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Background: Preterm infants are at risk of adverse out-
come. The aim of this study is to develop a multimodal model, 
including physiological signals from the first days of life, to pre-
dict 2-y outcome in preterm infants.
Methods: Infants <32 wk gestation had simultaneous multi-
channel electroencephalography (EEG), peripheral oxygen 
saturation (SpO

2
), and heart rate (HR) monitoring. EEG grades 

were combined with gestational age (GA) and quantitative fea-
tures of HR and SpO

2
 in a logistic regression model to predict 

outcome. Bayley Scales of Infant Development-III assessed 2-y 
neurodevelopmental outcome. A clinical course score, grading 
infants at discharge as high or low morbidity risk, was used to 
compare performance with the model.
Results: Forty-three infants were included: 27 had good out-
comes, 16 had poor outcomes or died. While performance of 
the model was similar to the clinical course score graded at 
discharge, with an area under the receiver operator character-
istic (AUC) of 0.83 (95% confidence intervals (CI): 0.69–0.95) vs. 
0.79 (0.66–0.90) (P = 0.633), the model was able to predict 2-y 
outcome days after birth.
Conclusion: Quantitative analysis of physiological signals, 
combined with GA and graded EEG, shows potential for pre-
dicting mortality or delayed neurodevelopment at 2 y of age.

Of the 15 million premature births worldwide each year, one 
to three million infants will die, approximately 10–12% will 

develop cerebral palsy and a further 19% will develop motor 
or cognitive problems (1,2). Accurate and early prediction of 
neurodevelopmental outcome in the preterm infant provides 
important clinical information that can be used to guide early 
intervention, assist clinical management, and ensure appropri-
ate long-term needs are identified. Predicting outcome at 2 y 
or more, in the first few days after birth is ambitious however, 
as preterm infants are vulnerable to brain injury during their 
entire stay in the neonatal intensive care unit (NICU) (3).

Many studies have attempted to predict short-term outcome, 
within the NICU period. Early clinical information, includ-
ing Apgar scores, gender, birth weight (BW), gestational age 

(GA) (4–7), and illness severity scores, such as SNAP-II and 
SNAPPE-II have been used to predict short-term outcome (8). 
Quantitative analysis of multiple risk factors combined in a mul-
tivariate model can improve outcome prediction (7). Saria et al. 
(9) showed that a combination of quantitative features of early 
physiological measurements, including heart rate (HR), respira-
tory rate (RR), and peripheral oxygen saturation (SpO2), could 
predict short-term outcome with a high level of accuracy (sen-
sitivity of 86% and specificity of 96%). The absence of a reliable 
measure of neurological function, however, may limit the ability 
of these approaches to predict neurodevelopment in the longer 
term, beyond the early intensive care stage. Multivariate models 
including clinical risk factors such as GA, BW, and gender, have 
shown promise for predicting long-term outcome (10,11).

Previous studies have shown that early measurements of 
EEG can predict long-term neurodevelopmental outcome, 
with specificity and sensitivity ranging from 88 to 96% and 25 
to 83%, respectively (12–14). Other studies have shown that 
the amplitude integrated EEG (aEEG) can predict long-term 
outcome, with specificity ranging from 73 to 89% and sensi-
tivity ranging from 56 to 87% (15–17). To date, however, no 
standardized method for the accurate prediction of long-term 
outcome in very preterm infants has been successfully trans-
lated into clinical practice.

The aim of this study was to determine if multimodal physi-
ological monitoring including EEG, recorded in the first day of 
life, combined with demographic risk factors such as BW and 
GA, can predict outcome status at 2 y of age in very preterm 
infants. The multimodal model combines EEG grading with 
quantitative features of routinely-available physiological sig-
nals, namely SpO2 and HR (9). A clinical course score, which 
represents a best estimate of long-term outcome from clinical 
history of the intensive care period, is used to compare perfor-
mance of this multimodal approach.

