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ABSTRACT: Human social behavior develops under the influence
of genetic, environmental, and cultural factors. Social cognition
comprises our ability to understand and respond appropriately to
other people’s social approaches or responses. The concept embraces
self-knowledge and theory of mind, or the ability to think about
emotions and behavior from the perspective of another person. The
neuropeptides oxytocin (OT) and vasopressin (AVP) are now known
to play an important role, affecting individual differences in parenting
behavior, social recognition, and affiliative behaviors. The processes
of social cognition are also supported by reward circuitry, under-
pinned by the dopaminergic neurotransmitter system. Reward pro-
cesses build social relationships, in parenting and pair-bonding, and
influence social interactions that require trust, or display altruism.
The impact of emotional regulation upon social behavior, including
mood and anxiety, is also mediated through the serotonergic system.
Variation in activity of serotonergic networks in the brain influences
emotional responsivity, including subjective feelings, physiological
responses, emotional expressions, and the tendency to become en-
gaged in action as a consequence of a feeling state. Genetic variation
in the receptors associated with OT, AVP, dopamine, and serotonin
has been intensively studied in humans and animal models. Recent
findings are building an increasingly coherent picture of regulatory
mechanisms. (Pediatr Res 69: 85R–91R, 2011)

We, as humans, usually possess the ability to rapidly
process social information about the thoughts and ac-

tions of other people and to interact in complex ways with
them. Social cognition comprises a set of skills that enable us
to understand thoughts and intentions that may differ from our
own experiences or predispositions. As we develop through
early childhood, we are increasingly capable of taking another
person’s perspective, and we develop self-knowledge. We can
accurately predict how another person might behave in the
future, from our social perceptions and experiences. We be-
come capable of learning what motivates other people in their
social interactions, even if these do not directly involve us. All
these skills map onto schemas that are encoded in an associa-
tive network in memory and is orchestrated to ensure normal,
skilled social adaptation (1).

The process by which we acquire social cognitive compe-
tence evolves with development and is modified in response to
the environment. To begin with, infants cannot easily differ-
entiate between themselves and other people, but they rapidly
become aware that their actions have an impact on the phys-
ical and social world around them. In due course, they develop

social understanding, language, and imitation. Eventually,
most of us acquire the ability to “read the mind” of others. By
this, we mean that it becomes possible for us to understand
why other people behave the way they do and to respond
appropriately to them in social situations. If we have not
acquired this ability by adolescence, we may find ourselves
becoming increasingly socially isolated and avoided by others
in other than the most superficial social encounters.

A fully functioning social brain entails the development of
a coordinated network of human cortical brain regions. These
include the dorsomedial and dorsolateral prefrontal cortices,
the paracingulate cortex, and the right and left temporoparietal
junctions (2). The amygdala is also central to the neural
circuitry underlying social cognition. It plays a key role in
systems that associate social stimuli (auditory, visual, and
olfactory) with value, it directs our unconscious responses
during social encounters, and it arouses us to stimuli of
relevance in our environment. The amygdala’s reciprocal
connections with the primary visual processing area in the
inferior occipital gyrus facilitate the rapid analysis of socially
salient information (3). Neural circuits of the social brain are
activated by facial emotions, tone of voice, or olfactory cues
and include the hippocampus, thus are linked to recognition
memory. This complex network allows us to contextualize our
perceptions and hence find answers to questions such as Do I
know this person? Do I like him? Do I trust him?

