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Abstract

Single-nucleotide polymorphisms (SNPs) in the promoter region of long intergenic non-coding RNAs (lincRNAs) could
play a regulatory role in its expression level and then get involved in colorectal cancer (CRC). Thus, we conducted a two-
stage case—control study to investigate the associations of Tag SNPs within the promoter region of selected lincRNAs from
microarray data with risk of CRC. A total of 320 cases and 319 controls were recruited in the test set to explore the
associations between 16 SNPs with no deviations from Hardy—Weinberg equilibrium (HWE) and risk of CRC. Furthermore,
501 cases and 538 controls were included as the validation set to confirm the significant associations. RP11-3N2.1
rs13230517 polymorphism was found to be negatively associated with CRC in both test set (AA vs. GG, OR =0.68, 95%
CI =0.48-0.96) and validation set (AA vs. GG, OR =0.76, 95% CI = 0.59-0.98). Pooled analysis showed that individuals
with GA/AA genotypes had a significantly decreased risk of CRC when compared with those carrying GG genotype (OR =
0.74, 95% CI = 0.60-0.90) in the combined set. The crossover analysis revealed that rs13230517 GA/AA carriers had a
decreased risk of CRC than GG carriers among non-drinkers in both test and combined set. However, no gene-environment
multiplicative interactions were found on risk of CRC. Our findings suggest that rs13230517 polymorphism might

participate in the pathogenesis of CRC and have the potential to be a biomarker for predicting the risk of CRC.

Introduction

Long non-coding RNAs (IncRNAs) represent a subgroup of
non-coding RNAs with more than 200 nucleotides in length
[1]. LncRNAs were previously believed to be transcriptional
noise, but accumulating evidence has suggested that they
play a regulatory role in a wide range of biological processes
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[2]. Therefore, the dysfunctions of IncRNAs are associated
with various human diseases, including cancers [3-5].

Long intergenic non-coding RNAs (lincRNAs) that
located in the interval between protein-coding genes are
emerging as key regulators of diverse cellular processes [6].
Increasing studies have demonstrated that lincRNAs are
regulatory elements in both oncogenic and tumor suppres-
sive pathways [7—-10]. The expression of lincRNAs can be
affected by inherent genetic factors such as single-
nucleotide polymorphisms (SNPs) in the promoter region,
which are likely to disrupt transcription factor binding sites
(TFBS). For example, a study reported that a functional
SNP, rs9442809, in the promoter region of lincRNA named
papillary thyroid carcinoma susceptibility candidate 3
(PTCSC3) predisposeed to papillary thyroid carcinoma
(PTC) through dysregulating the expression of PTCSC3
by suppressing the binding activity of both C/EBPa and
C/EBPp [11].

To date, genome-wide association studies (GWAS) have
successfully identified a large number of SNPs that are
associated with CRC [12-15], whereas a number of SNPs
located in non-coding regions still have not been well
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explained. Thus, further characterization of IncRNA related
SNPs may open a new avenue for functional analysis of the
susceptibility of CRC. Moreover, the database developed by
National Human Genome Research Institute (NHGRI) in
USA (http://www.ebi.ac.uk/gwas/) indicated that disease-
associated SNPs are largely located in the intergenic
regions. We hypothesize that SNPs located in the promoter
region of potentially related lincRNAs may contribute to the
occurrence of CRC. To test this hypothesis, we focused on
10 lincRNAs (CTD-2147F2.1, RP11-384P7.7, RP11-
3N2.1, RP3-525N10.2, RP11-89K21.1, CCATI,
AKO055145, RP11-58A12.3, UCA1 and AY343891) with
top fold-change value based on IncRNA microarray data
from our previous study [16], to assess whether promoter
SNPs in the lincRNAs were associated with risk of CRC.

In this study, we conducted a two-stage case—control
study to identify possible biomarkers for predicting the risk
of CRC. Furthermore, we evaluated gene by environment
(GxE) interactions between the significant SNPs and
smoking (or drinking) in relation to risk of CRC.

Materials and methods
Subjects

The source population was previously enrolled from Jiashan
County, which had been approved by the Medical Ethical
Committee of Zhejiang University School of Medicine. The
recruitment details have been described previously [17].
Briefly, CRC cases were identified from local Cancer Sur-
veillance and Registry System, mentally competent to
complete an interview and with no previous history of
familial adenomatous polyposis, ulcerative colitis, or
Crohn’s disease. Healthy controls were recruited in parallel
from the same population and were matched to cases by age
(%5 years), gender and residential area. All participants were
unrelated ethnic Han Chinese. Ultimately, a total of 821
cases and 857 controls were included in the two-stage
case—control study (test set: 320 cases and 319 controls;
validation set: 501 cases and 538 controls).