RESULTS
Subjects
During the study period, 152 preterm infants were born at the 
Cork University Maternity Hospital (CUMH) below 32 wk, 
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of which 81 were enrolled, while the others were missed or 
refused to consent. From the 81 enrolled, 43 preterm infants 
met the inclusion criteria for this study. Recording of simulta-
neous multimodal physiological data commenced within 24 h 
(mean = 8 h 37 min, SD = 5 h 56 min) of birth and continued 
for up to 72 h in many cases and longer if clinically warranted. 
The mean recording duration was 41 h 40 min (SD = 13 h 
19 min). Data at both the 12- and 24-h time-points was col-
lected from 33 infants, only the 12-h time-point was collected 
from 3 infants and only the 24-h time-point was collected from 
7 infants. Clinical and demographic characteristics and their 
relationship with outcome are detailed in Table 1. GA ranged 
from 23.42 to 31.86 wk, with a median (interquartile range) 
of 28.71 (26.21 to 29.93) weeks. Morphine or phenobarbitone 
was given to six infants.

Clinical Course Score
Twenty-two (51.2%) infants were classified as high risk of mor-
bidity and 21 (48.8%) infants as low risk of morbidity based on 
our clinical grading system.

EEG Analysis
Thirty-two infants had a normal EEG (74.4%) and 11 (25.6%) 
had an abnormal EEG; of these 11, three had seizures. An 

inter-rate agreement was found for the EEG grading, with a 
Cohen’s κ-coefficient of 0.97.

Outcome Assessment
Four infants died in the neonatal period. Using the Bayley III 
Scales, 27 (69.2%) surviving infants had a good neurodevelop-
mental outcome, and 12 (30.8%) had a poor outcome. Infants 
with a poor outcome had lower GA (P = 0.022) and were 
more likely to have NEC (P = 0.015) or chronic lung disease 
(P = 0.005).

Data Analysis
The area under the receiver operator characteristic (AUC) was 
used to rank features and the highest-ranking feature from 
each modality (heart rate, SpO2, and GA–BW) were HR skew, 
mean SpO2, and GA. These three features were combined with 
EEG grades for use in the regression model. Their unadjusted 
and adjusted odds ratios are given in Table 2, indicating that 
all four features are statistically significant in the multivari-
ate logistic regression model. Although some of the features 
were significantly correlated, the correlation values were small 
(<0.5) thus making it unlikely that multi-collinearity would 
affect the regression model. Table 3 presents the univariate 
analysis of these four features as well as the clinical course 
score, and the regression model.

Lower GA, lower mean SpO2, lower HR skew, and abnor-
mal EEG grade were predictive of an abnormal outcome. AUC 
for the regression model is similar to the clinical course score: 
AUC (95% CI) for the regression model is 0.83 (0.69–0.95) vs. 
clinical course score 0.79 (0.66–0.90), P = 0.633. Although the 
regression model has a higher AUC than the AUC of the EEG 
grade alone 0.69 (0.55–0.83), we find no statistical improve-
ment, P = 0.124.

DISCUSSION
A combination of GA and multimodal physiological signal 
analysis, recorded within the first 72 h after birth, has the 
potential to predict death or neurodevelopmental delay at 2 
y of age. The adjusted odds ratios (ORs) show that every fea-
ture uniquely contributes to the evaluation of outcome and 
should therefore be included. Although the multimodal model 
had a larger AUC (0.83) compared to HR skew (0.78), mean 
SpO2 (0.78), EEG (0.69), and clinical course score (0.79), the 

Table 1.  Clinical characteristics of the infants, comparing infants with a 
good and poor outcome

Good outcome  
(n = 27) Median (IQR)

Poor outcome  
(n = 16) Median (IQR) P valuea

Gestational age 
(weeks)