In a recent review on the challenge of translation in social
neuroscience, Insel (4) outlined the considerable progress
being made in our understanding of how social information is
processed by the brain. He points out that, despite our knowl-
edge of sensory processing at the level of auditory, visual, and
other perceptual cues, and our discovery of social behaviors
such as affiliation in ever more simple organisms [e.g. Cae-
norhabditis elegans (5)], we have learned relatively little
about how quite simple molecular mechanisms are translated
into human social behavior. One promising path of research
concerns the role played by neuropeptides and their receptors,
of which around 100 have been described in the human brain,
most of which are released from the hypothalamus. Our focus
here is on the nonapeptides, oxytocin (OT) and vasopressin
(AVP), that have been the subject of fascinating and important
investigations in relation to their role in modulating social
behavior for two decades (6).
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The Molecular Basis of Social Cognition: Role of OT
and AVP

OT and AVP have both central and peripheral actions that
have been implicated in the molecular basis of social cogni-
tion in animal models. Increasingly, a role for these neuro-
peptides in regulating human social cognition has been sug-
gested. The OT and AVP proteins differ in structure by just
two amino acids. The genes encoding the two proteins both
occur on chromosome 20 and are thought to have arisen from
a gene duplication event; the ancestral gene is estimated to be
about 500 million years old (7).

The presence of nonapeptides similar to OT and AVP has
been described in diverse species, from birds to mammals.
Their relative similarity suggests that they have been con-
served during evolution. Both molecules have widespread
receptor-mediated effects on behavior and physiology (4). In
mammals, estrogens modulate both the synthesis of and re-
ceptors for oxytocin. Androgens act similarly on AVP (al-
though some species-specific differences exist). Accordingly,
to a degree, these neuropeptides influence sexually dimorphic
social behaviors (8).

Oxytocin

OT has both peripheral and central actions. Peripherally,
OT acts as a hormone that has a critical role in parturition and
lactation, whereas centrally, it acts as a neuromodulator via a
G-coupled protein receptor. It is produced from two sources.
First, from the magnocellular neurosecretory cells located in
the supraoptic and paraventricular nuclei of the hypothalamus.
Magnocellular neurons project exclusively to the posterior
pituitary. Recent evidence suggests that OT is released into the
brain from its dendrites into extracellular space, and this more
generalized release mechanism can be regulated independently of
the pituitary system (9). Formerly, the paraventricular neurons
were thought to play the major role in the behavioral functions of
the neuropeptide; there are centrally acting projections to limbic-
system (hippocampus, amygdala, striatum, hypothalamus, and
nucleus accumbens) and mid- and hind-brain nuclei (10). Periph-
eral OT does not cross the blood-brain barrier easily, although it
is observed in human cerebrospinal fluid (CSF) just minutes after
intranasal administration (11).

OT has been given experimentally to humans both by i.v.
injection and by nasal administration. It seems to influence a
variety of social and behavioral responses, as witnessed by a
variety of studies in recent years (12). These effects include a)
anxiolysis by decreasing peripheral cortisol and altering cor-
responding behavior; b) alterations in parenting behavior (13);
c) increases in prosocial behavior as measured by trust, gen-
erosity, altruism, and betrayal aversion, in behavioral and/or
functional MRI (fMRI) studies (14–16); d) alterations in face
perception, based on fMRI studies highlighting differential
amygdala activity; e) changed eye-movement patterns with
more fixation to the eyes; f) improved “mind reading” or
mentalization (probably linked with more fixation to the eyes)
(17), particularly in disorders like autism; and g) alterations in
social memory.

OT, Social Recognition, and the Response to Threat

The action of OT in increasing trust and prosocial behavior
is apparently mediated, at least in part, through influence on
general social appraisal including perception of interpersonal
threat. A key player in the detection of relevant stimuli in our
environment, including our response to apparent threat, is the
amygdala, which is activated by excitatory pathways that
connect the central amygdala nucleus to the midbrain, and
thence to the autonomic nervous system. Excessive amygdala
activation during social encounters raises anxiety, leading to
social withdrawal (18). In humans, such activation is potently
increased by direct eye contact (19,20). There is evidence that
exogenous OT acts to reduce activation of the amygdala,
midbrain regions, and the dorsal striatum, postulated to be as
a consequence of influence on reflexive visual attention mech-
anisms (12), reducing uncertainty regarding the predictive
value of social stimuli (21) or increasing the perceived sa-
lience of social cues (22). This reduction in the physiological
and psychological reaction to threat accounts, at least in part,
for the increase in prosocial behavior.

