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ABSTRACT: Preterm infants face many challenges in transitioning
from the in utero to extrauterine environment while still immature.
Failure of the preterm gut to successfully mature to accommodate
bacteria and food substrate leads to significant morbidity such as
neonatal necrotizing enterocolitis. The intestinal epithelial barrier
plays a critical role in gut protection. Heat shock protein 70 (Hsp70)
is an inducible cytoprotective molecule shown to protect the intesti-
nal epithelium in adult models. To investigate the hypothesis that
Hsp70 may be important for early protection of the immature intes-
tine, Hsp70 expression was evaluated in intestine of immature rat
pups. Data demonstrate that Hsp70 is induced by exposure to moth-
er’s milk. Hsp70 is found in mother’s milk, and increased Hsp70
transcription is induced by mother’s milk. This Hsp70 colocalizes
with the tight junction protein ZO-1. Mother’s milk-induced Hsp70
may contribute to maintenance of barrier function in the face of
oxidant stress. Further understanding of the means by which mother’s
milk increases Hsp70 in the ileum will allow potential means of
strengthening the intestinal barrier in at-risk preterm infants. (Pedi-
atr Res 69: 395–400, 2011)

The single layer of enterocytes lining the intestinal epithe-
lium forms a functional barrier between the luminal con-

tents of the gut and the host. This critical barrier is responsible
for allowing nutrients and beneficial macromolecules to cross
while preventing translocation of bacteria and bacterial prod-
ucts (1). The intestinal barrier comprises a mucin layer cov-
ering the intestinal epithelial cells, the epithelial cell plasma
membrane, and the apical junctional complex between cells
(1). The apical junctional complex consists of a network of
tight junction proteins and the adherens junction, both an-
chored by a perijunctional actomyosin ring (2). The tight
junction is a principal determinant of mucosal permeability.
The requirements for the intestinal barrier change over the

course of development (3–6). In utero, the gut lumen is bathed in
amniotic fluid and has no contact with bacteria or food substrates.
Thus, the intestine has high permeability to allow passage of
macromolecules critical for development from the amniotic fluid
(6,7). After birth, the barrier must appropriately accommodate
bacteria and products of digestion. The preterm infant, expecting

continuation of the in utero environment, carries much of the
immature phenotype designed for in utero life into the extrauter-
ine world. This includes a porous intestinal barrier not prepared
for sudden exposure to intestinal bacteria. Thus, the immature gut
of preterm infants has increased translocation of intestinal bac-
teria, predisposing the preterm infant to sepsis and neonatal
necrotizing enterocolitis (NEC) (8–10). The immature gut has
been shown to have an exaggerated inflammatory response to
intestinal bacteria (9,11–13). Permeability across the tight junc-
tion can be increased by inflammatory cytokines such as IFN�
and TNF�, thus further increasing bacterial translocation and the
cycle of injury (1,14,15).
Inducible heat shock protein (Hsp) 70 is a cytoprotective

protein shown to have important roles in intestinal protection
and regeneration both in vitro and in vivo (16–19). Hsp70 has
specifically been shown to maintain barrier function, in part,
by stabilizing the tight junctions between intestinal epithelial
cells (20,21). This intestinal epithelial protection is associated
with restricted bacterial translocation and a reduction in in-
flammation (22). The role of Hsps in the immature gut has not
been previously explored. Only one study has investigated the
temporal pattern of Hsp expression. This study in newborn
pigs investigated a number of Hsps following weaning (23).
We hypothesized that Hsp70 may be important for early
protection, before weaning, of the immature intestine in the
face of stressors leading to inflammation.

METHODS

Neonatal rat pups. Animal experiments were approved by the animal care
committee at the University of Chicago. All rat pups were allowed to
spontaneously deliver and then remain with the mother for rearing (mother-
fed) or separated from mother for stresses. Stressed pups were housed in a
humidified incubator maintained at 37°C. Formula-fed pups were gavaged
every 3 h with Esbilac puppy formula via an orogastric tube. For 24 h, animals
were fed 0.1 mL every 3 h, which was increased daily by 50 �L every 3 h
until killing.

