
REVIEW ARTICLE

Adverse and Protective Influences of Adenosine on the Newborn
and Embryo: Implications for Preterm White Matter Injury and

Embryo Protection
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ABSTRACT: Few signaling molecules have the potential to influ-
ence the developing mammal as the nucleoside adenosine. Adenosine
levels increase rapidly with tissue hypoxia and inflammation. Aden-
osine antagonists include the methylxanthines caffeine and theoph-
ylline. The receptors that transduce adenosine action are the A1, A2a,
A2b, and A3 adenosine receptors (ARs). In the postnatal period,
A1AR activation may contribute to white matter injury in the preterm
infant by altering oligodendrocyte (OL) development. In models of
perinatal brain injury, caffeine is neuroprotective against periven-
tricular white matter injury (PWMI) and hypoxic-ischemic enceph-
alopathy (HIE). Supporting the notion that blockade of adenosine
action is of benefit in the premature infant, caffeine reduces the
incidence of bronchopulmonary dysplasia and CP in clinical studies.
In comparison with the adverse effects on the postnatal brain, aden-
osine acts via A1ARs to play an essential role in protecting the
embryo from hypoxia. Embryo protective effects are blocked by
caffeine, and caffeine intake during early pregnancy increases the risk
of miscarriage and fetal growth retardation. Adenosine and adenosine
antagonists play important modulatory roles during mammalian de-
velopment. The protective and deleterious effects of adenosine de-
pend on the time of exposure and target sites of action. (Pediatr Res
69: 271–278, 2011)

Adenosine Physiology

Adenosine. Adenosine consists of an adenine group at-
tached to a ribose moiety. Adenosine is present in all cells and
is a component of nucleic acids and energy-carrying mole-
cules (1,2). Adenosine can be directly released from the cell or
generated extracellularly (3).
Within the cell, adenosine is produced from the hydrolysis

of S-adenylyl homocysteine, ATP, ADP, or cAMP (Fig. 1) (4).
Carrier-mediated processes transport intracellular adenosine
to the extracellular space via bidirectional transporters (1,5).
Intracellular adenosine disposal involves adenosine kinase
(AK) that converts adenosine to AMP (6). Adenosine is also
converted to inosine by adenosine deaminase (ADA) (7).

Extracellular ATP is an important source of adenosine after
the conversion of ATP to ADP and AMP. Enzymes that
catalyze these reactions include the ectonucleotidases CD28
and CD39 that convert ATP to ADP and AMP, and P73 that
converts AMP to adenosine (4). Little is known about the
developmental expression and regulation of these enzymes.
Contributing to elevations of adenosine levels during hypoxia,
there is increased CD39 and CD73 activity, reduced cellular
uptake of adenosine, and reduced AK activity in hypoxic
conditions (6,8).
Under basal conditions, interstitial adenosine levels are

1–50 nM (2,6). Adenosine levels rapidly increased to �1 �M
with tissue ischemia, hypoxia, and inflammation (2). Local
adenosine levels thus provide a barometer of tissue activity
and oxygenation with tissue oxygenation acting to decrease
adenosine levels and oxygen deprivation increasing adenosine
concentrations.
Adenosine receptors. There are two major classes of purine

receptors—P1 and P2 (9,10). ATP and ADP bind to P2 purine
receptors that include P2Y purine metabotropic receptors that
couple with G-proteins (10). P2 receptors also include the P2X
receptors that are ion channels (10).
Adenosine receptors (ARs) are P1 purine receptors

(9,11,12). A1 and A3ARs inhibit adenylyl cyclase, and A2a
and A2bARs stimulate adenylyl cyclase (9,11,12). Similar
to other G-protein-coupled receptors (GPCRs), ARs con-
tain seven putative transmembrane (TM) spanning domains
(9,11,12). ARs were initially cloned as orphan receptors
(13). The identities of the genes encoding the A2a, A1,
A2b, and A3 ARs were subsequently established in sequen-
tial order (14–19).
Each AR subtype has a different pattern of tissue expression

and ligand-binding properties. In cell-based systems, A1ARs
have the highest affinity for adenosine (Ki 10 nM) (9,11,12).
The Ki values for adenosine for the A2a, A2b, and A3 ARs are
200, 2,000, and 10,000 nM, respectively, for the human
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receptors (9,11,12). A3ARs are also activated by the adeno-
sine metabolite inosine (Ki 2300 nM) (9,11,12).