Data collection

A face-to-face interview was conducted using a structured
questionnaire including demographic characteristics (e.g.,
age, gender, and body mass index), family history of cancer
and life style (e.g., smoking and drinking). The definition of
smokers was those who smoked at least 1 cigarette per day
for more than 1 year, or more than 300 cigarettes in less
than 3 months. An alcohol drinker was defined as someone
who consumed at least one drink per day for more than
3 months. Subsequently, ~5 ml venous blood was collected
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from each participant and stored at —80 °C for the pre-
paration of DNA isolation. This study was approved by the
Medical Ethical Committee of Zhejiang University School
of Medicine.

SNP selection and genotyping

SNPs located in the promoter region (2000bp upstream
region of the transcription start site) of each lincRNA
and their minor allele frequency (MAF) value within the
Chinese Han in Beijing (CHB) populations were extracted
by utilizing the 1000 Genomes data (http://www.
1000genomes.org/). Tag SNPs representing SNPs with
pairwise correlation 2> 0.8 and MAF > 0.1 were selected.

Genomic DNA was isolated from peripheral blood
samples using the modified salting-out procedure [18].
Genotyping for all SNPs was performed by the MassAR-
RAY molecular weight array analysis system (BioMiao
Biological Technology Co., Beijing, China).

Statistical analysis

Student’s r-test and Pearson y*-test were applied to evaluate
the differences of continuous and categorical variables
between cases and controls, respectively. Hardy—Weinberg
equilibrium (HWE) for all SNPs was evaluated by
goodness-of-fit y>-test. The associations between SNPs and
CRC were estimated by calculating the adjusted odds
ratios (ORs) and corresponding 95% confidence intervals
(95% ClIs) in multivariate logistic regression model. The
Benjamini—-Hochberg multiple testing correction method
was applied, while after the P value correction, no or only
few significant SNPs remained. Therefore, the uncorrected
P values were used for the selection of significant SNPs
between cases and controls. Pooled ORs in the combined
set were estimated by the method of random-effect model
when the value of I>> 50%, otherwise a fixed-effect model
was used. Crossover analysis was used to explore the effect
of gene factor only, environment factor only, and both gene
and environment factors on CRC. Multiplicative model was
conducted to evaluate the influence of gene—environment
interactions on risk of CRC. Statistical analyses were
performed using the SAS software, version 9.2 (SAS Inc.,
Cary, NC, USA) and Stata software, version 11.2
(StataCorp LP, TX, USA). P values < 0.05 were considered
significant.

Results

Of the 30,586 IncRNAs in the previous genome-wide
expression profile, which was performed by using Arraystar
Human LncRNA Microarray v3.0 in six paired CRC and
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adjacent normal tissues, 556 IncRNAs were found to be
significantly upregulated, and 1040 IncRNAs were found
to be downregulated in tumor tissues. There were 795
lincRNAs in the abnormally expressed IncRNAs, and the
lincRNAs with top 10 fold-change value and corresponding
—log;y P value were presented in Fig. 1.

There were no significant differences in demographic
characteristics and life-style factors between cases and
controls in both test and validation set. However, CRC
patients were more likely to have family history of cancer
than controls (P <0.001 in the test set; P =0.039 in the
validation set) (Table 1).

Nineteen SNPs in the ten lincRNAs were selected and
genotyped. The call rate for each SNP was >98%. The
chromosome region of lincRNA, ID (rs number) of candi-
date SNPs and allele (major/minor) frequency were listed in
Table 2. Moreover, RP11-384P7.7 rs146223339, RP3-
525N10.2 152256337, and RP11-58A12.3 15147827294
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Fig. 1 Top 10 aberrantly expression lincRNAs with their fold-change
and —log; P value

that deviated from HWE significantly among controls in the
test set were excluded in further analysis.