Immunohistochemistry staining. Intestinal segments were removed,
opened longitudinally, washed three times in saline, and fixed in formalin.
Paraffin-embedded tissues were cut into 4-�m-thick sections. The sections
were deparaffinized at 56°C, immersed in xylene three times, and hydrated
with ethanol (two times with 100%, two times with 95%, and one time with
75% ethanol) for 5 min. For antigen unmasking, slides were heated in 10-mM
sodium citrate buffer (pH 6.0) for 15 min before treatment with 0.3%
hydrogen peroxide for 30 min. The specimens were treated with 5% BSA in
TBST (Tris-buffered saline with 0.05% vol/vol Tween-20) for 30 min at room
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temperature followed by overnight incubation with mouse anti-Hsp70 anti-
body (MAB1663; R&D Systems, Minneapolis, MN) at 4°C. After washing,
the sections were incubated with polymer-HRP anti-mouse (Dako, Carpinte-
ria, CA) for 30 min at room temperature. Positive staining was visualized with
DAB chromogen, and nuclei counterstain was performed with hematoxylin
(HHS32; Sigma Chemical Co., St. Louis, MO).

Quantitative measurement of Hsp70 in rat dam milk. Rat milk was
collected postmortem from lactating dams on postnatal d 10, using gentle
suction. Whole milk was centrifuged (700�g for 10 min at 4°C) and
supernatant Hsp70 measured by ELISA (EKS-700B; Assay Designs, Boulder,
CO) as per manufacturer’s instructions.

Real-time PCR for Hsp mRNA. Total RNA was extracted from ileal tissue
by TRIzol (Invitrogen, Carlsbad, CA) according to the manufacturer’s in-
struction. cDNA was synthesized using SuperScript II (Invitrogen) and ran-
dom hexonucleotide primer. The rat Hsp70 sequences were downloaded from
GenBank. The forward and reverse primers were for rat Hsp70 (NM_031971,
bases 25–139) and rat GAPDH (NM_017008, bases 154–223). Real-time
PCR was performed with an iCycler using iQSYBR Green PCR Supermix
(Bio-Rad, Hercules, CA). The two-step quantification cycling protocol was
used. The Ct value is defined as the cycle number at which the fluorescence
crosses a fixed threshold above the baseline. As a relative quantitation, fold
changes were measured using the ��Ct method (24).

Ex vivo intestinal loops and assessment of barrier function. Sections of
ileum 1–1.5 cm in length were taken beginning 1 cm above the ileocecal
junction. The segments were flushed with warm PBS to remove stool. The
ends were secured with silk ties and the lumen filled with 10 mg/mL of 10 kD
FITC-dextran (Sigma Chemical Co.) with or without freshly prepared 0.1 mM
monochloramine (NH2Cl) until moderate distension was achieved (75�L)
(20). The loops were placed in the inner well of organ culture dishes (Falcon;
Becton Dickinson Labware, Franklin Lakes, NJ) filled with RPMI 1640
medium with 10% vol/vol heat-inactivated fetal bovine serum. These were
incubated for 1 h at 37°C in a 5% CO2 incubator. At 30 and 60 min, 100 �L
of the bathing media was removed for measurement of fluorescence to
determine translocation across the loops. Translocated FITC-dextran was
quantified by fluorescence and concentration determined by a standard curve
of known amounts of FITC-dextran, normalized to intestinal length in milli-
meters, and expressed as fold change over baseline. The middle section of
these loops was removed, placed in 10% buffered formalin, and embedded for
sectioning and immunohistochemistry.

Hsp70 and ZO-1 immunofluorescence staining. Sections were prepared
as described for immunohistochemistry staining. The specimens were treated
with 5% BSA in TBST for 30 min at room temperature followed by overnight
incubation with mouse anti-Hsp70 antibody (R&D Systems) or rabbit anti-
ZO-1 (Invitrogen) at 4°C. After overnight incubation with primary antibody
and washing, sections were incubated with Cy2-anti-mouse and Cy5 anti-
rabbit (Jackson ImmunoResearch, West Grove, PA) overnight at 4°C. Slides
were washed with saline five times, incubated briefly with 4�,6-diamidino-2-
phenylindole (DAPI; final concentration 1 �g/mL for 5 min; Molecular
Probes, Eugene, OR) to stain nuclei, washed three times in saline, and
coverslips mounted using Slow Fade mounting medium (Molecular Probes)
and visualized. Confocal microscopy was performed using a Leica SP2AOBS
system (Leica, Wetzlar, Germany) of the Light Microscopy Core Center of the
University of Chicago.