In hypoxia and inflammation, A2a and A2bAR expression
is induced, in part, via hypoxia-inducible factor (HIF) action
(20). As such, in addition to increasing adenosine production,
there is amplification of cellular adenosine target expression
with hypoxia or inflammation.
During development, A1ARs play an important role in

transducing adenosine physiological effects. A1ARs are 326
amino acids in length with seven TM-spanning domains (18).
A1ARs activate Gi and Go, inhibit cAMP accumulation,
activate phospholipase C, and open ion channels (11).
Theoretical models of ligand-A1AR interaction have

been developed based on site-directed mutagenesis studies
(21). A1ARs, although, have not been crystallized, like
A2ARs (22), to confirm the proposed ligand-receptor inter-
action models.
A1AR-selective compounds are available and include the

agonist N6-cyclopentyladenosine (CPA) (23). Specific A1AR
antagonists include 8-cyclopentyl-1,3-dipropylxanthine
(DPCPX) (23). Methylxanthines, including caffeine and ami-
nophylline, are nonselective adenosine antagonists that block
A1ARs and other ARs (23).
AR expression in mature mammals. Highest levels of

A1AR gene expression are detected in adult brain, fat, and
testis (18). Less prominent A1AR expression is seen in the
heart and kidneys (18). A2aAR gene expression is seen in
brain, heart, and lung (17). A2bAR mRNA expression is
highest in colon and bladder (24). A2bARs expression is
also high in retina (25). A3AR gene expression is found in
testis, heart, and retina (19). Although levels of gene and
binding site expression are proportional for A1 and
A2aARs, gene expression is much greater than binding site
expression for A3ARs (26).
In the brain, A2aARs are expressed in several brain regions,

and heavy expression is seen in the striatum on cells express-
ing D2 dopamine receptors, an observation that dates back 2
decades (17). A2bAR expression is localized to the pars
tuberalis region of the hypophysis (16,24). Functional studies
have suggested the presence of A3ARs in the CNS (27).

A1ARs are among the most widespread GPCRs in the brain
(Fig. 2). In comparison with the relatively discrete expression
of other receptor subtypes, A1AR expression is at high level
throughout the brain (18,28). A1ARs are detected on neuronal
cell bodies, oligodendrocytes (OLs), and axons, with A1AR
immunoreactivity heavy on white matter tracks (28). A1ARs
are also present on nerve terminals (29), where they can act to
regulate growth cone structure (30) and influence neurotrans-
mitter release (31).
In the heart, A1AR expression is present in atria and

ventricles, and atrial A1AR expression is greater than that
seen in the ventricles (32). A2aARs are present in coronary
vessels in endothelial cells, smooth muscle cells of blood
vessels, and on myocytes (33). A3ARs are present in myocar-
dial tissue, although at low levels (19). A2bARs are present on
endothelial cells, smooth muscles cells, and fibroblasts (34).
In several tissues, A2aARs are present on endothelial and

smooth muscle cells of the vasculature and induce vasodila-
tion and reduced endothelial integrity (35). A2aARs play an
immunosuppressive role by acting on invariant natural killer-T
cells and neutrophils (36,37). A2bARs are expressed on
fibroblasts, mesenchymal cells, and macrophages and act to
influence tissue injury repair (38). A2bARs have been re-
ported to be present on T cells and neutrophils, and their
activation dampens the immune response (39). Recently,
A2bARs have been identified on type II pneumocytes in the
lung (38). A3ARs are expressed in mast cells and influence
histamine release (40). ARs are thus localized at sites to
modulate nervous system, cardiovascular system, and pulmo-
nary and immune system function.
Developmental expression of A1ARs. Although it is likely