As shown in Table 3, RP11-3N2.1 rs13230517 and
RP11-89K21.1 rs741813 polymorphisms were observed to
be significantly associated with risk of CRC adjusted for
age, gender, BMI, family history of cancer, smoking, and
drinking. By additive model, RP11-89K21.1 rs741813 had
an adjusted OR of 1.90 (95% CI: 1.19-3.04). By dominant
model, we found that individuals with RP11-3N2.1
rs13230517 GA/AA genotypes had a reduced risk of CRC
(OR=0.70, 95% CI=0.51-0.98) and RP11-89K21.1
1s741813 AT/TT carriers had an increased risk of CRC
(OR =1.86, 95% CI=1.14-3.02). In the validation set,
RP11-3N2.1 rs13230517 polymorphism kept to have a
significantly decreased risk of CRC by dominant model
(OR =0.76, 95% CI =0.59-0.98). However, no statistical
evidence of associations between RP11-89K21.1 rs741813
and CRC were observed (Table 4). Pooled analysis revealed
that individuals RP11-3N2.1 rs13230517 variants were less
susceptible to CRC by additive model (OR =0.85, 95%
CI=0.74-0.97) and dominant model (OR =0.74, 95%
CI = 0.60-0.90) in the combined set (Table 4).

Moreover, crossover analysis and gene—environment
interactions were conducted for RP11-3N2.1 rs13230517.
As shown in Table 5, no single effect of smoking and its
combined effect with RP11-3N2.1 rs13230517 poly-
morphism on risk of CRC were observed. In addition,
non-drinkers with GA/AA genotypes had a decreased
risk of CRC when compared to those with GG genotype
(OR=0.68, 95% CI=0.47-0.99) in the test set, and
similar result was continued in the combined set
(OR =0.74, 95% CI =0.59-0.93). However, no evidence

Table 1 Distributions of basic

L. Characteristics Test set Validation set
characteristics of colorectal
cancer cases and controls Cases Controls P value Cases Controls P value
N=320 N=319 N=501 N=538
Age (years), mean +s.d. 65.76 % 65.30+£9.76 0.565 62.73 £ 62.26+£10.53 0.481
10.23 10.99
Male, N (%) 168 (52.50) 157 (49.22) 0.406 262 (52.30) 285 (52.97) 0.827
BMI (kg/m?), N (%)
<18.5 27 (8.44) 17 (5.33) 0.080 47 (9.38) 46 (8.55) 0.932
18.5-23.9 216 (67.50) 201 (63.01) 339 (67.66) 363 (67.47)
24-27.9 61 (19.06) 85 (26.65) 99 (19.76) 113 (21.00)
>28 16 (5.00) 16 (5.02) 16 (3.19) 16 (2.97)
Family history of cancer, 63 (19.69) 30 (9.40) <0.001* 107 (21.36) 88 (16.36) 0.039%*
N (%)
Smoking, N (%) 112 (35.00) 99 (31.03) 0.286 183 (36.53) 206 (38.29) 0.837
Drinking, N (%) 72 (22.50) 68 (21.32) 0.639 138 (27.54) 145 (26.95) 0.758

Subjects with missing information were not included in the analysis

BMI body mass index
*P<0.05
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:;‘;i;yg:; ;’1‘\‘;}: information g T 5 RNA Location  SNP ID Allele (major/minor) ~ MAF* Py’
1 CTD-2147F2.1  15q26.2 1579232032 G/C 0.099  0.945
2 RP11-384P7.7  9pl3.3 15855432 CIT 0210 0722
3 15146223339  TAAAAA/DEL 0.088  0.013%
4 151856195 A/G 0448 0478
5 RP11-3N2.1 7q11.21 152861508 A/G 0.169  0.650
6 1513230517 G/IA 0405  0.258
7 RP3-525N102  6ql2 152256337 G/T 0273 0.018*
8 159363960 CIT 0.122 0491
9 RPI1-89K21.1  2p21 151561226 T/IC 0387 0313
10 rs741813 A/T 0052  0.845
11 CCATI 8q24.21 1516902043 A/G 0427  0.136
12 AK055145 13q34 15930346 G/IA 0.145 0278
13 159324260 CIT 0340  0.280
14 15143869199  DEL/CGGA 0.195  0.298
15 1572638445 CIT 0.199  0.220
16 RP11-58A123  9pll.2 15147827294  T/A 0.176  <0.001*
17 UCAL 19p13.12 157255437 CIT 0216  0.150
18 1144066565  DEL/CAA 0217  0.169
19 AY343891 2q14.1 15146443875  C/T 0.086  0.655

MAF minor allele frequency, HWE Hardy—Weinberg equilibrium

*P<0.05

“MAF was detected among controls in the test set

PHWE test was carried out among controls in the test set

of multiplicative interactions between smoking or drinking
and RP11-3N2.1 rs13230517 polymorphism on CRC was
observed.

