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ABSTRACT: Guanylin receptor guanylate cyclase (GC-C) peaks in
neonatal intestine and is involved in either enterocyte proliferation or
chloride secretion. The latter is more potent when GC-C activator
guanylin, or its analog Escherichia coli heat-stable enterotoxin (ST),
is added to the mucosal rather than serosal side of intestinal mono-
layers. By using Ussing chambers, we investigated transepithelial ion
transport and enterocyte proliferation and their mechanisms in re-
sponse to the addition of guanylin or ST to the mucosal or serosal
side of Caco-2 monolayers and in ileal specimens from neonates.
GC-C activation showed a polar pattern of the effects. GC-C mucosal
activation resulted in a potent cGMP-chloride secretion activation
and in a marginal enterocyte proliferation. Conversely, serosal GC-C
activation induced a potent enterocyte proliferation, through MAP
kinase ERK 1/2. Finally, the inhibition of ERK1/2 enhanced the Isc
increase in response to serosal but not to mucosal ST stimulation,
indicating that ERK1/2 also acts as a brake of chloride secretion.
These data suggest that the guanylin/GC-C system plays a key role in
early postnatal intestinal adaptation exploiting the polar structure of
enterocyte. (Pediatr Res 69: 17–22, 2011)

The human intestinal epithelium is organized in crypt-villus
units with stem cells in the crypt that proliferate and

mature while migrating along the villus (1). The mature
enterocyte is a polarized cell whose structure is functional to
create a barrier between the intestinal environment and the
bloodstream and to transport ions, solutes, and macromole-
cules between the apical and basal compartments (2). A
number of autocrine and paracrine messengers act on either
side of the enterocyte to modulate these functions (3). Human
guanylin is one such modulator, and similar to its bacterial
analog, Escherichia coli heat-stable enterotoxin (ST), it binds
to intestinal guanylyl cyclase C (GC-C) and induces an in-
crease in cGMP (4) that triggers active chloride secretion.
GC-C receptors are located along the entire intestine of mam-
mals including humans (5–7). However, GC-C is in a polar
fashion distributed in the enterocyte, with a lower receptor
density in the basolateral than in brush border membranes (8).
We previously reported that the rate of chloride secretion is
lower when guanylin is added to the basolateral side than to
the apical side of intestinal epithelium mounted in Ussing
chambers (9).

In addition, guanylin receptor density is age dependent (7),
and the number of GC-C receptors is highest in the small
intestine and colon of newborn infants and decreases with age
(10). Because GC-C peaks sharply at birth, we suggested that
the abundance of GC-C receptors in neonates induces copious
intestinal water secretion on guanylin stimulation that allows
meconium expulsion in the very first days of life (9). Guanylin
is the endogenous ligand of GC-C. It is produced in intestinal
cells, is detected in both the intestinal lumen and the blood
(11), and induces chloride secretion. E. coli ST is the exoge-
nous analog of guanylin. It exerts the same effects on ion
secretion as guanylin but is more potent (9).

GC-C has been implicated in the regulation of enterocyte
proliferation and differentiation along the crypt-villus axis.
Deletion of cGMP signaling in GC-C-null mice selectively
induced crypt hyperplasia with a decreasing intestinal cepha-
locaudal gradient (12). Crypt hyperplasia reflected, in part, an
increase in proliferating cells and an acceleration of cell cycle.
These changes were associated with an increase in migration
and apoptosis along the crypt-villus axis. These effects were
more evident in small intestine than in colon (12). The same
effects were observed in the colon of guanylin-null mice but
not in their ileum (13). Indeed, cGMP levels, cell migration,
and apoptosis were similar in the colon of guanylin-null mice
and of wild-type mice, which suggests activation of compen-
satory mechanisms (13). Recently, Garin-Laflam et al. (14)
reported that GC-C activation reduces apoptosis in intestinal
epithelial cells. They observed an increased apoptotic sensi-
tivity of intestinal epithelial cells in uroguanylin knockout
mice and in GC-C knockout mice after radiation and provided
evidence that cGMP is a primary downstream mediator of
GC-C activation in protecting the enterocyte from radiation-
induced apoptosis.