28.87 (28.29 to 30.14) 26.29 (24.86 to 29.57) 0.022

Weight (g) 1,040 (885 to 1,327) 800 (675 to 1,315) 0.122

Apgar score 5 min 9.0 (8.0 to 9.0) 8.0 (5.3 to 8.0) 0.001

Initial pH 7.2 (7.1 to 7.3) 7.2 (7.1 to 7.3) 0.88

n (%) n (%) P valueb

Gender

  Male 7 (26) 9 (56) 0.059

Illness

  �Grade III/IV IVH 
or cystic PVL

2 (7) 5 (31) 0.082

  Sepsis 6 (22) 7 (44) 0.178

  �Necrotizing 
enterocolitis

0 (0) 4 (25) 0.015

  �Chronic lung 
disease

0 (0) 5 (31) 0.005

  �Retinopathy of 
prematurity

0 (0) 0 (0) 1

  Mortality 0 (0) 4 (25) 0.015

EEG

  Seizures 0 (0) 3 (19) 0.045

  Normal 24 (89) 8 (50) 0.010

Outcome was defined as neurodevelopmental delay at 2 y of age or death.
aMann-Whitney U-test. bFisher’s exact test.
EEG, electroencephalography; IVH, intraventricular hemorrhage; IQR, interquartile range; 
PVL, periventricular leukomalacia.

Table 2.  OR for four features individually (unadjusted OR) and 
combined within the logistic regression model (adjusted OR)

Features in regression model
Unadjusted OR 

(95% CI)
Adjusted OR 

(95% CI)

Gestational age (days) 0.94 (0.90–0.99) 0.94 (0.92–0.94)

Mean SpO2 (%) 0.71 (0.55–0.91) 0.82 (0.73–0.86)

Heart rate skew 0.54 (0.33–0.87) 0.63 (0.50–0.73)

EEG grade 8.0 (1.7–37.7) 2.9 (2.3–4.8)

Features are considered statistically significant if the 95% CI excludes 1. The reference 
EEG grade is the abnormal grade.
CI, confidence interval; EEG, electroencephalography; OR, odds ratio; SpO2, oxygen 
saturation.
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differences failed to reach statistical significance. Lack of sta-
tistical significance may be due to the small sample size and 
hence the low power of the tests. Further studies with larger 
numbers are required to confirm the results observed in this 
study. The clinical course score included all relevant clinical 
information for the entire NICU duration, whereas the multi-
modal model was developed from information obtained in the 
early transitional period and thus has the advantage of being 
available in the first few days after birth. This finding high-
lights the potential value of multimodal monitoring during the 
transitional period and its possible role in outcome prediction, 
which could provide useful information for neonatologists in 
the NICU when guiding early treatment strategies.

Early EEG grade alone demonstrated low sensitivity (50%) 
and high specificity (89%), highlighting the possible limita-
tion of the EEG grades for the prediction of death or long 
term neurodevelopmental delay. These results are consistent 
with other studies which demonstrated sensitivities of 25–
61% (12,16). Although many studies have shown EEG grad-
ing to be predictive of long term outcome, none have shown 
that simple quantitative features of the readily-available SpO2 
and HR have similar—if not better—performance at predict-
ing 2-y outcome. We find sensitivity and specificity values 
of 70 and 69% respectively, using quantitative analysis of 
an HR feature and values of 78 and 75% respectively, using 
SpO2 quantitative analysis alone. Abnormal HR variability is 
associated with fetal and neonatal distress (18). A correlation 
between abnormal HR variability and clinical signs of sepsis 
has been reported (19). Sepsis is the main cause of preterm 
infant death during the first week of life and can also increase 
vulnerability of the brain due to inflammation and white mat-
ter damage (20). Low SpO2 to the point of hypoxia, can cause 
tissue damage of the brain which may result in neurological 
compromise and neurodevelopmental delay (21). The clinical 
course score had a higher sensitivity (88%) and similar speci-
ficity (70%) to the HR feature. The five risk factors included 
in our clinical course score were chosen a priori as they 
are associated with long-term morbidity. Intraventricular 

