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ABSTRACT: The perinatal period is particularly sensitive to a
variety of insults during which stress-regulating systems can be
permanently altered and psychopathologies ensue. The programming
of physiological, endocrinological, and behavioral functions by peri-
natal adversities is mediated by altered levels of glucocorticoids or
the hypothalamic-pituitary-adrenal axis activity in either the mother
or offspring. In this article, I review the integrated data from human
studies and from animal models that suggest the programming effects
of perinatal glucocorticoids exposure. Finally, the concept of devel-
opmental origins of psychiatric disorders is discussed. (Pediatr Res
69: 19R-25R, 2011)

Vulnerability to psychopathology may be influenced by
perinatal adversities (1-3), the mechanisms of which
likely involve changes in neurodevelopment (1) and in the set
point of neuroendocrine systems (4). Evidence has shown that
perinatal adversities interact with genetic and postnatal envi-
ronmental factors (5). The programming of physiological,
endocrinological, and behavioral functions by perinatal adver-
sities is believed to be critically mediated by altered levels of
glucocorticoids or the hypothalamic-pituitary-adrenal (HPA)
axis activity in either the mother or offspring (5,6). The effects of
glucocorticoids on the developing brain can act as vulnerability
factors for the later development of psychopathology (5).

The HPA Axis and Its Development

Activation of the HPA axis after exposure to a stressor is
part of an adaptive response that enables an organism to
respond appropriately to changes in the environment (7).
Stress signals are conveyed to hypothalamus to increase the
production of hypothalamic corticotrophin-releasing hormone
(CRH). CRH is transported via hypophyseal portal system to
the pituitary, where it elicits the release of ACTH from the
anterior lobe of the pituitary gland, which finally stimulates
the secretion of glucocorticoids, principally cortisol in human,
corticosterone in rodents, from the adrenal glands. Glucocor-
ticoids then interact with their receptors in multiple target
tissues, including the HPA axis and hippocampus, where they
exert an inhibitory negative feedback effect over the synthesis
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of hypothalamic releasing factors for ACTH, notably CRH
and vasopressin.

The two glucocorticoid receptors (GR), mineralocorticoid
receptor (MR), and GR, differ in ligand affinity and distribu-
tion throughout the brain (7). The ontogeny of MR and GR in
the brain and the development of HPA axis have been studied
primarily in rat. There is a distinct ontogenic profile for GR
and MR in the fetal rat brain (8). GR mRNA is present in the
anterior hypothalamus, hippocampus, and pituitary by gesta-
tional d 13 (8). Later, MR mRNA is present in the hippocam-
pus by gestational d 16 and the hypothalamus by d 17 (8). In
the rat, GR and MR in the fetal brain are low throughout
gestation but increase rapidly after birth, consistent with the
postnatal development of brain in rat (8). After birth, MR
reaches adult levels by the end of the first week of life (9,10).
GR, however, is ~30% of adult values during the first few
weeks of life, approaching adult levels by about 30 d of life
(9-11). Both GR and MR are highly expressed in the devel-
oping brain with different and complex ontogenies to allow
intricate brain development. Between postnatal d 4 and 14,
neonatal rat pups have very low basal levels of corticosterone
and the corticosterone response to stressors is blunted, the
so-called stress hyporesponsive period (SHRP) (12). Recently,
Schmidt (4) proposes that HPA axis during SHRP is caused by
a peripheral inhibition at the level of the pituitary, via a high
GR feedback signal, and at the adrenal level, via a low
sensitivity to ACTH. In contrast to the periphery, the hypo-
thalamus arcuate nucleus and paraventricular nucleus can
exhibit profound responses to stress and release CRH.

Perinatal Programming

Prenatal life and early infancy are critical periods charac-
terized by increased vulnerability to stressors (2,13). The
process by which perinatal life events can have long-term
effects on physiological system has been described as perinatal
programming. During the perinatal period, the HPA axis is
particularly susceptible to programming by glucocorticoids.
Glucocorticoids are important for normal maturation in most
fetal organs including the developing brain. A key regulator of