The different receptor distribution in basolateral and apical
compartments of enterocytes suggests a specific function. We
hypothesized that the role of GC-C in the regulation of
intestinal ion transport and cell proliferation depends on cell
polarity and that the two effects are polarized in the entero-
cyte. To test this hypothesis, we added guanylin to the muco-
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sal or serosal side of polarized enterocyte monolayers and
monitored cell cycle progression. Cell cycle progression in-
volves the activation of the intracellular MAP kinase cascade
(15) that leads to DNA synthesis in the nuclei. Therefore, we
investigated whether the extracellular signal-regulated kinase
(ERK) pathway, a member of MAP kinase family, was in-
volved in the guanylin-induced cell response. Finally, we
investigated the effects of GC-C activation in ex-vivo experi-
ments on intestinal specimens obtained from human neonates.

MATERIALS AND METHODS

Cell growth and culture. Caco-2 cells were used as small intestinal cell
model. Caco-2 cell monolayers are widely used as model of enterocyte
proliferation and ion transport studies (16,17). After 15 d postconfluence, the
cells exhibit a well-differentiated brush border on the apical surface and tight
junctions with typical small-intestinal microvillus hydrolases and nutrient
transporters. Caco-2 cells were grown in DMEM essential medium with high
glucose concentration (4.5 g/L) at 37°C in 5% CO2 atmosphere. The medium
was supplemented with 10% fetal bovine serum, 1% nonessential amino
acids, penicillin (50 mU/mL), and streptomycin (50 �g/mL) and changed
daily. To obtain a cell monolayer typical of small intestinal mucosa, Caco-2
were grown on uncoated, polycarbonate Transwell filters (Costar Italia,
Milan, Italy) for up 15 d postconfluence. Cells were used between the 22nd
and 37th passage.

Cell proliferation. We used ST in the experimental model because it is
more potent than guanylin. However, all experiments were repeated with
guanylin. Caco-2 cells were serum starved for 24 h and then stimulated with
guanylin or ST. One hour before paraformaldehyde fixing and Triton X-100
permeabilizing, bromodeoxyuridine (BrdU; Roche Diagnostics, Monza, Italy)
was added to the medium at the final concentration of 100 �M. Incorporation
of BrdU was monitored by treating cells with an anti-BrdU antibody (Invitro-
gen Corporation, CA) and a mouse secondary tetramethylrhodamine isothio-
cyanate-conjugated antibody (Jackson, ImmunoResearch, PA). The G03S
transition was expressed as the ratio between the number of cells incorporat-
ing BrdU and the total number of cells. Stained cells were analyzed with an
Axionplan 2 fluorescent microscope (Carl Zeiss MicroImaging, Inc., Jena,
Germany).

MAPK ERK1/2. Cells were serum starved for 48 h before stimulation.
Guanylin or ST was added at the concentration of 10�6 mol/L for 15 min or
for the indicated time in the time-course experiments. The cells were then
lysed in lysis buffer (40 mM Tris pH7.5, 150 mM NaCl, 1 mM EDTA, 1%
Triton X-100, 40 mM glycerophosphate, 0.1 mM phenylmethylsulfonylfluo-
ride, 10 �g/mL leupeptin, 1 �g/mL pepstatin, 10 �g/mL aprotinin, 0.1 mM
NaF, 0.1 mM sodium pyrophosphate, and 0.1 mM orthovanadate). Total
protein supernatants were measured with the BIORAD protein assay (Bio-
Rad Laboratories, Segrate, Italy). Equal amounts of proteins were run on a
12% Bis-Tris Gel NuPAGE (Invitrogen) and transferred onto a nitrocellulose
filter. The filter was incubated with a mouse MAb specific for the phosphor-
ylated (activated) form of ERK1/2 (Santa Cruz Biotechnology, CA). Species-
specific HRP-conjugated secondary antibodies (GE Healthcare, Milan, Italy)
and enhanced chemiluminescence (ECL Plus; GE Healthcare, Milan, Italy)
were used for protein visualization. Filters were then stripped and reprobed
with a rabbit MAb specific for ERK1/2 (total) to verify that all samples
contained comparable levels of the ERK1/2 protein. Signals from doublet
bands were acquired with a Mustek 1248UB scanner, and the Scion Image
program was used for densitometric analyses.