In vivo model of intestinal injury. An in vivo model of intestinal stress
was performed using a protocol modified from published protocols designed
to model NEC (25,26). Rat pups were delivered by cesarean section on the
21st d of gestation. Pups were maintained in an incubator at 37°C and
gavage-fed as described above. Pups were colonized with bacteria 107 colony
forming units each of Serratia marcescens, Klebsiella pneumoniae, and
Streptococci viridans once daily in 100 �L formula via the orogastric feeding
catheter. In addition, pups were stressed with hypoxia (5% oxygen and 95%
nitrogen for 10 min) three times a day. Pups were killed at indicated time
points. Hematoxylin and eosin (H&E)-stained sections were scored by a
blinded pathologist using a validated NEC scoring system with scores ranging
from “0” to “4” indicating increasing severity of injury (26).

RESULTS

Mother’s milk feeding maintains small intestinal Hsp70
expression. To determine whether the intestine of neonatal rat
pups expresses Hsp70, ileal sections of small intestine were
analyzed by immunostaining. Hsp70 was present in the epi-
thelial cell compartment to a greater degree in mother’s
milk-fed pups compared with pups receiving only formula

(Fig. 1A, arrow denotes brown staining indicative of Hsp70
expression). Formula-fed pups demonstrated a time-dependent
decrease in Hsp70 staining, whereas the expression of Hsp70
increased in the mother’s milk-fed pups.
Rat milk was obtained and analyzed for Hsp70 by ELISA.

Hsp70 was found at concentrations of 1.48–2.78 ng/mL in
whole milk (n � 3). To determine whether small intestinal
Hsp70 expression was additionally due to epithelial expres-
sion, mRNA was extracted from extensively washed (three
times) tissue from pups at d 3. Hsp70 mRNA was measured
and compared by the ��Ct method. Hsp70 mRNA was
readily detected in the washed tissues, demonstrating intesti-
nal epithelial expression. Hsp70 mRNA threshold values were
significantly higher for the pups on mother’s milk. When
��Ct value for the pups on mother’s milk was set to 1, Hsp70
mRNA values in formula-fed pups were �50% lower on d 3
(Fig. 1B), corresponding to the decreased Hsp70 immuno-
staining shown in Fig. 1.

Figure 1. Mother-fed pups maintain small intestinal Hsp70 expression. (A)
Rat pups were allowed to suckle (mother’s milk-fed) or received only formula
(formula-fed) after delivery. Pups were killed at designated days and Hsp70
localized by immunohistochemistry (arrow). Images shown are representative
of those of three pups at each day for each condition (magnification �200).
(B) Hsp70 mRNA at d 3. Small intestinal tissues were removed at d 3 after
birth for both mother’s milk- and formula-fed pups. RNA was isolated,
reverse transcribed, and Hsp70 and GAPDH analyzed in the cDNA. ��Ct
values were calculated and are shown as fold change compared with mother’s
milk-fed. Data are means � SD for three pups in each group. *p � 0.05 by
paired t test.
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Permeability of the small intestine is protected from oxi-
dants in mother’s milk-fed pups. Permeability of the small
intestine was assessed in ileal loops. The basal permeability
was not different between the mother’s milk-fed and formula-
fed ileum (Fig. 2). The oxidant monochloramine (NH2Cl) was
used to increase permeability. Loops were filled with a 10-kD
fluorescent dextran and movement of this marker to the ex-
ternal bathing medium measured. NH2Cl (0.1 mM) did not
stimulate increased flux of FITC-dextran in mother’s milk-fed
pups, demonstrating resistance to oxidant-induced injury.
However, the same NH2Cl concentration stimulated a large
increase in FITC-dextran movement out of the ileal loops of
formula-fed pups (Fig. 2).
ZO-1 is a pivotal protein in the maintenance of the tight

junction that regulates intestinal permeability. To determine
whether Hsp70 was associated with the tight junction, ileal
sections were stained for Hsp70 and ZO-1 in mother’s milk

and formula-fed pups (Fig. 3). Nuclei were visualized using
DAPI (blue). In mother’s milk fed pups, ZO-1 (green) and
Hsp70 (red) colocalized (yellow overlay) at the tight junction.
In contrast, formula-fed pups demonstrated little or no Hsp70.
Inflammatory stress does not induce Hsp70 in formula-fed

pups. Adult intestinal epithelial Hsp70 expression may be
regulated by many factors including luminal bacteria and
immune and inflammatory mediators in the mucosa (16–19).
A bacteria exposure/hypoxia injury model was performed on
formula-fed pups to determine effect on Hsp70 expression.
Pups were killed at varying times after stress and damage
scored. As shown in Figure 4, significant damage to the
intestinal villi was observed with NEC scores of 2 and 3 as
assessed by H&E images. Hsp70 immunostaining seen in
mother’s milk-fed animals (arrow, top panel) was not demon-
strated in formula-fed pups with or without injury (bottom
three panels).