OT and Autism

Autism is an early neurodevelopmental disorder presenting
in childhood, with deficits in social cognition and communi-
cation and rigid and repetitive patterns of behavior central to
the presentation. Genetic variations in genes related to OT and
its receptor have been variably reported as being associated
with autism susceptibility (see below). Plasma levels of OT
are low in autistic individuals (23) and tend to normalize with
the administration of exogenous OT (24). The use of exoge-
nously administered OT to treat autistic behaviors is a subject of
growing interest. A reduction in repetitive behaviors was reported
by Hollander et al. (25) after OT infusion, and this pioneering
study was followed by others, which claimed that it increased
retention of social cognition (26) and empathy (27).

Autism affects four times as many males as females. Male
vulnerability to this quintessential disorder of social cognition
has been attributed to testosterone exposure, especially in
utero, but this controversial theory has not been proven (28).
Estrogen affects the synthesis of OT (29) and enhances activ-
ity of the OT receptor (OTR) (7). Thus, it is possible that
higher levels of OT might be protective of females, whatever
independent predisposing factors lead to autism risk. Accord-
ingly, hypothetically, in females, neuropeptidergic regulation
of neural circuitry influencing social cognition could prevent
autistic behavior being fully expressed phenotypically.

OT and Genetic Influences on Regulation

Only a single type of OTR has been identified (30) and it is
located at chromosome 3p26.2. It can be found in many
different tissues in the body, but its distribution is highly
variable, both within and between species. The potential for
environmental influences on the functioning of OT and related
proteins exists. Regions of high GC content (CpG islands)
upstream of the transcription start site of the OTR gene
suggest that it may be susceptible to regulation through dif-
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ferential methylation, which could potentially influence the
pattern of tissue expression. By this means, lifelong differences in
the sensitivity of the receptor could be subject to epigenetic
influences, consequent upon environmental circumstances of up-
bringing (31). By analogy, receptor expression in the hypotha-
lamic-pituitary-adrenal (HPA) axis may be reduced by adversity,
such as the quality of early maternal care (32).

Variations in a specific polymorphism of the OTR gene
(rs53576) have been linked to variations in behavioral style
among typical individuals, including empathy and stress reactiv-
ity (33), loneliness (34), prosocial temperament (35), and mater-
nal sensitivity to their offspring (36). Not all studies have found
this association (37). Conversely, Tost et al. (35) not only found
an allelic association with temperament but also, in the course of
a substantial neuroimaging study, discovered that activation and
inter-regional coupling of the amgydala with the hypothalamus
during facial emotion processing was affected too.

There may also be an association between the gene variant and
susceptibility to develop an autistic disorder, although the finding
has not been consistent across studies. Although the association
that Wu et al. (38) reported was replicated (39), no such associ-
ation with this allele has been found by others (40,41).

A potential role for the CD38 gene in the regulation of OT
release has been suggested by recent investigations (42).
CD38 is a multifunctional molecule that plays a key role in a
wide variety of tissue-related activities including migration,
adhesion, and secretion. It is highly expressed in the brain in
both glial cells and neurons. If the gene is knocked out in
mice, there is over-storage of OT and reduced release, result-
ing in low plasma OT levels and reduced social behavior (9).
However, at this time, we do not know whether these findings
in mice are replicable in primates, including humans, although
the role of the CD38 system in regulating OT release is clearly
of considerable interest to those seeking a pharmacological
intervention that could ameliorate autistic behavior.

Could the response to OT by autistic subjects in treatment
studies be modified by differential sensitivity of the OTR? As
discussed, a genetic variant of the OTR gene has a sexually
dimorphic impact upon social responsiveness in typical adults
(35) and apparently influences nonautistic individuals in their
theory of mind skills, empathic tendencies (33), and the ability to
sustain eye gaze (43). We also know from the few studies that
have administered OT to autistic subjects that there are substan-
tial variations in response to exogenous OT, both within group
and within individuals, according to the nature of the task (24).

