25. 25.

    Du P, Zhang X, Huang CC, Jafari N, Kibbe WA, Hou L, et al. Comparison of Beta-value and M-value methods for quantifying methylation levels by microarray analysis. BMC Bioinformatics. 2010;11:587.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. 26.

    Chen YA, Lemire M, Choufani S, Butcher DT, Grafodatskaya D, Zanke BW, et al. Discovery of cross-reactive probes and polymorphic CpGs in the Illumina Infinium HumanMethylation450 microarray. Epigenetics. 2013;8:203–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  27. 27.

    Du P, Kibbe WA, Lin SM. lumi: a pipeline for processing Illumina microarray. Bioinformatics. 2008;24:1547–48.

    CAS  Article  PubMed  Google Scholar 

  28. 28.

    Teschendorff AE, Marabita F, Lechner M, Bartlett T, Tegner J, Gomez-Cabrero D, et al. A beta-mixture quantile normalization method for correcting probe design bias in Illumina Infinium 450 k DNA methylation data. Bioinformatics. 2013;29:189–96.

    CAS  Article  PubMed  Google Scholar 

  29. 29.

    Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray expression data using empirical Bayes methods. Biostatistics. 2007;8:118–27.

    Article  PubMed  Google Scholar 

  30. 30.

    Jaffe AE, Irizarry RA. Accounting for cellular heterogeneity is critical in epigenome-wide association studies. Genome Biol. 2014;15:R31.

    Article  PubMed  PubMed Central  Google Scholar 

  31. 31.

    Houseman EA, Accomando WP, Koestler DC, Christensen BC, Marsit CJ, Nelson HH, et al. DNA methylation arrays as surrogate measures of cell mixture distribution. BMC Bioinformatics. 2012;13:86.

    Article  PubMed  PubMed Central  Google Scholar 

  32. 32.

    Dempster EL, Pidsley R, Schalkwyk LC, Owens S, Georgiades A, Kane F, et al. Disease-associated epigenetic changes in monozygotic twins discordant for schizophrenia and bipolar disorder. Hum Mol Genet. 2011;20:4786–96.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. 33.

    Assenov Y, Müller F, Lutsik P, Walter J, Lengauer T, Bock C. Comprehensive analysis of DNA methylation data with RnBeads. Nat Methods. 2014;11:1138–40.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  34. 34.

    Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium. Nat Genet. 2000;25:25–9.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. 35.

    Pan W, Kwak IY, Wei P. A Powerful Pathway-Based Adaptive Test for Genetic Association with Common or Rare Variants. Am J Hum Genet. 2015;97:86–98.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  36. 36.

    Young MD, Wakefield MJ, Smyth GK, Oshlack A. Gene ontology analysis for RNA-seq: accounting for selection bias. Genome Biol. 2010;11:R14.

    Article  PubMed  PubMed Central  Google Scholar 

  37. 37.

    Geeleher P, Hartnett L, Egan LJ, Golden A, Raja Ali RA, Seoighe C. Gene-set analysis is severely biased when applied to genome-wide methylation data. Bioinformatics. 2013;29:1851–57.

    CAS  Article  PubMed  Google Scholar 

  38. 38.

    Hannon E, Lunnon K, Schalkwyk L, Mill J. Interindividual methylomic variation across blood, cortex, and cerebellum: implications for epigenetic studies of neurological and neuropsychiatric phenotypes. Epigenetics. 2015;10:1024–32.

    Article  PubMed  PubMed Central  Google Scholar 

  39. 39.

    Melas PA, Rogdaki M, Lennartsson A, Björk K, Qi H, Witasp A, et al. Antidepressant treatment is associated with epigenetic alterations in the promoter of P11 in a genetic model of depression. Int J Neuropsychopharmacol. 2012;15:669–79.

    CAS  Article  PubMed  Google Scholar 

  40. 40.

    Le François B, Soo J, Millar AM, Daigle M, Le Guisquet AM, Leman S, et al. Chronic mild stress and antidepressant treatment alter 5-HT1A receptor expression by modifying DNA methylation of a conserved Sp4 site. Neurobiol Dis. 2015;82:332–41.

    Article  PubMed  PubMed Central  Google Scholar 

  41. 41.

    Kato M, Sasaki T, Ohya T, Nakanishi H, Nishioka H, Imamura M, et al. Physical and functional interaction of rabphilin-3A with alpha-actinin. J Biol Chem. 1996;271:31775–78.

    CAS  Article  PubMed  Google Scholar 

  42. 42.