DISCUSSION

The constant interaction between the intestinal epithelium
and the gut microbiota is a challenge for the preterm gut. The
mature intestine has many physical barriers designed to limit
bacteria to the gut lumen and prevent attachment and translo-
cation across the intestinal epithelium (3). In contrast, several
factors make the preterm intestine more susceptible to micro-
bial interaction and translocation (27). Low levels of gastric
acid and protective mucus decreased intestinal mobility, and
reduced levels of secretory IgA may contribute to increased
bacterial contact (6). In addition, increased intestinal perme-
ability enhances translocation (27). As a counter balance, our
data reveal an inducible intestinal protective mechanism that
is unique to the immature intestine. In contrast to adults
without small intestinal Hsp70 expression, we found that the
immature intestine has basal expression of the cytoprotective
protein Hsp70 in the ileum. Increased Hsp70 transcription was

Figure 2. Small intestine of mother’s milk-fed pups are resistant to increased
permeability by oxidants. Permeability of loops of small intestine of d 3 pups
on mother’s milk- vs formula-fed was measured using 10 kD FITC-dextran.
Loops were treated with monochloramine (NH2Cl, 0.1 mM) to increase
permeability. Data are means � SD for three separate pups in each group.
*p � 0.05 by analysis of variance.

Figure 3. ZO-1 and Hsp70 colocalization in
small intestine of mother’s milk-fed pups. Fro-
zen sections of small intestine of (A) mother’s
milk or (B) formula-fed d 3 pups were stained
with rabbit polyclonal anti-ZO-1, mouse mono-
clonal anti-Hsp70, and DAPI to localize nuclei.
Images shown are representative of those of
three separate pups, two sections were observed
for each pup. Blue is nuclear DAPI staining,
green for ZO-1, red for Hsp70, and yellow for
overlay colocalization (magnification �200 for
formula-fed cross section, all others �400).
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induced by mother’s milk and was noted to colocalize with the
tight junction protein ZO-1.
It has been shown in clinical studies, using enteral lactulose/

mannitol administration to evaluate intestinal permeability,
that infants receiving formula had increased permeability over
the 1st mo of life compared with infants receiving breast milk
(28). Furthermore, clinical studies have documented a decline
in the incidence of NEC in human milk-fed infants compared
with formula-fed infants, suggesting a protective effect of
human milk (29–31). Human milk contains several antibac-
terial and antiinflammatory factors that may be protective in
addition to growth factors that may stimulate intestinal repair
through increased cell restitution, growth, and inhibition of
apoptosis (32–39). Our findings add to the list of beneficial
effects of mother’s milk by suggesting that mother’s milk
contains Hsp70 protein and has factors to promote Hsp70
induction.
Our study does not confirm whether supply of intact Hsp70

present in the milk or induction of Hsp70 in enterocytes is of
greater importance. Measurable amounts of secreted Hsp70
were found in expressed mother’s milk obtained by gentle
suction. It is unknown whether this method of obtaining milk
altered milk composition and Hsp70 amounts. Suckling pups
also had increased Hsp70 in stained intestinal sections. This is
consistent with other studies demonstrating the presence of
Hsp70 in bovine milk-producing cells and secreted milk (38).
Examination of epithelial RNA demonstrated increased Hsp70
mRNA in ileum from pups fed with mother’s milk, suggesting
increased transcription. Tissues for mRNA analysis were care-

fully washed before analysis to remove any adherent mother’s
milk and potential contaminating mRNA that may have been
secreted into the milk itself.
Hsp70 from mother’s milk and epithelial production may

both play protective roles; however, our study does not deter-
mine the specificity of Hsp70 in preserving barrier function. It
is likely that other factors also induced by mother’s milk have
a role in preservation of the barrier. Future studies examining
the effect of mother’s milk not containing Hsp70 or exogenous
Hsp70 added to formula are necessary to determine the spec-
ificity of the role of Hsp70 in intestinal protection. Hsp70
transcription may be stimulated by a mother’s milk factor.
Lactoferrin, which is known to be found in mother’s milk, has
been shown to increase Hsp70 in other models and is one
potential candidate (40). Additional studies beyond the scope
of work are necessary to identify the factors in milk that
stimulate Hsp70 production.
Inducible Hsps belong to a family of highly conserved