Transepithelial ion transport. Each filter with a Caco-2 cell monolayer
was mounted as a flat sheet between the mucosal and serosal compart-
ments of Ussing chambers as previously described (9). Short circuit
current (Isc) was measured before and after guanylin or ST (10�6 mol/L)
were added to the serosal or mucosal side of cell monolayers. Isc is
expressed as microambert per square centimeter. Cell viability was as-
sessed at the end of each experiment by measuring the electrical response
to serosal addition of 5 mmol of theophylline. An Isc increase of at least
3-fold compared with the preaddition value was considered proof of cell
viability. To investigate the role of ERK1/2, the specific inhibitor
PD098059 (40 �M) was added 30 min before ST.

cGMP intracellular concentrations. cGMP was measured with a RIA
commercial kit (cGMP 125I assay system; GE Healthcare, Milan), according
to the manufacturer’s instructions. Results were calculated as picomoles of
cGMP per square centimeter and expressed as fold increase over basal level.

Experiments with human small intestinal specimens. Human small in-
testinal specimens were obtained from three newborns undergoing surgery

because of intestinal obstruction. Ileal mucosa sampled at the edge of the
resection was used for organ culture. Intestinal tissue was flushed with cold
PBS and cut in small squares within 30 min of the surgical excision.
Specimens were observed at the stereomicroscope to exclude necrosis and
placed in tissue culture wells in DMEM with a high glucose concentration
(4.5 g/L), 0.5% fetal bovine serum, 1% nonessential amino acids, 2%
penicillin (50 mU/mL), and streptomycin (50 mg/mL) and incubated in 5%
CO2/95% air for 1 h before treatment. The tissue was oriented with the
mucosal side upward and treated with ST (10�6 mol/L) for 2 h. ERK1/2 and
cGMP were measured as described above. The children’s parents gave their
informed consent to the study. The study protocol was approved by the Ethics
Committee of the School of Medicine, University of Naples Federico II
(Naples, Italy).

Chemicals. All chemicals including guanylin and ST were obtained from
Sigma Chemical Co.–Aldrich srl (Milan, Italy); all chemicals for cell and
organ culture were from Life Technologies GIBCO BRL (Mascia Brunelli,
Milan, Italy).

Statistical analysis. The p values were calculated using a one-way
ANOVA, and p � 0.05 was considered statistically significant.

RESULTS

Enterocyte proliferation in response to GC-C activation.
In fully differentiated Caco-2 cell monolayers, all cells are
synchronized in G0-phase. Incubation of Caco-2 cell mono-
layers with increasing concentrations of ST resulted in an
increase of BrdU incorporation, which indicates the G03S
transition (Fig. 1A). The effect was dose dependent and more
potent with serosal than mucosal GC-C activation. Simulta-
neous addition of ST to both sides resulted in a slightly more
potent effect than that observed when ST was added to either
side of the epithelial monolayer. GC-C stimulation also caused
ERK1/2 activation with a polar pattern similar to that ob-
served with ion transport, and activation was more potent with
serosal addition than with mucosal addition (Fig. 1B). Gua-
nylin induced both the G03S transition in polarized Caco-2
cell monolayers and ERK1/2 activation. Both effects were
more pronounced when guanylin was added to the serosal side
than to the mucosal side of intestinal epithelial cells (Fig. 1C
and D). As expected, the magnitude of both effects was lower
than that induced by ST.

After serosal ST addition, ERK1/2 phosphorylation in-
creased at 15 min, peaked at 30 min, and returned to basal
level within 24 h (Fig. 2A). After mucosal ST addition,
ERK1/2 phosphorylation was delayed and ended sooner than
after serosal ST addition (Fig. 2A). In addition, ERK1/2
phosphorylation was less pronounced with mucosal stimula-
tion than with serosal stimulation, further suggesting a link
between ERK1/2 activation and the guanylin proliferative
effect. To directly investigate whether ERK1/2 was involved
in enterocyte proliferation, Caco-2 cells were preincubated
with the ERK1/2-specific inhibitor, PD098059, for 24 h before
GC-C activation (Fig. 2B). PD098059 significantly reduced
the proliferative effect exerted by ST and guanylin. However,
PD09059 did not completely inhibit the effect suggesting that
pathways other than ERK1/2 are also involved in GC-C-
induced proliferation.
Role of ERK1/2 in GC-C-induced ion secretion. ERK1/2 is