Abbreviations: ADHD, attention deficit hyperactivity disorder; CRH, cortico-
trophin-releasing hormone; DOHaD, developmental origins of health and dis-
ease; EPM, elevated plus maze; GR, glucocorticoid receptor; HPA, hypotha-
lamic-pituitary-adrenal; MR, mineralocorticoid receptor; SHRP,
hyporesponsive period; 113-HSD-2, 113-hydroxysteroid dehydrogenase type 2
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Figure 1. A simplified schematic representation
of the route by which perinatal glucocorticoids
exposure programs later psychopathology devel-
opment. Perinatal adversity and perinatal gluco-
corticoids exposure act on either the mother or
the baby, causing perinatal programming and
persistent HPA axis alternation and susceptibil-
ity for later development of psychopathology.
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human parturition is CRH, secreted by the placenta (14).
Glucocorticoids increase placental CRH synthesis (15). CRH
may in turn stimulate fetal and/or maternal cortisol synthesis,
creates a positive feedback loop that again raises CRH con-
centrations and subsequently leads to delivery (14). Glucocor-
ticoids are thus prime candidates for perinatal programming.

The HPA axis is particularly sensitive to effects of prenatal
exposure to excess levels of glucocorticoids. Prenatal pro-
gramming effects derive from environmentally induced alter-
ations of materno-fetal signaling. Prenatal glucocorticoid ex-
posure, during the last week of gestation, permanently
increases basal and stress-induced plasma corticosterone lev-
els in adult offspring (16). Similarly, prenatal stress has been
associated with altered adult offspring HPA function and
chronic neuroinflammation (17), resulting in part from altered
maternal and/or fetal glucocorticoid exposure.

Hippocampal MRs have a higher affinity for cortisol and are
80-90% occupied at basal levels of cortisol, maintain the
HPA circadian rhythm. Hippocampal GRs become important
during periods of increased glucocorticoid secretion, mediate
most of the stress effects of cortisol (7). Because of the slow
developmental profile of GR in the brain, the ability to “ap-
propriately turn off” a stress response does not develop fully
for several weeks after birth in rat (11,18). In a rat study,
Weaver et al. (19) reported that low levels of maternal care
programmed a permanent increase in DNA methylation of the
GR promoter, leading to reduced expression of GR in the
hippocampus. This discovery provides an important insight
into how permanent disruption of GR function and a collateral
HPA axis dysregulation can result from early life stress.

In terms of humans, the HPA system remains highly reac-
tive and labile in early infancy (13). During the first year,
sensitive and responsive caregiving becomes a powerful reg-
ulator of emotional behavior and neuroendocrine stress hor-
mone activity in young children. The quality of caregiving that
the child receives during early development predicts the emer-
gence of later self-regulation abilities, with sensitive caregiv-
ing associated with better adaptive self-regulatory abilities and

more optimal functioning of the child’s HPA system (13).
Figure 1 depicts the route by which perinatal HPA axis
programs development of later psychopathology.

Physiology of Placental 113-Hydroxysteroid
Dehydrogenase Type 2 (113-HSD-2)

Although steroids can easily cross the placenta, under nor-
mal circumstances fetal glucocorticoid levels are much lower
than maternal levels (20). This is due to 113-HSD-2, which is
highly expressed in the placenta (21). Indeed, placental 113-
HSD-2 forms a functional barrier restricting the free transfer
of cortisol between the maternal and fetal compartments by
converting cortisol into its much less active 11-keto form,
cortisone (21). In a rat study, it has been demonstrated that
attenuation of placental 113-HSD-2 activity may expose the
placenta and fetus to inappropriately high levels of glucocor-
ticoids and result in IUGR and fetal programming of adult
disorders (22). This hypothesis is supported by the association
observed between reduced human placental 113-HSD-2 ac-
tivity and deliveries complicated by IUGR (23).

Sustained elevation or depletion of glucocorticoid during
fetal development can permanently modify brain structure and
function (16). 11B8-HSD-2 expression is dramatically switched
off at the end of midgestation in the rat and mouse brain,
coinciding with the terminal stage of neurogenesis (8). Simi-
larly, in human fetal brain, 113-HSD-2 seems to be silenced
between gestational wk 19 and 26 (24). Thus, there appears to
be a timed system preventing the developing brain from
inappropriately exposure to glucocorticoids.