Discussion

CRC is the third most common cancer and the fourth leading
cause of cancer death worldwide [19]. The prevalence of
CRC is increasing in China, but the cause of its epidemic is
complicated and not entirely clear, which poses a challenge
to its prevention and control. In the current study, we found
that a novel SNP rs13230517, which is in the promoter
region of lincRNA RP11-3N2.1 is associated with CRC.
Recently, IncRNAs were rapidly recognized as new
players in tumorigenesis and tumor suppressor. They
could regulate target genes by IncRNA-miRNA and
IncRNA-protein interactions, or acting as miRNA pre-
cursors [20]. As a class of IncRNAs, accumulating lincR-
NAs were reported to participate in the complicated process
of colorectal carcinogenesis. Zhai et al. [21] suggested that
the expression level of lincRNA-p21 was significantly
lower in CRC tumor tissues than paired normal tissues, and
lincRNA-p21 level was linked to CRC stage, vascular
invasion and tumor invasion. Among the selected 10
lincRNAs from microarray data, CCAT1 was proved to

SPRINGER NATURE

have promising diagnostic value in detecting CRC, because
its expression was remarkably elevated in colorectal tumor
tissues and adenomatous polyp tissues [22-24]. Besides,
Han et al. [25] reported that UCA1l could affect the
proliferation, apoptosis and cell cycle progression of
CRC cells.

RP11-3N2.1 was found to be downregulated in CRC
tumor tissues relative to paired normal tissues and its fold-
change value was ranked third based on the microarray data.
It is a noncoding transcript of the encoding gene zinc-finger
protein 727 (ZNF727). ZNF family has been recognized as
potential B-cell epitopes eliciting the production of auto-
antibodies in cancer [26]. The ZNF panel (ZNF346,
ZNF638, ZNF700, and ZNF768) was reported to be over-
expressed at the mRNA level in at least 20% of investigated
tumors when compared to adjacent normal colorectal
mucosa [27]. In addition, CRC patients with higher
expression of ZNF545 were found to have favorable
relapse-free survival than those with lower ZNF545 levels
[28]. However, there are no studies on the functional
similarity or association between RP11-3N2.1 and ZNF
family to date. In a genome-wide analysis of IncRNA
expression from the publicly available cancer microarray
database Gene Expression Omnibus (GEO) under the
accession number GSE95423, RP11-3N2.1 (probe
name: ASHGASP016427 in Arraystar Human LncRNA
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Table 3 Associations between individual SNPs and colorectal cancer in test set
SNP Wild type Variant Variant Additive model Dominant model Recessive model
(Neases! Neontrols)  heterozygote  homozygote
(Neases/Neontrols)  (Neases/Neontrols)
OR (95% CI)* P value OR (95% CI)* P value OR (95% CI)* P value
rs79232032  240/259 78/57 1/3 1.35(0.93, 1.96) 0.119 1.45 (0.98, 2.14) 0.064 0.28 (0.03, 2.83) 0.281
rs855432 206/199 96/103 16/15 0.95 (0.72, 1.25) 0.688  0.93 (0.66, 1.30) 0.657 0.97 (0.46, 2.04) 0.926
rs1856195  90/93 160/162 69/60 1.09 (0.87, 1.37) 0.465 1.09 (0.77, 1.56) 0.624 1.16 (0.77, 1.73) 0.477
rs2861508  219/219 91/92 10/8 1.00 (0.74, 1.35) 0.998  0.98 (0.69, 1.38) 0.889  1.22 (0.45, 3.25) 0.698
rs13230517 132/107 141/162 47/47 0.84 (0.67, 1.06) 0.138  0.70 (0.51, 0.98) 0.037° 0.99 (0.64, 1.55) 0.975
rs9363960  239/245 76/65 5/6 1.13 (0.81, 1.59) 0.475 1.20 (0.83, 1.75) 0.339  0.72 (0.21, 2.46) 0.600
rs1561226  114/114 161/158 45/43 1.07 (0.84, 1.36) 0.579 1.07 (0.76, 1.49) 0.712 1.14 (0.72, 1.82) 0.573
rs741813 2551277 52/30 31 1.90 (1.19, 3.04) 0.008" 1.86 (1.14,3.02) 0.013° — —
rs16902043  89/96 129/122 64/56 1.09 (0.86, 1.37) 0.477 1.13 (0.79, 1.62) 0.505 1.12 (0.73, 1.69) 0.166
rs930346 239/231 71/73 5/9 0.88 (0.63, 1.22) 0.427 0.92 (0.63, 1.34) 0.675 0.45 (0.14, 1.40) 0.675
rs9324260  143/143 146/134 30/41 0.94 (0.74, 1.20) 0.637  1.00 (0.72, 1.38) 0.989 0.78 (0.47, 1.29) 0.330
rs143869199 207/209 104/94 9/15 0.98 (0.74, 1.31) 0.929 1.05 (0.75, 1.46) 0.796  0.68 (0.29, 1.59) 0.368
rs72638445  206/207 105/94 9/16 0.97 (0.73, 1.29) 0.838 1.04 (0.74, 1.45) 0.840 0.63 (0.27, 1.47) 0.282
rs7255437  196/198 109/98 14/19 0.99 (0.75, 1.29) 0.922 1.07 (0.77, 1.49) 0.677 0.65 (0.31, 1.35) 0.243
rs144066565 194/198 110/99 14/19 0.99 (0.76, 1.30) 0.941 1.08 (0.77, 1.50) 0.658 0.65 (0.31, 1.35) 0.246
rs146443875 274/267 44/49 1/3 0.86 (0.57, 1.31) 0.486 0.88 (0.56, 1.37) 0.559  0.44 (0.05, 4.39) 0.487