also implicated in the regulation of intestinal ion transport
(18), and some evidence links ERK1/2 with GC-C signaling in
ion secretion (19). Caco-2 cells were preincubated in Ussing
chambers with the ERK1/2 specific inhibitor, PD098059, for
30 min before GC-C activation. There were no differences in
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chloride secretion with or without PD098059 when ST was
added to the mucosal side. Conversely, chloride secretion
was greatly enhanced in the presence of PD098059 when
ST was added to the serosal side (Fig. 3). In this condition,
cGMP intracellular levels did not differ from that of con-
trols treated with ST alone (data not shown). This finding
indicates that inhibition of ERK1/2 increases chloride se-
cretion through a cGMP-independent mechanism when
GC-C is activated by the serosal side but not when GC-C is
activated by the mucosal side.
Effects of GC-C activation in cultured human small in-

testine mucosa. We next investigated the effects of GC-C
activation in an ex vivo experimental model. We used ileal
specimens from three newborns for intestinal organ culture. At
this age, intestinal mucosa expresses the highest number of
GC-C receptors (7,10). Neonates A and B were 1 d of age and
born at term. Neonate C was aged 8 d and born at the 25th
week. We evaluated in parallel specimens the activation of
ERK1/2 and the intracellular levels of cGMP, which is the
mediator of GC-C-induced chloride secretion. GC-C serosal
activation induced more potent ERK1/2 activation than mu-

Figure 1. GC-C activation induces cell cycle
progression and ERK1/2 activation in intestinal
epithelial cells. Increasing ST (A) or guanylin
(C) concentrations were added to the mucosal
(f) or serosal (�) side, alone or together , of
Caco-2 cell monolayers. S phase nuclei were
evaluated by BrdU incorporation. Results are
expressed as percentage of BrdU incorporation
of five independent experiments and are the
means � SEM. ST (B) or guanylin (D) (1 �
10�6 mol/L) were added to the mucosal (M) or
serosal (S) side, alone or together (M�S), of
Caco-2 cell monolayers, and ERK1/2 activation
was evaluated by Western blot. Results are ex-
pressed as arbitrary unit (DU) of four indepen-
dent experiments and are the means � SEM
*p � 0.05 vs control; †p � 0.05 vs mucosal
stimulation at the same concentration; ¶p � 0.05
vs serosal stimulation at 1 � 10�7 mol/L.

Figure 2. Role of ERK1/2 in the proliferative effect induced by GC-C activation in intestinal epithelial cell monolayers. ST (1 � 10�6 mol/L) was added to
the mucosal (M) or serosal (S) side of Caco-2 cell monolayers, and ERK1/2 activation was evaluated at different times of stimulation by Western blot. (A)
Phosphorylated vs total ERK1/2 ratio is expressed as fold increase vs control. Mucosal GC-C activation resulted in a significant increase in ERK1/2 activation
only at 30 min. Results are expressed as fold increase vs control of four independent experiments and are the means � SEM *p � 0.05 vs control, ¶p � 0.05
vs mucosal stimulation at the same time. (B) Caco-2 cells were stimulated with ST with (f) or without preincubation with PD09059 (�) as described in Methods
section. Results are expressed as percentage of BrdU incorporation of three independent experiments and are the means � SEM *p � 0.05 vs control under
standard conditions; †p � 0.01 vs standard conditions.

Figure 3. ERK1/2 inhibition enhances chloride secretion induced by
GC-C activation at serosal but not mucosal side of intestinal epithelial cell
monolayers. GC-C activation was obtained with the maximal effective
dose of ST (1 � 10�6 mol/L) at the mucosal (M) or serosal (S) side of
Caco-2 cell monolayers. Caco-2 cells were stimulated with ST with (f) or
without preincubation with PD09059 (�) as described in Method section.
Results are expressed as �Isc and are the means � SEM of four indepen-
dent experiments. *p � 0.05 vs control under standard conditions; †p �
0.01 vs control in the presence of PD098059; ¶p � 0.01 vs ST serosal
addition under standard conditions.
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cosal GC-C activation. cGMP intracellular levels were signif-
icantly higher after mucosal than after serosal GC-C activation
in the specimens from all newborns (Fig. 4). Overall, the
pattern observed in neonatal human specimens was in all
similar to that observed in Caco-2 cells.