that several of the different AR subtypes play important and
possibly protective roles during development, we know more
about the role of A1ARs in this regard, which is the major
focus of this report. A1AR expression is present in the brain
when neural tissue first appears, and A1ARs are one of the
earliest expressed GPCRs in the fetal heart (32).
During early embryogenesis, when the primitive cardiac

cylinder appears, A1AR gene expression is seen over the
developing myocardium. Labeling of the nodal region, which
controls embryo situs, is also seen (32). Later in embryogen-
esis, A1AR expression is seen in the heart, brain, spinal cord,
and kidney (32). Within the heart, A1AR binding site expres-
sion is more prominent over the atria than the ventricles (32).

Figure 2. A1AR mRNA and binding site expression in rat brain. Sense (A)
and antisense (B) images generated from in situ hybridization studies are
shown. (C) Specific [3H]DPCPX labeling by receptor autoradiography. Spe-
cific labeling appears as white. Note the mismatch between patterns of mRNA
and receptor labeling. The mRNA is expressed over cells in the granular layer
of the dentate gyrus (dg) and over cells in the pyramidal layer (py) of
Ammon’s horn. In contrast, [3H]DPCPX labeling of A1ARs is greatest in the
dentate gyrus molecular layer (dm), the polymorphic (po), and molecular
layers (am). Scale bar � 25 mm. Reprinted from Swanson TH et al. J Comp
Neurol 363:517–531; Copyright © 1995 Wiley-Liss, Inc., with permission.

Figure 1. Adenosine action. Adenosine is generated at intra- and extracel-
lular sites from the breakdown of ATP. Extracellular adenosine binds to
G-protein-coupled P1 purine receptors, A1, A2a, A2b, and A3. A1 and A3
receptors are Gi/o-coupled. A2a and A2b receptors are Gs-coupled and
increase intracellular cAMP levels.
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Reporter assay studies reveal that 500 base pairs of the
proximal A1AR promoter contains essential elements for
A1AR gene expression (41). Within the proximal A1AR pro-
moter, putative binding sites for cardiac transcription factors
GATA4 and Nkx2.5 were identified (41). Embryonic A1AR
expression thus involves activation of the A1AR promoter by
GATA-4 and Nkx2.5.
A1ARs are expressed in the nervous system during periods

of neuronal birth, migration, and axon sprouting (32). A1AR-
effector coupling has been observed in embryonic neurons and
in the fetal and neonatal brain (42). A1AR activation can
induce growth cone collapse in growing neurons (30). These
observations show that there is early functional A1AR effector
system coupling, an issue that had been questioned (43).

Adenosine and Periventricular White Matter Injury

Origins of the adenosine and perinatal brain injury hy-
pothesis. In the preterm infant, caffeine is well recognized to
stimulate respiration and is widely used clinically (44). In the
adult brain, A1AR activation exerts protective effects against
ischemic and excitotoxic injury, which is blocked by caffeine
(45). Although caffeine blocks acute neuroprotective effects of
adenosine, chronic caffeine consumption has been observed to
exert protective neurological effects in adults (45,46). During
development, caffeine was viewed to have potentially adverse
rather than protective effects on the developing nervous sys-
tem (44). Thus, the notion that adenosine could contribute to
neonatal brain injury and that adenosine blockade was protec-
tive was not a prevailing view. A series of animal studies,
although, revealed that these assumptions did not apply during
development.
The selective deletion of A1ARs in mice was not associated