Unsuccessfully detected genotyping information was not included in the analysis

*P<0.05

#Adjusted for age, gender, BMI, family history of cancer, smoking, and drinking

Bolded results indicated significant associations with colorectal cancer risk

Microarray V3.0) was found to be downregulated (fold-
change = 0.487, P=0.00706) in CRC tissues with liver
metastasis compared with those without metastasis, sug-
gesting that RP11-3N2.1 might be implicated in promoting
metastasis of CRC. RP11-3N2.1 is an uncharacterized RNA
yet to be discovered in previous studies and limited infor-
mation has been documented. RP11-3N2.1 is a type of
lincRNA with a length of 748 bp located in chr7q11.21. As
previous reports described that IncRNA could decrease the
expression of miRNA target genes by inactivating miRNAs
[29]. Tt was computationally predicted by DIANA-LncBase
(www.microrna.gr/LncBase) that miRNA-135b may target
on RP11-3N2.1. He et al. [30] indicated that miRNA-135b
contributed to anti-apoptosis and chemoresistance in CRC.
Besides, several lines of evidence proved that miRNA-135b
was related with prognosis of CRC [31-33]. On the other
hand, IncRNAs can also act as co-activators of transcription
factors by interacting with RNA binding proteins (RBPs)
and the interaction finally alters the localization and activity
of the proteins [34]. The prediction tool starBase v2.0
(http://starbase.sysu.edu.cn/) presented that the RBPs might
be FUS or SFRS1. However, the functional mechanisms of
RP11-3N2.1 need to be further explored and confirmed at
molecular level based on the above findings.

Currently, supporting data indicated that a number of
disease-associated SNPs reside in lincRNAs [35]. As the
binding of a transcription factor (TF) to promoter region can
result in local structural modification, making the removal
of a preexisting component or recruitment of a new com-
ponent [36], SNPs located in the promoter region are
regarded as functional SNPs to influence gene expression
and subsequently disease involvement. In our study, we
detected that a promising SNP RP11-3N2.1 rs13230517
was implicated in CRC. This SNP is about 1842bp
upstream of RP11-3N2.1 and was selected as one of the Tag
SNPs by candidate SNP strategy. It is plausible that RP11-
3N2.1 rs13230517 mutant may affect the process of tran-
scription by binding with a certain TF, and the abnormal
transcription inhibited the expression of RP11-3N2.1.
According to HaploReg v4.1 (http://compbio.mit.edu/Ha
ploReg), rs13230517 polymorphism has been predicted to
alter seven regulatory motifs, including TFII-I, T3R,
MAZR, and so on. Furthermore, the SNP is detected within
a region with promoter histone markers (H3K4m3) in
colonic and rectal mucosa. However, the lack of experi-
mental data requires further investigation into the functional
relevance of rs13230517 to be performed, to conclude the
nature of the conferred phenotypic effects.
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Table 4 Associations of rs13230517 and rs741813 with colorectal cancer in the validation and combined sets