DISCUSSION

Herein, we report that guanylin induces two distinct effects
in the enterocyte, on ion transport and cell proliferation,
respectively, and the two effects involve two distinct path-
ways, namely cGMP and ERK1/2. In addition, the two effects
have an inverse polar pattern: mucosal GC-C activation
mainly affects ion secretion, whereas serosal GC-C activation
mainly affects cell proliferation. A link between the two
effects is provided by ERK1/2, which not only mediates the
effect on cell proliferation but also acts as a brake of chloride
secretion. Also, the latter effect has a polar pattern, being
elicited by serosal but not by mucosal GC-C activation.

We previously reported that the increase in intestinal chlo-
ride secretion induced by guanylin or ST is greater with
mucosal than serosal GC-C activation (9). The novel finding
in this article is the polar response to GC-C activation in terms
of enterocyte proliferation and the role of ERK1/2 in both
Caco-2 cells and human intestine. Guanylin induced entero-
cyte proliferation as shown by BrdU incorporation that indi-
cated that cycle-arrested cells entered S-phase. This finding
implicates GC-C activation in intestinal cell proliferation.

ERK1/2 is an established physiological modulator of en-
terocyte proliferation (20). Its activated form is highly ex-

pressed in proliferating enterocytes and is reduced during
differentiation (15). In addition, ERK1/2 signaling mediates
the intestinal cell proliferation induced by such growth factors
as glutamine (21), glucagon-like peptide-2 (22), growth hor-
mone (23), and lactoferrin (24,25).

In this study, we found that ERK1/2 mediates cell prolif-
eration induced by guanylin. Enterocytes are polarized cells
with structurally and functionally distinct basolateral and api-
cal brush border compartments. An example of polarization is
provided by the differential response of cGMP to L-arginine
stimulation in intestinal mucosa (26). External signals may
modulate enterocyte functions depending on the side of action
(27). Guanylin receptors GC-C are mainly located on brush
border membranes whereas ERK1/2 is mainly localized in the
basolateral compartment of human enterocytes (28), which is
consistent with the polar nature of the proliferative effect
observed in intestinal epithelium.

There are evidences (12,13) that the lack of GC-C receptors
or ligands is associated with an increase in crypt depth and
Ki-67 positive cells suggesting that the lack of GC-C signaling
induces proliferation. With a different approach, we found a
different result. We amplified GC-C signaling by ligands that
induce cell proliferation in small intestinal enterocytes. The
physiological rate of cell proliferation and apoptosis depends
on a fine regulation of GC-C, which in turn is modulated by
guanylin. In this article, we evaluated the biological effects of
the polar GC-C stimulation.

Previously, we have reported that the magnitude of chloride
secretion is greater on mucosal than serosal GC-C activation
(9). Therefore, the effect of guanylin on ion transport has a
polar pattern opposite to the effect on cell proliferation.

The polarization of ERK1/2 phosphorylation was not only
reflected by a different magnitude but also by the time course
of response. In fact, serosal stimulation induced a rapid
ERK1/2 activation, which returned to basal levels within 24 h.
Mucosal stimulation also induced time-dependent ERK1/2
activation. However, this activation occurred later and was
more transient than that observed on serosal stimulation,
which well reflects the less potent cell cycle progression
observed with mucosal than with serosal GC-C activation. The
activation and subsequent deactivation of ERK1/2 is crucial
for intestinal ERK1/2 signaling because its persistent activa-
tion leads to the irreversible arrest of cellular proliferation and
consequent premature senescence (29).