Dexamethasone is a poor substrate for 113-HSD-2 and
therefore readily passes across the placenta from mother to
fetus (25). Similarly, betamethasone is a poor substrate for
11B-HSD-2. In contrast, 113-HSD-2 rapidly inactivates pred-
nisolone to inert prednisone, so this widely used steroid has
less impact on the fetus in vivo.
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Prenatal Exposure to Glucocorticoids

Mammalian organisms express relatively high levels of
GRs during late fetal development. Glucocorticoids can pen-
etrate the placental barrier, with 10-20% of maternal gluco-
corticoids reaching the fetus intact (21), and on reaching the
fetal brain, they can influence brain development by promot-
ing myelination and terminal maturation and affecting cell
survival (25,26). Unlike endogenous glucocorticoids, syn-
thetic glucocorticoids bind mainly to the GR because the MR
has low affinity for synthetic glucocorticoids. Prenatal gluco-
corticoid administration delays maturation of neurons, myeli-
nation, glia and vasculature, and brain weight at birth (27-29)
and programs the fetal brain (30).

Animal studies. In the rat, daily exposure to synthetic
glucocorticoids in either the third week of gestation or
throughout the gestation period was found to result in adult
male offspring having elevated basal plasma corticosterone
levels and a significant decrease in GR and MR mRNA levels
in specific hippocampal subfields (31). Alterations in MR and
GR expression, therefore, influence basal and stress-induced
increases in HPA activity. In addition, prenatal dexametha-
sone exposure on gestational d 17, 18, and 19 resulted in adult
male offspring with elevated blood corticosterone levels and
enhanced behavioral activities related to stress (32). In pri-
mates, dexamethasone-treated offspring also have been shown
to demonstrate higher basal cortisol levels and higher plasma
cortisol levels after stress (33). Prenatal glucocorticoid expo-
sure resulted in adult male offspring with reduced exploratory
behavior in an open field and reduced exploration in an
elevated plus maze (EPM) (34). The open field test is a
paradigm for measurement of anxiety like, explorative, and
locomotor behavior in rats. The EPM has two open and two
closed arms, presenting the rat with a conflict between the
desire to explore a novel situation and its fear of height and
open spaces. Furthermore, transgenic mice with selective loss
of GR gene expression in the brain show markedly reduced
anxiety (35).

The amygdala functions to control fear responses and the
formation of emotional memories. Prenatal glucocorticoid
exposure increases adult CRH levels specifically in the
central nucleus of the amygdala—a key locus related to fear
and anxiety (34). Similarly, prenatal stress causes increased
anxiety-related behaviors with elevated CRH in the
amygdala (36).

Prenatal glucocorticoid exposure also affects the developing
dopaminergic system, suggesting a developmental relevance
to schizo-affective disorders. Diaz et al. (37) showed that
offspring born to corticosterone-treated mothers displayed
enhanced spontaneous locomotor activity in the adulthood,
when compared with control offspring (37). These abnormal-
ities were already present at the prepubescent stage of devel-
opment and persisted into adulthood. Long-lasting alterations
in apomorphine-induced motor activity were also exhibited,
which suggested reductions in dopamine receptor sensitivity
and/or in the cellular and motor network mechanisms controlled
by dopamine receptors. Shalev and Weiner (38) found that
prenatal corticosterone administration during the last week of
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gestation led to a disruption of selective associating learning. This
was evident from the form of loss of the latent inhibition effect in
adulthood. In addition, programming of the HPA axis may also
be regulated through the serotonergic system, which has been
linked to hippocampal GR programming (31).

Using pharmacological blockage of 113-HSD-2 by carbenox-
olone in rats, Welberg et al. (39) found reduced immobility in a
forced swim test in exposed offspring, indicating permanent
anxiety-like behavior in aversive situations. In addition, 118-
HSD-2 (—/—) mice exhibited greater anxiety in the EPM test
than both 113-HSD-2 (%) and 11B8-HSD-2 (+/+) littermates
(40). In summary, available evidence in animal studies indicates
that prenatal exposure to glucocorticoids leads to altered HPA
axis activity, anxiety, and schizo-affective disorder.

Human studies. With regard to prenatal exposure to glu-
cocorticoids, relatively few studies have been conducted in
humans. Seminal work by Liggins and Howie (41) led to the
worldwide use of prenatal glucocorticoid therapy to prophy-
lactically impede morbid symptoms associated with preterm
delivery, such as RDS and intraventricular hemorrhage. This
treatment has been shown to increase the survival rate of
preterm infants, but current evidence suggests that fetal expo-
sure to synthetic glucocorticoids has detrimental effects on
human birth outcome, childhood cognition, and long-term
behaviors (42).