with overt brain structural abnormalities, whereas mild behav-
ioral effects were observed (47). Considering that adenosine
exerts effects in situations of increased production, effects of
sustained A1AR activation on brain development were exam-
ined (42). Surprisingly, when neonatal rats were treated with
A1AR agonists, marked reductions in white and gray matter
volume were observed along with secondary ventriculo-
megaly (42), similar to that seen in hypoxia-reared rodents
(Fig. 3). Quantitative electron microscopy revealed reduction
in total axon volume, and reduced expression of myelin basic
protein (MBP) was seen. It is possible that the effects of
A1AR agonist treatment reflects effects of sustained A1AR
activation. Alternatively, it is possible that sustained activa-
tion of A1ARs leads to receptor desensitization and altered
A1AR action (48).
Genetically-engineered mice deficient in ADA with circu-

lating levels of adenosine 100-fold higher than control animals
(49) were also found to have ventriculomegaly and reduced
myelination (50). Importantly, the neuroanatomy of A1AR
agonist-treated and the ADA-deficient pups was strikingly
similar to that of the clinical condition periventricular white
matter injury [PWMI; also referred to as diffuse periventricu-
lar leukomalacia (PVL)], a condition affecting preterm infants
associated with hypomyelination (51).

Because it was observed that rearing neonatal mice in
hypoxia induced a PWMI phenotype with reduced myelina-
tion and ventriculomegaly (52), mice lacking A1ARs
(A1AR�/�) were studied in hypoxia. Although marked ven-
triculomegaly was observed in the hypoxia-exposed new-
borns, PWMI was prevented in the mice lacking A1ARs (Fig.
4) (50). These observations showed that rather than exerting
protective effects, adenosine acts via A1ARs to induce diffuse
white matter injury in the developing brain and may play a
role in PWMI causation.
Influences of adenosine on OLs. PWMI reflects injury to

or altered maturation of OLs, which are the myelinating cells
of the brain (51). OL development involves progression
through four recognized stages of development: OL precursor
cells (OPC), preoligodendrocyte (PreOLs), immature OLs,
and mature OLs. Damage to or altered development of PreOLs

Figure 3. A1AR activation induces PWMI. Left panel: neonatal rats reared
in hypoxia manifest features of PWMI including white matter loss and
secondary ventriculomegaly (V). Reprinted from Ment LR et al. Brain Res
Dev Brain Res 111:197–203; Copyright © 1998 Elsevier Science B.V., with
permission. Right panel: neonatal rats treated with the A1AR agonist, N6-
cyclopentyladenosine manifest features of PWMI similar to that observed in
hypoxia. Arrows depict location of ventricles.

Figure 4. Deletion of A1ARs protects against PWMI. Hematoxylin-stained
coronal sections from A1AR �/�, �, or �/� animals taken from the
midstriatum of P14 mice exposed from P3 through P14 to either chronic
sublethal hypoxia (9.5% O2) or room air. Ventricular enlargement was
observed in �/� and � mice exposed to hypoxia but not in �/� mice
exposed to hypoxia and �/� mice reared in normoxia. Scale bar: 1 mm.
Reprinted from Turner CP et al. Proc Natl Acad Sci U S A 100:11718–11722;
Copyright © 2003 The National Academy of Sciences of the U.S.A., with
permission.
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is believed to be a major factor in PWMI causation (51);
PreOLs are the predominant OL stage present when the risk
for PWMI is greatest (51).
An important feature of OLs is that they express each of the

different AR subtypes (53). Interestingly, treatment of OPCs
in culture with adenosine promotes accelerated OL matura-
tion, an effect that is A1AR mediated (54). Activation of
A1ARs also stimulated OPC migration, without adverse af-
fects on cell viability (53).
Similarly, studies of OPCs and PreOLs in hypoxia reveal

accelerated maturation and reduced proliferation (55). In-
creased expression of the cell cycle regulatory proteins
p27(Kip1) and phospho-cdc2 are seen, showing that hypoxia
induces premature OPC maturation (55).
These data show that hypoxia-induced hypomyelination is