Vasopressin

AVP synthesis occurs in the hypothalamus, but it is released
into general circulation from the pituitary. AVP acts as a
hormone regulating water balance in the periphery, and it also
has neuropeptidergic actions in the CNS. Androgen-dependent
synthesis occurs in parvocellular neurons within the paraven-
tricular nuclei, the bed nucleus of the stria terminalis, the
medial amygdala, and suprachiasmatic nucleus (44).

Three distinct AVP receptor subtypes have been described.
The V1a receptor (V1aR) is expressed widely in the brain, as
well as in the liver, kidney, and peripheral vasculature. The

V1b receptor (V1bR) is expressed in the brain and also
peripherally (kidney, thymus, heart, lung, spleen, uterus, and
breast). The V2 receptor is expressed primarily in the kidneys.
AVP has the capacity to bind not only to AVP receptors but
also to the OTR, indicating that it has the potential to modulate
the activity of various subtypes (4). Most research has focused
on the V1bR, which has been subject to evolutionary selection
pressure in humans (45).

Relatively little is known about the influences on AVP
expression in the human brain. Evidence from animal studies
indicates that expression may show sexual dimorphism and
may be modulated by as yet unidentified genes on the X- or
Y-chromosomes (46). Studies in mouse knockouts of the AVP
receptor 1a have demonstrated that anxiety-like behavior re-
ported in males, but assumed to be present in both males and
females, is in fact sex-specific (47). Possible mechanisms
underlying this sexual dimorphism have not been clarified and
could relate to either genetic or sex-steroidal regulation. Unfor-
tunately, we know relatively little about gender differences af-
fecting individual variation in gene expression or neuropeptide
regulation in the human brain. Inevitably much of what follows
is taken from research with animal models, although some hu-
man evidence is emerging from postmortem studies (48).

Behavioral effects of AVP have been described mainly in
males, in animal models. They include the promotion of both
aggression and affiliation, in addition to other aspects of social
interaction including parental care. AVP can act to enhance
social recognition, nonspatial learning and memory, and the
emotional response to stress (49). There have been attempts to
demonstrate an impact of AVP on social behavior in humans,
and these have taken the form of two main experimental
techniques. One approach has been to administer AVP as a
spray intranasally to normal males. This increases the subjec-
tive impression of threat to neutral social stimuli (50) and, by
implication, the risk of an aggressive response.

A sparse literature concerning the influence of AVP on
human behavior has indicated a correlation between CSF AVP
levels and a lifetime history of aggression in individuals with
personality disorder (51). Thompson et al. (50) suggested that
AVP might influence aggression in human males by biasing
responses to emotionally ambiguous stimuli as if they were
threatening or aggressive. The same authors later demon-
strated sexually dimorphic effects; males and females viewing
unfamiliar faces after intranasal AVP attributed them as un-
friendly and friendly, respectively (52).

Activation of the V1a receptor increases male anxiety and
facilitates aggression in animal models (53). The degree of
behavioral response depends upon early social experience.
The V1bR also has a role to play in modulating aggression in
males (54). Aggressive behavior in females is not normally
observed in response to AVP (55). Gender differences in
behavioral response, due to receptor sensitivity, could be the
consequence of a neonatal surge in OT, which is found to have
sexually dimorphic effects on the later expression of AVP
receptors (56). Thus, some sexually dimorphic behavior in
adult males could reflect a synergistic interaction between
AVP receptor sensitivity to androgens and AVP, as a conse-
quence of neonatal OT exposure.
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There is cross-receptor reactivity between OT and AVP in
early life. The OT surge leads to increased AVP receptor
binding in the ventral pallidum, the lateral septum, and cin-
gulate cortex in males. In contrast, in females, it leads to less
AVP receptor binding in the equivalent sites. The impact of
AVP on behavior is not merely to increase aggression, at least
in some animal models. In rats, males with a higher density of
V1aRs in the lateral septum are more likely to provide pater-
nal behavior; AVP receptors in the medial preoptic area and
bed nucleus of the stria terminalis also play a role in stimu-
lating maternal care (55).