In 2001, the US National Institutes of Health recommends
single course of antenatal corticosteroid treatment for fetal
maturation. Repeated courses of antenatal glucocorticoid may
have some benefits for lung function of the preterm newborn,
but ongoing concerns for long-term health preclude their use
at the present time (43). However, a recent survey showed that
the proportion of women receiving antenatal corticosteroids
had increased consistently over a 7-y time period for those
deliveries between 24 and 35 wk (average increase rate 12%
per year, p < 0.001) and for those deliveries after 34 wk
(average increase rate 21% per year, p < 0.001) (44). There-
fore, many fetuses likely still are exposed to multiple courses
of antenatal corticosteroids.

In the North American TSH-Releasing Hormone Trial,
infants who were exposed to three or more courses of ante-
natal glucocorticoids had lower plasma levels of cortisol at 2 h
of age, suggesting suppression of the HPA axis activity by
repeated antenatal glucocorticoids (45). Davis et al. (46)
showed that infants of whose mothers were exposed to re-
peated courses of betamethasone exhibited a blunted salivary
cortisol response to a heel-stick stressor at both 1 and 34 wk
postnatally. In contrast, in an observational study, plasma
cortisol and ACTH levels were similar in 86 2-d-old infants
who had been exposed to single or multiple courses of ante-
natal glucocorticoids; this finding suggests no alternation of
the HPA axis by repeated antenatal glucocorticoids (47).

Premature exposure of the fetus to glucocorticoids may
program the child to perceive the world as hostile (2,5).
Psychological assessments were performed on 541 of the
infants enrolled in the Western Australian preterm birth cohort
at periodic intervals up to 6 y of age. Children exposed to three
or more courses of antenatal glucocorticoids exhibited signif-
icantly higher relative risks of externalizing behavioral disor-
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ders and distractibility at 3 and 6 y of age. There were no
effects on intelligence quotient or measures of internalizing
behaviors (48). Similarly, Crowther et al. (49) reported that
521 children who had been exposed to repeated doses of
glucocorticoids in utero were characterized by higher levels of
attention problems at 2 y of age.

A recent report of follow-up in the antenatal betamethasone
trial indicates that there are no clinical effects on cognitive
functioning, working memory and attention, psychiatric mor-
bidity, handedness, or health-related quality of life at 31 y of
age (50). In summary, available evidence in human studies
indicates that prenatal glucocorticoids exposure leads to be-
havioral problems in early childhood. If prenatal glucocorti-
coids exposure has persistent effects on human neuroendo-
crine function and susceptibility to psychiatric disorders is a
question, then that cannot be answered until the results of
large randomized controlled trials are available and follow-up
of the offspring is completed.

Postnatal Exposure to Glucocorticoids

Postnatal administration of glucocorticoids can have deleteri-
ous effects on brain development. Previous studies in rodents
demonstrate that during postnatal d 2—14 normal maternal be-
havior ensures a quiescent stress response in the pup, the so-
called SHRP, when neonatal rats have very low basal levels of
corticosterone and the corticosterone response to stressors is
blunted (12). In this period, rates of neurogenesis, neuronal
migration, and cell death reach maximal levels while circulating
corticosterone is low (51). Acute administration of glucocortico-
ids during this period causes an irreversible decrease in brain
weight and myelination of fibers (52). In the dentate gyrus, acute
postnatal glucocorticoid treatment during this period reduces cell
death in the granular layer of the dentate gyrus and, in contrast,
increases cell death in the hilus (51).

Similarly, in human infants, there is a developmental period
that shows decreased responsiveness of the HPA axis to
stressors (53). Chronic lung disease remains a major morbidity
in preterm-born infants and dexamethasone is widely used for
preventing or treating it. The almost routine use of dexametha-
sone continued until 1998, when Yeh et al. (54) demonstrated a
significant increase in neurodevelopmental dysfunction in neo-
nates treated with dexamethasone compared with controls. How-
ever, a prospective evaluation of postnatal steroid administration
in California from April 2002 to March 2003 showed that 19.3%
of the very low birth weight infants (<1500 g) still received
steroids for chronic lung disease, hypotention, or extubation
stridor (55). Therefore, it is important to continue evaluating all
of its developmental consequences.