Intestinal cell proliferation and ion secretion were triggered
by the same agonist but were distinct in terms of pathways
involving ERK1/2 and the GC-cGMP axis, respectively. How-
ever, there was a link between the two effects. The increase of
serosal GC-C-induced chloride secretion as a consequence of
ERK1/2 inhibition suggests that ERK1/2 acts as braking force
on ion secretion. This effect is in agreement with the predom-
inant basolateral ERK1/2 brush border localization in human
enterocytes (28). Western blot experiments showed a modest
increase in ERK1/2 on GC-C mucosal stimulation, which was
probably too low to reduce ion secretion in response to serosal
ST stimulation. However, ERK1/2 inhibition did not affect
cGMP level, which suggests that cGMP is not the target of the
homeostatic mechanisms involved in serosal ST-induced chlo-

Figure 4. GC-C activation by ST induces ERK1/2 activation and cGMP
levels in human intestinal mucosa. ST (1 � 10�6 mol/L) was added to the
mucosal (M) or serosal (S) side, alone or together (M�S), of ileum
mucosa of three neonates. (A) Phosphorylated vs total ERK1/2 ratio,
expressed as fold increase vs control (C), significantly increased after ST
addition and the effect was more potent when ST was added to the serosal
side of intestinal mucosa. (B) The same samples shown in (A) responded
to GC-C activation by increasing cGMP intracellular levels; the effect was
more potent effect when GC-C was added to the mucosal side. Results are
expressed as fold increase vs control of three independent experiments and
are the means � SEM *p � 0.05 vs control; ¶p � 0.01 vs ST mucosal
addition; †p � 0.01 vs ST serosal addition.
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ride secretion. The Caco-2 cell line that we used to investigate
the polarization of GC-C activation is considered a reliable
model of human intestinal epithelium (30).

Because Caco-2 cells show GC-C expression (31), cGMP
production under GC-C stimulation (8), and activation of
specific downstream pathways (4), we consider these cells as
an appropriate model for our study. GC-C is expressed along
the entire intestine (32), and its abundance is age related (7).
A greater number of guanylin receptors was found in intestine
of newborn infants, and the number of receptors rapidly
decreased with increasing age (7). In particular, GC-C activity
was maximal in the first days of age (10). For this reason, we
repeated the in vitro experiments in an ex vivo model, using
intestinal mucosa of newborns, in which GC-C is at its highest
level of expression. The differential polar response of ion
transport and cell proliferation to GC-C activation was con-
firmed in all three specimens. This finding provides an age-
specific explanation for our data. Both intestinal ion secretion
and enterocyte turnover are enhanced in the first days of life.
Intestinal ion secretion is needed to expel meconium, after
which it must rapidly decrease, and timely modifications of
transepithelial ion fluxes toward the proabsorptive state are
needed to ensure hydroelectrolyte homeostasis. In parallel, the
newborn intestine must proliferate rapidly to close the epithe-
lial barrier so as to prevent bacteria and antigen translocation,
which is a specific risk of the immature intestine (33). There-
fore, it is conceivable that the neonatal peak of GC-C that
occurs at 3 d of age (10) serves to ensure the rapid modifica-
tions necessary in the early intestinal adaptation. Guanylin is
found both in the intestinal lumen and in the bloodstream, but
its concentrations are unknown; studies in this sense are
required to address this hypothesis.

Beyond the age-specific interpretation, the role of GC-C in
ion transport and cell proliferation is less clear. Li et al. (34)
demonstrated that the dysregulation of GC-C signaling is a
key step for tumor initiation and promotion in ApcMin/
�GCC�/� mice.

However, deletion of endogenous ligand obtained in gua-
nylin null mice or of GC-C receptor induced an increase of
cell proliferation, migration, and apoptosis in the crypt-villus
axis without spontaneous tumorigenesis (12,13).Therefore,
cGMP exerts a role in intestinal cell turnover, but it does not
trigger intestinal cancer in the absence of a specific baseline
condition such as ApcMin/�GCC�/� mice.

Finally, the role of GC-C in chloride secretion can be
exploited in the treatment of constipation as suggested by a
recent study on linaclotide, a GC-C agonist (35). Our finding
of a polar response to GC-C provides a novel view of the role
of GC-C. The differential response to polar GC-C activation
leading to ion secretion and cell proliferation, with their
specific mechanisms, suggests the GC-C physiological role in
very early postnatal adaptation. Beyond the perinatal period,
the GC-C signaling could be implicated in intestinal epithelial
cell dynamics, including colon cancer cell proliferation.
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