    Kotake K, Ozaki N, Mizuta M, Sekiya S, Inagaki N, Seino S. Noc2, a putative zinc finger protein involved in exocytosis in endocrine cells. J Biol Chem. 1997;272:29407–10.

    CAS  Article  PubMed  Google Scholar 

  43. 43.

    Ogata S, Miki T, Seino S, Tamai S, Kasai H, Nemoto T. A novel function of Noc2 in agonist-induced intracellular Ca2+ increase during zymogen-granule exocytosis in pancreatic acinar cells. PLoS ONE. 2012;7:e37048.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  44. 44.

    Wagner JR, Busche S, Ge B, Kwan T, Pastinen T, Blanchette M. The relationship between DNA methylation, genetic and expression inter-individual variation in untransformed human fibroblasts. Genome Biol. 2014;15:R37.

    Article  PubMed  PubMed Central  Google Scholar 

  45. 45.

    Lou S, Lee HM, Qin H, Li JW, Gao Z, Liu X, et al. Whole-genome bisulfite sequencing of multiple individuals reveals complementary roles of promoter and gene body methylation in transcriptional regulation. Genome Biol. 2014;15:408.

    Article  PubMed  PubMed Central  Google Scholar 

  46. 46.

    Bansal G, Druey KM, Xie Z. R4 RGS proteins: regulation of G-protein signaling and beyond. Pharmacol Ther. 2007;116:473–95.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  47. 47.

    Vellano CP, Lee SE, Dudek SM, Hepler JR. RGS14 at the interface of hippocampal signaling and synaptic plasticity. Trends Pharmacol Sci. 2011;32:666–74.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  48. 48.

    Larminie C, Murdock P, Walhin JP, Duckworth M, Blumer KJ, Scheideler MA, et al. Selective expression of regulators of G-protein signaling (RGS) in the human central nervous system. Brain Res Mol Brain Res. 2004;122:24–34.

    CAS  Article  PubMed  Google Scholar 

  49. 49.

    Ray K, Kunsch C, Bonner LM, Robishaw JD. Isolation of cDNA clones encoding eight different human G protein gamma subunits, including three novel forms designated the gamma 4, gamma 10, and gamma 11 subunits. J Biol Chem. 1995;270:21765–71.

    CAS  Article  PubMed  Google Scholar 

  50. 50.

    Schreiber G, Avissar S. Regulators of G-protein-coupled receptor-G-protein coupling: antidepressants mechanism of action. Expert Rev Neurother. 2007;7:75–84.

    CAS  Article  PubMed  Google Scholar 

  51. 51.

    Pavlovicova M, Lacinova L, Dremencov E. Cellular and molecular mechanisms underlying the treatment of depression: focusing on hippocampal G-protein-coupled receptors and voltage-dependent calcium channels. Gen Physiol Biophys. 2015;34:353–66.

    CAS  PubMed  Google Scholar 

  52. 52.

    Numata S, Ishii K, Tajima A, Iga J, Kinoshita M, Watanabe S, et al. Blood diagnostic biomarkers for major depressive disorder using multiplex DNA methylation profiles: discovery and validation. Epigenetics. 2015;10:135–41.

    Article  PubMed  PubMed Central  Google Scholar 

  53. 53.

    Walker RM, Christoforou AN, McCartney DL, Morris SW, Kennedy NA, Morten P, et al. DNA methylation in a Scottish family multiply affected by bipolar disorder and major depressive disorder. Clin Epigenetics. 2016;8:5.

    Article  PubMed  PubMed Central  Google Scholar 

  54. 54.

    Walker RM, Sussmann JE, Whalley HC, Ryan NM, Porteous DJ, McIntosh AM, et al. Preliminary assessment of pre-morbid DNA methylation in individuals at high genetic risk of mood disorders. Bipolar Disord. 2016;18:410–22.

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. 55.

    Boström AE, Ciuculete DM, Attwood M, Krattinger R, Nikontovic L, Titova OE, et al. A MIR4646 associated methylation locus is hypomethylated in adolescent depression. J Affect Disord. 2017;220:117–28.

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank all the participants of this study. This study was supported by JSPS (JSPS KAKENHI Grant Number 15J04964, 26461712, and 25461723) and the Takeda Science Foundation in Japan.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Takeshi Otowa.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shimada, M., Otowa, T., Miyagawa, T. et al. An epigenome-wide methylation study of healthy individuals with or without depressive symptoms. J Hum Genet 63, 319–326 (2018). https://doi.org/10.1038/s10038-017-0382-y

Download citation

Further reading

Search

Quick links