Animal studies. Using a tapering course of dexamethasone
treatment between postnatal d 3 and 6 in rat pups, Flagel et al.
(56) demonstrated an association between dexamethasone ex-
posure in the neonatal rat pups and changes in HPA function
in the adolescent. This was evident in the form of increased
anxiousness in the light-dark test of anxiety and in response to
a mild novelty stress, as measured by a blunted corticosterone
response. The light-dark test in rodents is based on a conflict
between the innate aversion to brightly illuminated areas and
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spontaneous exploratory activity. The authors concluded that
the dissociation between behavioral and hormonal stress re-
sponsiveness suggested that neonatal dexamethasone expo-
sure permanently alters brain function, particularly within the
neuroendocrine stress axis (56). Using the same dexametha-
sone regimen, Neal et al. (57) showed increased anxiety-like
behaviors in single-housed dexamethasone animals in the
EPM and open field, however, they found no differences
between groups in the light-dark test. Although the animals
exhibited increased anxiety-like behavior in threatening envi-
ronments, they demonstrated no such behavior when placed in
a less-threatening novel environment. Basal corticosterone
levels were no different between adult males and female
groups. In response to crowding stress, animals in the dexa-
methasone groups demonstrated an adequate corticosterone
response but exhibited a slower termination to baseline. The
animals could mount a response, but they were unable to turn
it off appropriately, even up to 120 min after crowding stress
was initiated (57).

Using a tapering course of dexamethasone treatment be-
tween postnatal d 1 and 3 in rat pups, Kamphuis et al. (58,59)
showed that neonatal treatment with dexamethasone not only
resulted in long-lasting behavioral changes but also a reduc-
tion of the HPA axis activity to novelty stress in adults. In
addition, Roskoden et al. (60) showed that early postnatal
corticosterone treatment led to a higher locomotor activity as
indicated by more entries into closed arms of the EPM, and a
lower number of CRH-immunopositive neurons in the central
nucleus of amygdala. Moreover, Slotkin et al. (61) demonstrated
that dexamethasone administered during the critical neurodevel-
opmental stage elicited selective changes in serotonergic and
dopaminergic synaptic function, implying that adverse neurobe-
havioral consequences may be inescapable in glucocorticoid
therapy of preterm infants. In summary, available evidence in
animal studies indicates that postnatal exposure to glucocortico-
ids leads to altered HPA axis activity and anxiety.

Human studies. Systemic corticosteroid therapy has been
increasingly prescribed for ventilator-dependent infants since
the 1980s. A recent series in the Cochrane Database of
Systematic Reviews has concluded that the benefits of early
postnatal corticosteroid treatment (<7 d of age), particularly
dexamethasone, may not outweigh the known or potential
adverse effects of this treatment (62). Long-term follow-up
studies suggest an increased risk of abnormal neurological
examination and CP (62). However, postnatal corticosteroid
treatment for chronic lung disease initiated after 7 d of age
may reduce neonatal mortality without significantly in-
creasing the risk of adverse long-term neurodevelopmental
outcomes (63). In February 2002, the American Academy
of Pediatrics and the Canadian Pediatric Society advised
that postnatal corticosteroids therapy should be limited to
exceptional situations (64).

Few clinical studies have examined the effects of premature
neonate exposure to glucocorticoids on the HPA axis and on
long-term behavioral outcomes have been few. Ng ef al. (65)
assessed longitudinal hypothalamic, pituitary, and adrenal re-
sponse in a cohort of ventilated infants exposed to systemic
dexamethasone treatment. The results of the study suggested
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that hypothalamic function was suppressed during systemic
corticosteroid treatment but partial recovery occurred 4 wk
after therapy had ended. Yeh et al. (66) examined 146 children
and found that early postnatal dexamethasone treatment was
associated with adverse effects on neuromotor and cognitive
functions in school-age children.

Using the Child Behavioral Checklist, Karemaker et al. (67)
assessed behavioral outcomes in school-age children who
were neonatally exposed to dexamethasone or hydrocortisone.
The checklist consists of items relating to anxiety, depression,
aggressive behavior, social problems, and thought and atten-
tion problems. Karemaker er al. (67) reported that infants
treated postnatally with hydrocortisone had behavioral out-
comes similar to control samples, whereas postnatally dexa-
methasone-treated girls exhibited poorer performances on be-
havioral scales than girls in the control group. In a subsequent
study, Karemaker er al. (68) demonstrated for the first time
that HPA-axis activity in school-age children was decreased in
prematurely born children treated with dexamethasone during
the neonatal period. However, no changes in HPA were
observed when children had been treated neonatally with
hydrocortisone. Together, in the same cohort of children,
dexamethasone-treated girls displayed more behavioral prob-
lems, such as attention problems and social problems associ-
ated with alternations in the HPA axis.