AVP-Related Genes

Animal knockouts of Avpr1a (Arginine V1aR gene) are
associated with impairment of social memory, reduced anxi-
ety-like behavior, and selective social amnesia in male knock-
outs, but these deficits can be corrected by re-expressing the
gene (57). In contrast, over-expression of Avpr1a in the lateral
septum of males facilitates social memory formation and
hence social recognition. The effect of AVP on social memory
seems to be specific to this brain region (58), where there is
the highest density of V1aR binding in the human and animal
brain (59).

There have been attempts to demonstrate an impact of AVP
on social behavior in humans, and these have taken the form
of two main experimental techniques. One approach has been
to administer AVP as a spray intranasally to normal males.
This increases the subjective impression of threat to neutral
social stimuli (50) and, by implication, the risk of an aggres-
sive response.

Variability in the genomic structure of the V1aR has been
associated with differences in personality or behavior in nor-
mal males. The focus has been on two microsatellites, which
are upstream of the gene, that are designated RS1 and RS3.
The more interesting of the two is RS3, which has variable
length within the promoter region. In a pioneering study,
Knafo et al. (48) demonstrated that funds allocated in the
Dictator Game (an economic game in which the first player is
given a sum which they can choose to share with an anony-
mous partner or keep it without penalty) were correlated with
the RS3 variant. The sample was mixed-sex, and participants
with longer alleles shared a greater proportion of their money
than those with shorter alleles. Somewhat surprisingly, there
was no main effect of gender.

In a study based on the observation that variations in the
microsatellite length in the promoter region of the V1aR
influence pair-bonding formation in closely related vole spe-
cies (60), Walum et al. (61) reported a unique finding in a
sample of the North American population. There was a modest
correlation between parental bonding and RS3 length in men
only, not in women. Shorter alleles were associated with more
marital crises; homozygosity for the 334 allele (affecting
5–15% of the male population) was associated with a doubling
of risk. The mechanism by which this remarkable (and as yet
unreplicated) finding has come about is unknown, but it is
worth noting that the same short variant is associated with
greater activation of the amygdala in response to a fearful face

emotion-recognition task (62). Perhaps those males with lon-
ger alleles for RS3 are more socially sensitive to their spouse’s
emotional state and were therefore less likely to engage in
behaviors that upset their marital partnership.

A recent study has also demonstrated lower levels of pro-
moter activity associated with the shorter allele of RS1 in
humans, this shorter allele being overtransmitted to probands
in families with an autistic child (63). Shorter alleles of RS1
are therefore potentially associated with reduced transcription
of Avpr1a.

Because AVP seems to have its major behavioral impact on
males, AVP-related genes have been investigated in autism.
Preliminary evidence from several studies suggests a role for
polymorphisms in the Avpr1a in autism susceptibility
(6,64,65). The Avpr1b receptor has also been implicated in the
formation of social memories (66), but knowledge about this
receptor is still relatively patchy. There is prominent Avpr1b
expression in the hippocampal field CA2 pyramidal neurons,
which facilitates the contexualization, via memory, of novel
social encounters (67).

Neuropeptide-Dopaminergic Interactions

AVP facilitates affiliation and social attachment by modu-
lating processes associated with reward and motivation, en-
gaging dopamine-regulated circuits in the nucleus accumbens.
The postulated interaction between the neural systems plays a
major role in the regulation of pair-bond formation (68). OT
and AVP also shape the neural representation of the partner by
building a profile through olfactory cues, which remains stable
(69). For rodents, at least, the odor of the partner comes to be
associated with a pleasurable and rewarding encounter (70).
Zeki (69) suggests that human adaptations of the same essen-
tial mechanisms underlie romantic and maternal love. Falling
in love requires us not only to activate neural circuits that
facilitate attachment but also to deactivate defensive circuits:
physical proximity to strangers would normally trigger aver-
sive reactions.