SNP Wild type Variant Variant Additive model Dominant model Recessive model
(Neases! Neontrols) heterozygote  homozygote
(Neases/Neontrots) (Neases/Neontrols)
OR (95% CI)* P value OR (95% CI)* P value OR (95% CI)* P value
rs13230517
Validation set 198/180 2197257 78197 0.85 (0.71, 1.01) 0.065 0.76 (0.59, 0.98) 0.035* 0.87 (0.64, 1.18) 0.379
Combined set 330/287 360/419 125/144 0.85 (0.74, 0.97) 0.019* 0.74 (0.60, 0.90) 0.003* 0.91 (0.71, 1.17) 0.448
rs741813
Validation set 425/465 64/67 11/5 1.19 (0.87, 1.61) 0.272 1.14 (0.80, 1.62) 0.474 0.88 (0.63, 1.23) 0.450
Combined set 680/742 116/97 14/6 1.45 (0.92, 2.29) 0.107 1.41 (0.88, 2.28) 0.155 — —

Unsuccessfully detected genotyping information was not included in the analysis
*P<0.05
*Adjusted for age, gender, BMI, family history of cancer, smoking, and drinking

Bolded results indicated significant associations with colorectal cancer risk

Table 5 Gene—environment

. . Lifestyle Genotype Test set
interactions between

Validation set Combined set

rs13230517 and smoking and OR (95% CI) Pineraction OR (95% CI)  Pineraction OR (95% CI) Pinteraction
alcohol drinking on CRC
Smoking®
No GG 1.00 0.442 1.00 0.223 1.00 0.156
No GA/AA  0.77 (0.52, 1.15) 0.85(0.61, 1.17) 0.82 (0.64, 1.05)
Yes GG 1.38 (0.72, 2.64) 1.06 (0.65, 1.74) 1.17 (0.79, 1.73)
Yes GA/AA  0.81 (0.45, 1.44) 0.66 (0.42, 1.03) 0.71 (0.50, 1.02)
Drinking®
No GG 1.00 0.699 1.00 0.750 1.00 0.975
No GA/AA  0.68 (0.47, 0.99)* 0.78 (0.58, 1.05) 0.74 (0.59, 0.93)*
Yes GG 0.86 (0.44, 1.69) 1.17 (0.71, 1.92) 1.05 (0.70, 1.57)
Yes GA/AA  0.69 (0.38, 1.24) 0.83 (0.54, 1.26) 0.78 (0.55, 1.10)
*P <0.05

*Adjusted for age, gender, BMI, family history of cancer, and drinking

PAdjusted for age, gender, BMI, family history of cancer, and smoking

As for the environmental factors, we focused on the
factors of CRC related life styles (smoking and drinking),
which have been identified and established in epidemiolo-
gical studies [37, 38]. Crossover analysis suggested that
RP11-3N2.1 rs13230517 polymorphism was negatively
associated with CRC among non-drinkers, which proved
the protective role of rs13230517 polymorphism in CRC as
well. Even though other associations did not reach statistical
significance, their directions (positive/negative) were in
accordance with previous studies, such as the deleterious
role of smoking and drinking on CRC. Nevertheless, we
found no multiplicative gene—environment interactions in
related to CRC. Accordingly, the sample size still needs to
be enlarged for exploring the interactions.

Although the findings from our genetic association
analysis suggest a link between RP11-3N2.1 rs13230517
polymorphism and CRC, several limitations of our study
should be noted. Firstly, the participants in the case—control
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study were ethnic Han Chinese living in a small rural
county, confining its representativeness for Chinese popu-
lation. Besides, because of the relatively small sample size
of our study, we might not be able to detect weak genetic-
disease associations and gene—environment interactions.
However, it is less of concern as we combined the results
from the test set and validation set to cover the shortage.
Thirdly, due to the lack of staging information of CRC
patients in the current study, we cannot evaluate the asso-
ciation between RP11-3N2.1 rs13230517 polymorphism
and clinical features among CRC patients. Finally, no
functional data were achieved for the novel SNP, so the
mechanism at the molecular level remains largely unknown
and needs to be elucidated.

In conclusion, the present study first provides the evi-
dence of the association between RP11-3N2.1 rs13230517
polymorphism and colorectal carcinogenesis in a Han
Chinese population. The findings might provide alternative
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biomarkers for the risk prediction, prevention and early
diagnosis of CRC. Additional epidemiological studies with
large sample size and further mechanistic investigations into
the function of the biomarker are warranted to improve our
understanding of the role in colorectal tumorigenesis more
comprehensively.
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