A recent study by Spittle et al. (69) examined 188 very
preterm infants (GA <30 wk or birth weight <1250 g) at2 y
of age. They demonstrated that at 2 y, very preterm children
exhibited significantly higher internalizing and dysregulation
scores and lower competence scores than peers born at term.
In addition, postnatal corticosteroids exposure was signifi-
cantly associated with lower competence scores in the very
preterm group.

In summary, available evidence in human studies indicates
that postnatal glucocorticoids exposure leads to altered HPA
axis activity and behavioral problems in childhood. If postna-
tal glucocorticoids exposure has persistent effects on human
neuroendocrine function and susceptibility to psychiatric dis-
orders is a question, then that cannot be answered until the
results of large randomized controlled trials are available and
follow-up of the offspring is completed.

Developmental Origins of Psychiatric Disorders

The Barker hypothesis states that low birth weight is asso-
ciated with adverse adult outcomes, such as coronary heart
disease, stroke, high blood pressure, and type 2 diabetes (70).
These observations show that early life influences can alter
later disease risk, leading to the concept of developmental
origins of health and disease (DOHaD) (71). The concept of
DOHabD proposes that the fetus forecasts the future and elicits
biological programming according to the environment that is
likely to prevail after birth. Under this concept, birth weight is
an epiphenomenon that reflects the nutrients availability in
utero (3,71). The concept of DOHaD also applies to psychi-
atric disorders (1,5,72).

Schizophrenia is a complex neurodevelopmental disorder,
which is characterized by psychosis, apathy and social with-
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drawal, and cognitive impairment (73). Perinatal adversity has
been associated with the development of schizophrenia (74).
The support for the neurodevelopmental hypothesis of schizo-
phrenia is derived from epidemiological studies assessing the
effects of prenatal stress on schizophrenia risk (75,76).

Anxiety is defined as a state of cognitive and behavioral
preparedness that an organism mobilizes in response to a state
of uneasiness and apprehension. A developmental approach is
relevant to anxiety disorders (77) as the mean age of onset for
anxiety disorder is 11 y (78). This early onset implies that
individual levels of trait anxiety are early developmental
processes or events that wire the developing brain. Birth
cohort studies have identified maternal immune and stress
responses as significant risk factors for major depressive
disorder (79). A famous example is the Dutch Winter Famine
study, which showed that second or third trimester exposure to
famine was associated with an increased risk of admission for
mood disorders in later life (80). Analysis of database has
shown that adults exposed to child abuse and/or neglect are at
greater risk for the development of affective disorders (81).

Autism disorders are not uncommon, the prevalence of
autism today is estimated at 13 per 10,000 (82). Autism is a
neurodevelopmental disorder that is characterized by abnor-
mal social interaction, patterns of interests, speech develop-
ment, and patterns of behavior. Empirical evidence suggests
that prenatal stress may play a significant role in the etiology
of autism disorders (82). Recently, in a study of prenatal
exposure to hurricanes and tropical storms in Louisiana, the
prevalence of autism increased in dose-response fashion from
3.72/10,000 births for the low-exposure group, to 9.65/10,000
births for the intermediate-exposure group, and further to
26.59/10,000 births for the high-exposure group, especially for
cohorts exposed during the 5—6 and 9—10 mo of gestation (83).

Attention deficit hyperactivity disorder (ADHD) manifests
in childhood and is characterized by symptoms of develop-
mentally inappropriate inattention, impulsivity, and hyperac-
tivity. Some evidence from brain imaging studies using pos-
itron emission tomography (84) and magnetic resonance
spectroscopy (85) support the notion of developmental origin of
ADHD. Froehlich et al. (86) demonstrated that prenatal tobacco
and childhood lead exposures were associated with ADHD in US
children, especially among those with both exposures. In addi-
tion, low birth weight was associated with features of hyperac-
tivity and reduced attention in preschoolers (87).

Conclusions

The evidence of perinatal programming of psychiatric dis-
orders is clear. Extensive evidence in animal studies has
shown the link between perinatal glucocorticoids exposure
and later psychopathologies; however, caution should be ex-
erted in extrapolating these findings from animals to humans.
Although direct evidence is lacking in humans, preliminary
observations suggest an important role of glucocorticoids for
perinatal programming of psychiatric disorders. Because glu-
cocorticoids have been widely used during the perinatal period
in recent decades, long-term follow-up of infants enrolled in
randomized controlled trials are needed in future research.
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