hemorrhage and cystic periventricular leukomalacia are 
direct injuries to the brain which increase the risk of develop-
ing cerebral palsy and cognitive impairment (22). Developing 
chronic lung disease is another common condition in pre-
term infants, which can also impact on neurodevelopment 
(23). Neurodevelopment dysfunction is also increased in 
preterm infants who require surgery for necrotizing entero-
colitis (24), who are exposed to sepsis (25), or suffer from 
severe retinopathy of prematurity (26). The clinical course 
scores were collected at discharge, following diagnosis of any 
of these major complications, therefore more information, 
comparative to the early physiological analysis, was available 
to accurately predict outcome. Yet the multimodal model 
does provide a more balanced sensitivity–specificity result 
(75–74%) compared to the clinical score.

Medlock et al. (7) found that multivariate models of early 
clinical information predicted mortality in preterm infants 
better than BW or GA alone. Studies implementing the com-
monly used SNAP-II and SNAPPE-II scores showed a range 
of AUC values for the prediction of neonatal mortality, from 
0.66 to 0.78 in SNAP-II studies and 0.60 to 0.91 in SNAPPE-II 
studies (8). These studies concentrated on predicting mortality 
only, whereas we were also interested in predicting outcome 
in survivors. Broitman et al. (10) found that a model based on 
clinical variables performed better than a model using head 
ultrasound for predicting outcome at both 28 d and 36 wk. 
Some clinical variables included in this early assessment (by 
postnatal day 28) were GA and BW. Tyson et al. (11) dem-
onstrated that a five-factor model which consists of GA, BW, 
gender, exposure to antenatal corticosteroids, and singleton vs. 
twin birth, performed better than GA alone for the prediction 
of outcome in a cohort of preterm infants between 22–25 wk 
GA. Our AUC results showed an improvement from both 
these two predictive models (10,11). Also for our study, the 
sensitivity, specificity, and OR values showed similar values or 
improvements to previous studies in which EEG or aEEG was 
evaluated as one predictor or the only predictor (13,15,16). 
However, studies that examined serial EEG recordings or used 

Table 3.  Univariate analysis and multivariate analysis for prediction of neurodevelopmental outcome

AUC (95% CI) P value Sensitivity (95% CI) Specificity (95% CI) PPV (95% CI) NPV (95% CI)

Physiological features

Heart rate skew 0.78 (0.63–0.92) 0.002a 70 (56–87) 69 (54–88) 79 (62–93) 58 (38–82)

Mean SpO2 0.78 (0.62–0.90) 0.003a 78 (58–88) 75 (57–90) 84 (67–96) 67 (38–85)

EEG grade 0.69 (0.55–0.83) 0.010b 50 (25–73) 89 (75–100) 73 (42–100) 75 (60–91)

Patient demographics

Gestational age 0.71 (0.55–0.87) 0.022a 67 (43–89) 69 (45–88) 78 (55–93) 55 (30–82)

Clinical assessments

Clinical course score 0.79 (0.66–0.90) <0.001b 88 (69–100) 70 (53–85) 64 (43–83) 90 (75–100)

Regression model 0.83 (0.69–0.95) 75 (60–93) 74 (60–92) 63 (40–87) 83 (67–96)

Univariate analysis (physiological features, patient demographics and clinical assessments) and multivariate analysis (regression model) for prediction of good (n = 27) and poor  
(n = 16) neurodevelopmental outcome (including death). Comparison of the regression model with features of the physiological signals, basic patient demographics and later  
(clinical course score) clinical assessments. Multivariate analysis for the logistic regression model uses cross-validation.
aMann-Whitney U-test. bFischer’s exact test.
AUC, area under the receiver operator characteristic; EEG, electroencephalography; NPV, negative predictive value; PPV, positive predictive value; SpO2, oxygen saturation.
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a larger cohort size had better sensitivity or specificity values 
(12,14).