associated with altered OL lineage progression and that aden-
osine plays a prominent role in this process. Rather than
causing OL death, adenosine and hypoxia lead to premature
differentiation of OPCs. It is postulated that this series of
events leads to reduced numbers of OLs contributing to
PWMI. As such, strategies aimed at stimulating OL prolifer-
ation may provide a basis for developing new PWMI treat-
ments (56).
Protective influences of caffeine on the PWMI. Caffeine is

a nonselective adenosine antagonist (45) widely used in neo-
natal medicine to stimulate respiration in premature infants
(57). The IC50 value at which caffeine binds to A1 and
A2aARs is �10 �M (45), with complete receptor saturation
observed �100 �M (45).
To test whether caffeine has neuroprotective effects, neona-

tal mice reared in hypoxia were treated with caffeine (58). We
observed that ventriculomegaly and hypomyelination was re-
duced by caffeine treatment (58) (Fig. 5). Caffeine treatment
resulted in more normally arranged myelinated axon orienta-
tion than that observed in hypoxia (58). Caffeine also in-
creased the proportion of immature OLs (58). Providing fur-
ther support for the notion that caffeine is neuroprotective in

development, improved myelination was seen in nonrandom-
ized studies of premature baboons treated with caffeine (59).
Recently, clinical studies support the notion that caffeine

has beneficial effects in the premature infant (57,60,61). Pre-
term infants randomized to be treated with caffeine or placebo
in the caffeine for apnea of prematurity (CAP) study had
reduced rates of bronchopulmonary dysplasia (BPD) and
patent ductus arterious (PDA) when treated with caffeine
(57,60,61). Caffeine-treated infants had significantly lower
rates of CP than the control group (57,60,61). This effect was
most prominent in infants with respiratory distress (61). Brain
imaging data, although, are needed to directly assess influ-
ences on white matter formation.
It is also important to note that the onset of caffeine therapy

was on average at 3 days of age in the CAP study, and it is
likely that adverse effects of adenosine on OLs have taken
place by this age. Studies of earlier intervention caffeine
use, coupled with direct assessment of white matter struc-
ture by contemporary imaging methods, are indicated to
determine whether caffeine is indeed neuroprotective in the
premature infant, before caffeine therapy is adopted for
neuroprotective purposes.
Other neuroprotective roles of caffeine. Although we pos-

tulate that caffeine exerts neuroprotective effects by blocking
adenosine action on OLs, it is likely that caffeine involves
action at other ARs. A2a and A2bARs are located on capil-
laries and their activation can induce capillary leak (35),
raising the possibility that adenosine contributes to intraven-
tricular hemorrhage (IVH). Because IVH occurs shortly after
birth, potential preventative effects of caffeine on IVH may
only be detected with early intervention. Interestingly, CAP
data show lower IVH rates in the caffeine-treated infants than
the placebo group (60). It is indeed likely that these actions
reflect effects of caffeine on blood-brain barrier function of the
infant.
Another cause of perinatal brain injury is hypoxic-ischemic

encephalopathy (HIE), which affects preterm and term infants
(62). Although the chronic sublethal hypoxia model best
mimics diffuse PWMI (52), the ischemic-reperfusion model
better recapitulates HIE and stroke injury (63).
Studies performed �1 decade ago revealed that caffeine

reduced brain injury in mice after HIE (64). To date, studies of
transgenic mice have not revealed that a single AR mediates
caffeine-protective effects, as protective effects of caffeine are
seen in A1, A2a, A2b, and A3 knockout mice (65). Protective
caffeine effects on HIE are thus either AR independent or two
or more receptor subtypes mediate this form of brain injury.
It is also important to consider that although protective

effects of adenosine antagonism have been observed, as noted
above, other investigators have observed adverse effects
(44,66,67). These differences are likely related to the timing of
the insults, which are in more mature animals.