The relationship between OT modulated behaviors and the
dopaminergic systems that regulate mood and behavior has
not been very fully investigated (71). Evidence is nevertheless
emerging that implicate dopamine-OT interactions in the
modulation of neural circuits that influence affiliative behav-
iors. Skuse and Gallagher (8) showed that the receptor binding
sites of the nonapeptide OT and of dopamine tend to coexist
in several brain regions, including the dorsal striatum (caudate
and putamen), the medial prefrontal cortex, the ventral teg-
mental area, and the substantia nigra (Fig. 1) (69). They are
also in close apposition in the ventral tegmental area, the
nucleus accumbens, and the ventral pallidum. In this way, it is
at least feasible that they coregulate activity of reward related
circuitry such as the corticostriatal pathway. The role played
by this circuitry in humans is uncertain, but there is good
evidence that in animal models, mating results in a release of
OT that activates a mesolimbic circuit in the ventral tegmental
area that is itself modulated by dopamine receptors, and that
there is consequent dopamine surge in the nucleus accumbens,
linking sexual activity with the formation of partner-bonds (4).
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There is also considerable evidence that these influences are
important for the development of normal parent-infant rela-
tionships, although they have been suggested to be more
relevant to the establishment of maternal than paternal care
(72). Conversely, a recent longitudinal study of plasma OT
levels among new parents with their first infant found there
were increasing plasma OT levels over the first 6 months
regardless of parental gender (13).

Serotonergic Influences on Social Cognition

Social cognition is not solely a function of stable person-
ality traits. There are state-dependent influences too, including
moods such as anxiety, which are susceptible to changes in
serotonergic neurotransmission. The serotonergic system is
the largest efferent system in the brain. It has wide-ranging
functions, including behavioral inhibition, appetite, aggres-
sion, mood, social affiliation, and sleep, in addition to social
decision-making (73). In primate studies, experimentally ele-
vated serotonin decreases aggression and increases coopera-
tiveness and social potency. Contrastingly, reduced serotonin
activity leads to increased aggression and deterioration of
cooperativeness (74). Studies in both animals and humans
have found that greater serotonin activity positively influences
social interaction and cooperation, while low serotonin activ-
ity has the opposite effect (75).

Serotonergic Interaction With AVP and OT

An association exists between OT and AVP and the sero-
tonergic system, through the HPA axis. Functions of the
paraventricular nucleus of the hypothalamus are regulated by
serotonin, and serotonin receptor subtypes influence release of
OT and AVP (76). During development, excess serotonin may
be as detrimental as too little. Excess serotonin (in thrombocytes)
has been reported in a substantial minority (up to 30%) of

individuals with autism (77). Animals exposed to elevated sero-
tonin during early development have reduced OT expression and
loss of OT-containing cells in the paraventricular nucleus in
adulthood. This reduction is associated with reduced maternal
bonding and socially explorative behaviors (78).

Serotonin also desensitizes the AVP receptor, which could
reduce affiliative behavior in adult males (79). The V1aR and
a subtype of serotonin receptor colocalize in the anterior
hypothalamus; therefore, it is possible that serotonergic syn-
apses on AVP neurons carry the potential for serotonin to
influence behavioral aggression, which is mediated by the
AVP receptor (80). In general, interactions between the sero-
tonergic and AVP systems are not well understood, and more
research is needed.

Conclusions

A reductionist view of genetic influences suggests that
variation within genes influencing activity in the social brain
could account for individual differences in human social cog-
nition. We are increasingly aware of the evidence that com-
plex behaviors are rarely influenced by a single locus of main
effect (81) and are subject to the influence of environment
(82). Nevertheless, increasing evidence suggests the systems
outlined in this review are potentially major players in human
and animal models of social behavior.
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