The main limitation of this study is the small sample size and 
the consequent low statistical power. Although data were col-
lected over a 2-y period in a large maternity hospital, this was 
a retrospective study and some records had limited EEG data, 
missing physiological data, or missing outcome data. With 
low power, only large improvements will reach statistical sig-
nificance. For example, comparing AUCs between the multi-
variate model and EEG, we found a difference of 14% but this 
lacked statistical significance (P = 0.12). Another consequence 
of small numbers is the limit on the number of explanatory 
variables that the multivariate model can accommodate with-
out over fitting. Because of this limitation, we chose to include 
only physiological signals in the model in addition to GA, as 
GA is readily available. Clinical assessments such as Apgar 
scores were not considered in this study mainly because of 
this limitation on the number of explanatory variables; but 
also because of the subjective nature of the score and the fact 
that this score does not necessarily account for intervention 
performed in the delivery suite (27). With larger sample sizes, 
other clinical factors such as respiration, blood pressure, initial 
pH, lactate, and Apgar, could be explored for inclusion in the 
multivariate model. Another noticeable limitation is that the 
multivariate model is not an automated system, as specialist 
interpretation of the EEG is required. An automated grading 
system could be developed for preterm EEG similar to avail-
able systems for hypoxic–ischemic encephalopathy in the EEG 
of term infants (28). In addition, missing data may have had a 
negative impact on the multimodal model: some infants did 
not have both 12- and 24-h data epochs available for analysis, 
due to either later EEG application or premature discontinua-
tion of monitoring. Although EEG was graded with knowledge 
of medication history, we did not consider the effects of medi-
cation on heart rate and oxygen saturation and thus medica-
tion remains a possible confounder in this study. A potential 

disadvantage of monitoring at such an early stage is that other 
complications can occur beyond the monitoring period; early 
monitoring, however, can provide immediate results at the 
beginning of critical care in the NICU. Serial EEGs and physio-
logical measurements over the infant’s stay in the NICU could 
add additional predictive information (14).

The main strength of this paper is that we are using large 
amounts of continuous data from different sources. The EEG 
recordings were reviewed by experienced clinical physiologists 
that were not involved in the clinical care of the baby and were 
blinded to the clinical data. This confirmed that the recordings 
remained anonymous during review. Using EEG instead of the 
aEEG was a major asset as it provides more valuable second by 
second data. Although EEG is not readily available, all of the 
other features (HR, SpO2, and GA) were objective, quantifi-
able, and readily available. This leads to a model which consists 
of multiple different features. Another strength of this paper 
was that the Bayley Scale of Infant Development III was used 
to assess all surviving infants, and performed by an experi-
enced physiotherapist.

In conclusion, quantitative analysis of readily available 
physiological signals, combined with EEG and GA, shows 
potential for improving our ability to predict death or delayed 
neurodevelopment at 2 y of age. Early assessment of potential 
neurological impairment can aid clinical management of the 
infant. Future studies could consider serial multimodal analy-
sis, including EEG, to monitor maturation and development of 
EEG features over the first weeks and months of life and their 
relation to neurodevelopmental outcome.

METHODS
Participants
This was a retrospective, observational study performed in the NICU 
of Cork University Maternity Hospital. Eligible infants were all pre-
term (<32 wk gestation) born between April 2009 and March 2011.

Preterm infants were included in the study if they had continu-
ous multichannel EEG monitoring with simultaneous registration 

Figure 1.  Multimodal signals—electroencephalography (EEG) recording of male 26+0 wk GA at 9 h of age. The recording displays the raw EEG, SpO2, and 
heart rate channels.
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of SpO2 and HR, and neurodevelopmental assessment at 2 y. Ethical 
approval was granted by the Clinical Research Ethics Committee of 
the Cork Teaching Hospitals, Ireland. Written informed parental con-
sent was obtained.