Adenosine Influences on Respiratory Funciton

Adenosinergic influences on respiration and lung disease.
For several decades, caffeine has been observed to promote
respiratory drive in term and premature infants providing a

Figure 5. Caffeine protects against PWMI. (A) Representative coronal views
of the lateral ventricles (arrow) for mice reared in hypoxia by dams drinking
water (upper panel) or water-containing caffeine (CAF; lower panel). Ven-
triculomegaly was not seen in mice reared in hypoxia by dams drinking water
with caffeine. (B) Caffeine treatment during chronic sublethal hypoxia ame-
liorates reductions in cerebral myelination. MBP staining shows the typical
myelination patterns of animals reared in normoxia (A) relative to those in
chronic hypoxia treated with vehicle (Veh; B) or with caffeine (Caf; C). Scale
bar: 1 mm. Reprinted from Back SA Ann Neurol 60:696–705; Copyright ©
2006 American Neurological Association, with permission.
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basis for use in treating apnea (44). Studies of transgenic
mice indicate that adenosine exerts suppressive effects on
respiration via A1ARs (47). Stimulatory effects of caffeine
on respiration are not observed in A1AR knock-out mice,
identifying A1ARs as mediating caffeine-stimulated respi-
ratory drive (47).
An important beneficial effect of caffeine observed in the

CAP study was a reduction in rates of BPD (57,60,61). At
present, the biological basis of this observation is not known.
However, it is likely that this effect reflects blockade of
A2aARs and/or A2bARs, which influence capillary perme-
ability, inflammation, and lung remodeling as these receptor
subtypes promote capillary leak (8,34).
A2aARS can act on immune cells to modulate inflamma-

tion, generally having anti-inflammatory actions, but varying
with cell type effected (37,68). Activation of A2aARs on
neutrophils can result in neutrophil infiltration (37,68).
A2bARs activation can contribute to inflammation in the lung,
as A2bARs on macrophages trigger cytokine release that
contributes to pulmonary fibrosis (69). Although it is clear that
adenosine plays an important role in developmental lung
injury, further studies of adenosine action on vascular leak,
inflammation, and fibrosis are needed to elucidate the mech-
anisms involved in developmental lung injury.

Adenosine Influences on the Embryo

Influences on embryogenesis. Because adenosine and
A1ARs mediate adverse effects of hypoxia on the developing
postnatal brain and lung (50), we anticipated that blockade of
adenosine action would protect embryos from hypoxia (50).
To our surprise, we observed that adenosine exerts dramatic
protective effects during embryogenesis (70,71).
Timed pregnant dams from A1AR � �A1AR�/� matings

were exposed to hypoxia or room air during early embryo-
genesis (71). Under normoxic conditions, embryos lacking
A1ARs develop normally. However, embryos lacking A1ARs
were markedly growth retarded in hypoxia (71) (Fig. 6). These
data show that adenosine acting via A1ARs play an important
role in protecting the embryo from hypoxia.

Observing A1AR embryo protective roles, the molecular
pathways that may mediate these effects were examined. We
found differences in networks of molecular responses to hyp-
oxia, suggesting that adenosine alters HIF1-� signaling (71).
We also found that the amount of stabilized HIF-1� protein
was markedly reduced in A1AR�/� embryos exposed to
hypoxia (71).
After embryonic day (E) 10 in mice, the embryo is depen-

dent on the fetal heart for adequate nutrient delivery (6). Thus,
to test whether adenosine confers embryo protective effects by
acting at the heart, mice that lack A1ARs only in the heart
were developed (70). Remarkably, we observed that embryos
lacking cardiac A1ARs had reduced survival in hypoxia, and
those that survived were growth retarded (Fig. 7).
These observations show that adenosine plays a key role in

protecting the embryo against intrauterine stress, and adeno-
sine exerts protective effects through A1ARs expressed in the
heart. It is likely that adenosine action on embryo cardiac
function plays a major role in embryonic responses to intra-
uterine stress.
Effects of caffeine on the embryo. Because caffeine is