proteins, which play an important role in protecting cells
against stressors such as heat, ischemia/reperfusion injury,
oxidative stress, or exposure to radiation and toxins (20,41–
44). In the adult rat intestine, induction of Hsps before isch-
emia-reperfusion preserves mucosal integrity, attenuating mu-
cosal injury and neutrophilic infiltration (45). Hsp70, in
particular, protects intestinal epithelial cells against oxidant
injury in vitro (16,20). In vivo, commensal bacteria are re-
sponsible for inducing the expression of Hsps in the adult
intestine (19,21), which likely provide protection against the
hostile environment normally found in the gut. Therefore,
induction of Hsp70 expression, which results from these
bacterial-epithelial cell interactions, plays an important role in
maintaining intestinal homeostasis.
Intestinal immaturity of preterm infants increases sus-

ceptibility to intestinal injury. NEC is the most common
gastrointestinal injury in preterm infants, and human milk
has been shown to be protective against this disease. It has
been suggested that intestinal barrier disruption may con-
tribute to the pathogenesis of NEC, leading to enhanced
translocation of luminal bacteria across the intestinal epi-
thelium, which triggers an inflammatory response resulting
in the clinical signs and symptoms of this disease. Several
inflammatory mediators including platelet-activating fac-
tor, TNF�, and IL-1� are known to be elevated in NEC and
are able to disrupt the intestinal epithelial barrier. However,
it is not known if it is the presence of a harmful mediator
or the absence of a protective mediator that increases
susceptibility to disease. In our ex vivo model, formula
feeding alone did not result in an alteration in barrier
function as measured by FITC-dextran translocation in the
formula-fed loops. Oxidant injury significantly increased
permeability only in loops from formula-fed pups, which
did not have Hsp70. Injured intestinal loops from mother’s
milk-fed pups with abundant epithelial Hsp70 did not have
increased permeability. Shoji and Shimizu (39) have pre-
viously shown a protective effect of Hsp against oxidant
stress in rat jejunal IEC-6 cells. In that study, a specific
fraction of human colostrum administered in vitro for 24 h
did not induce Hsp70. Our in vivo model demonstrates that

Figure 4. Formula-fed pups demonstrate small intestinal damage but no
Hsp70 induction following stress. Formula-fed pups were treated to induce
small intestinal inflammation by episodes of hypoxia and bacterial gavage.
H&E-stained small intestinal sections were scored for inflammation. An
adjacent section on the same slide was stained for Hsp70 to determine whether
the hypoxia/bacteria stress induced Hsp70. Images shown are representative
of three separate pups for each group and for each pup, two sections were
analyzed (magnification �200).
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whole milk does induce Hsp70 with highest levels begin-
ning at d 3 suggesting that longer exposure or a factor
present in whole milk and secreted over time may be
necessary. The complex structure of the tight junction
suggests that maintenance of appropriate intestinal perme-
ability is multifactorial. The lack of change in baseline
permeability suggests that Hsp70 may not be involved in
basal regulation of tight junction function. Hsp70 is known
to be cytoprotective; thus, it is under conditions of stress
that we expect Hsp70 to play a role. We used NH2Cl
oxidant-induced stress as a well-described in vitro model of
intestinal damage. Our confocal images demonstrate Hsp70
localization to the ZO-1 containing tight junctional region,
suggesting that protection may be due to association with
ZO-1. However, Hsp70 may also bind other proteins that
form the junctional complex.
In adult models, Hsp have been shown to be increased

under conditions of stress such as bacteria exposure. We
attempted to induce Hsp production in the formula-fed pups
without baseline Hsp70 expression by exposure to bacteria
and hypoxia in the in vivo model of intestinal injury. These
clinically relevant stresses did not increase Hsp70 protein
expression, possibly because of induction of inflammation.
Other studies have shown that inflammation decreases Hsp70
transcription (17). Our hypothesis is that the Hsp70 needs to
be present before inflammatory injury to be protective.
Mother’s milk provides many benefits to infants including

intestinal protection. Our studies add to the building knowl-
edge base of means by which protection of the intestinal
barrier occurs. These results demonstrate that expression of
Hsp70 in the neonatal intestine is regulated by exposure to
mother’s milk. Although Hsp70 is present in mothers milk,
additional factors that are absent from formula must be present
for the induction of Hsp70 to occur. Further understanding of
the means by which mother’s milk increases Hsp70 in the
ileum will allow potential means of strengthening the intesti-
nal barrier in at-risk preterm infants.
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