widely consumed, potential effects of caffeine on the devel-
oping fetus have been examined in animals and humans (72).
A cup of coffee, tea, or cola contains 100–300 mg of caffeine,
and it is estimated that �60% of pregnant women consume
caffeine-containing beverages (72). After administration to
pregnant rodents, embryo and fetal caffeine levels are 90%
of maternal levels (45,72). Fetal caffeine clearance is much
longer than that observed in the dam, with a half-life of
12–24 h (45,72).
In rats, teratogenic effects of caffeine on the fetal heart are

observed at doses in excess of 50 mg/kg (73). The most
common cardiovascular malformations are ventricular defects
(74). Cardiac morphogenesis has been found to be impaired in
embryos from mothers treated with both ethanol and caffeine
(75), showing that caffeine can amplify effects of other toxins.
In contrast to animal studies, major teratogenic effects of

caffeine have not been found in humans (73). Few studies,
although, have evaluated effects of caffeine consumption dur-

Figure 6. A1ARs protect against growth retarda-
tion in embryos. Hypoxia induces severe growth
retardation in A1AR�/� embryos. Dams were
exposed to 10% O2 from E8.5 to E12.5. C–R
length was measured for normoxia and hypoxia-
treated embryos at E12.5. Under normoxia condi-
tions, (A) A1AR� embryos were indistinguishable
from A1AR�/� (B) embryos. Under hypoxic con-
ditions, A1AR� embryos (C) were smaller then the
normoxic controls (A), but A1AR�/� embryos (D)
were significantly smaller than A1AR�/� or
A1AR� normoxic embryos. A1AR�/� hypoxic
hearts (H) were smaller than A1AR� normoxic
(E), A1AR�/� normoxic (F), or A1AR� hy-
poxic hearts (G). Scale bars: 1 mm. Reprinted
fromWendler CC et al. Proc Natl Acad Sci U S A
104:9697–9702; Copyright © 2007 The National
Academy of Sciences of the U.S.A., with
permission.
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ing early embryogenesis (72,73). Recent studies reveal that
coffee consumption is associated with an increased risk of
cardiovascular malformations (72,76). Caffeine consumption
during pregnancy is also associated with an increased risk of
miscarriage in a dose-dependent manner, an effect most pro-
nounced in early pregnancy (77,78).
Clinical studies suggest that caffeine may influence fetal

growth. The risk of having small for GA infants is doubled if
mothers have high caffeine intake (79). Women who reduce
their caffeine intake from �300 mg/d to less than that amount
early in pregnancy have lower risks of delivering infants with
LBW than women who do not (79,80).
Considering the above, we tested whether caffeine exerts

effects on the embryo similar to that seen when A1ARs are
deleted (81). Pregnant mice in room air or hypoxia were
treated with a single dose of caffeine at E8.5 resulting in
circulating concentrations in the dam equivalent to those seen
with two cups of coffee (45). The time of exposure was
equivalent to 20–30 d of human gestation, a time when many
women are not aware that they are pregnant.
Caffeine was associated with reduced fetal viability (81).

When embryo size was assessed, the caffeine-treated embryos
were smaller than vehicle-treated embryos (Fig. 8) (81). When
cardiac histology was examined, caffeine resulted in reduced
ventricular myocardial area (Fig. 8). Caffeine also reduced
HIF-1� protein expression in hypoxia (81) (Fig. 9).

We next assessed whether there were long-term effects of
prenatal caffeine exposure. Pregnant dams were exposed to

hypoxia or room air from E8.5 to 10.5 and treated with
caffeine or vehicle. At 2 mo of age, the hypoxia-caffeine
exposed male mice were significantly heavier than controls,
and body fat content was significantly greater when there was
prenatal caffeine exposure (81). Echocardiography of adult
animals revealed decreases in cardiac function in the groups
exposed to the single dose of caffeine (81).
At present, the adenosine-mediated effects, which are dis-

rupted by caffeine that trigger embryo loss or altered fetal
development, are not known. During early embryogenesis,
cardiac output is much dependent on fetal heart rate. We
observe that caffeine leads to alterations in embryo heart rate.
It has also been observed that caffeine alters maternal cardiac
output and effects embryo cardiovascular function (82). Thus,

Figure 7. Cardiac A1ARs protect against hypoxia. Embryos exposed to
hypoxia for 2 days in utero from E8.5 to 10.5 were not growth retarded
compared with room air controls, but embryos exposed to hypoxia in utero
from E10 to 12.5 exhibited significant growth retardation. Embryos exposed
to hypoxia for 3 d demonstrated an even greater amount of growth retardation
compared with controls. Normoxic embryos both (A) normox/flox and (B)
normox/Cre displayed normal morphology and growth. The hypoxic embryos
(C) hypox/flox and (D) hypox/cre were significantly growth retarded; how-
ever, there was no difference between hypox/Flox and hypox/Cre embryos.
Scale bar is 1 mm. Reprinted with authors’ permission from Wendler CC et
al. BMC Dev Biol 10:57; Copyright © 2010 Wendler et al.

Figure 8. Hypoxia and caffeine treatment lead to reduced ventricular myo-
cardial tissue. Embryos were exposed to hypoxia and caffeine from E8.5 to
E10.5. Compared with NorNS (A), ventricular myocardial area was decreased
by 37.3% in the NorCf (B) group. Exposure to hypoxia caused a more
substantial decrease in myocardial area, including 55.7% in the HyNS group
(C) and 53.3% in the HyCf group (D5). V, ventricle; *, endocardial cushion.
Scale bars � 100 �m. Reprinted from Wendler CC et al. FASEB J 23:1272–
1278; Copyright © 2009 FASEB, with permission.

Figure 9. Caffeine blocks hypoxia-induced HIF1� protein accumulation in
hypoxic embryos. Caffeine treatment inhibited HIF1� protein accumulation in
hypoxic embryos. Dams were injected with normal saline or 20 mg/kg
caffeine and then placed immediately in hypoxia (10% O2) or left in room air
(21% O2). Embryos were collected after 6 h, and whole embryo protein was
isolated. Western blot analysis of HIF1� protein expression demonstrated a
40% reduction in stabilized HIF1� protein in caffeine-treated embryos ex-
posed to hypoxia. � Actin protein was examined on the same Western blots
as a loading control. Reprinted from Wendler CC et al. FASEB J 23:1272–
1278; Copyright © 2009 FASEB, with permission.
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it is likely that alteration in embryo cardiac activity by caffeine
leads to altered tissue perfusion, contributing to embryo loss,
or altered embryo development.

Conclusion

An expanding body of data show that adenosine plays an
important role during pre- and postnatal development. In-
creased A1AR action at stages equivalent to the last trimester
of pregnancy perturbs OL development resulting in hypomy-
elination and a PWMI phenotype. Caffeine treatment or dele-
tion of A1ARs promotes myelination in neonates exposed to
hypoxia. Thus, we have identified unique aspects of A1AR
action that leads to PWMI (Fig. 10).
In contrast to the neonatal period, reduced A1AR action

during embryogenesis leads to embryo loss, acute growth
retardation, and hearts with thinner ventricular walls. Caffeine
induces defects similar to that seen in embryos lacking A1ARs
exposed to hypoxia. A1ARs are needed for full stabilization of
HIF-1� protein in hypoxia. Embryonic caffeine treatment is
associated with increased body fat and reduced cardiac func-
tion in adulthood. Thus, we have identified unique aspects of
A1AR action that protects the embryo against acute hypoxic
insults at embryonic stages (Fig. 11). As such, it is possible
that the mechanism by which caffeine leads to embryo loss
during early gestation is via blockade of A1AR action.
Adenosine plays important modulatory roles in mammalian

development, conferring protective or deleterious effects de-

pending on the timing of exposure and site of action. As such,
adenosine antagonists, including caffeine, may be an unwel-
come exposure for the embryo but a welcome therapeutic for
the preterm infant.
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