Physiological Recordings: EEG, SpO2, and HR
The NicoletOne EEG system (CareFusion, San Diego, CA) was used 
to record continuous video-EEG. All EEG recordings were initiated 
within 24 h of birth. EEG application was performed after consulta-
tion with the medical and nursing staff and when the infant was sta-
ble. Silver-silver chloride electrodes were applied to the scalp, using 
a modified neonatal version of the international 10/20 system. The 
active electrodes were applied at positions F4, F3, C4, Cz, C3, T4, T3, 
O2, and O1 (29). Reference electrodes were placed at Fz and ground 
electrodes were behind the left ear. A Philips IntelliVue MP70 monitor 
(Philips Medical System, BG Eindhoven, The Netherlands) was con-
nected to the NicoletOne EEG system, which consequently synchro-
nized the SpO2 and HR with the EEG waveforms. Preterm infants can 
show physiological instabilities, such as low SpO2 levels and decreased 
variability in heart rate. Arterial SpO2 measures the amount of oxy-
genated hemoglobin in the blood. Oxygen desaturation relates to a 
decrease amount of oxygen in the blood. A systematic review reported 
that SpO2 values of approximately 85–95% should be targeted for pre-
term infants (30). Heart rate variability is the variation over time in the 
interval between heartbeats, providing assessment of the functional 
state of the autonomic nervous system. Monitoring continued for up 
to 72 h after birth, depending on the stability of the infants.

EEG Data Collection
Eight channels of EEG were collected along with simultaneous SpO2 and 
HR recordings (Figure 1). The EEG signal was sampled at 256 Hz, and 
the SpO2 and HR were sampled at 1 Hz. The EEG recordings were visu-
ally analyzed for quality and, if this was poor, the infants were excluded.

The entire EEG recording in each infant was assessed for seizure 
activity, state change, and maturational features such as delta brushes, 
occipital delta waves, and temporal sharp waves. The EEGs were 
graded by two clinical physiologists (R.L. and G.B.) who were blinded 
to all clinical information except for GA, administration of morphine 
or phenobarbitone, and time of EEG recording postdelivery. The EEG 
recordings were scored based on the grading system described by 
Watanabe et al. (31), which differentiated acute abnormalities (ASA) 
from those of the chronic stage (CSA). ASA were defined as sup-
pressed background activity, decreased continuity, low amplitude, and 
attenuated fast-wave background. CSA included dysmature patterns 
and disorganized patterns, such as abnormal delta waveforms, sharp 
waves, and abnormal delta brushes. ASA and CSA can be classed 
as mild, moderate or severe (31,32). Therefore, we graded our EEG 
epochs as follows: normal = normal; mild = mild ASA/CSA; mod-
erate = moderate ASA/CSA; severe = severe ASA/CSA. EEGs were 
reviewed and consensus was achieved for each recording. Inter-rater 
agreement was assessed using Cohen’s κ-coefficient.

One hour epochs of EEG at 12 and 24 h of age, were then extracted 
from each recording for multimodal analysis. These specific time-
points were selected for analysis due to the fact that they represented 
the most consistent time points when multimodal data was available 
for the entire cohort. Most recordings included both time-points, but 
some were missing due to late application, instability of the infant or 

poor quality of the EEG recording at that time period. When both 
time-points were available, the EEG grades were combined and the 
most abnormal grade was selected.

Additional Data Collection
One hour epochs of HR and SpO2 were extracted at the two time-
points, 12 and 24 h. Two features were used to summarize SpO2 for 
the 1 h segments: mean SpO2 and percentage of time <85%, which 
quantifies hypoxia (21,33). Four features summarized the HR signal 
over the 1 h segments: mean, SD, skewness, and kurtosis (34). The 
SD represents the variability of the HR segment; skewness represents 
the tendency of the HR signal to include large-amplitude transients 
in either the positive or negative directions, which relate to accelera-
tions and decelerations of the HR (19); and kurtosis quantifies the 
deviation of the HR signal from a Gaussian process, often the result 
of high-amplitude transients. These higher-order statistics were 
included as previous studies relate short-term outcome to changes in 
the skewness and kurtosis (35). When available, the mean values of 
the features over both time points were used for subsequent analysis. 
Clinical and demographic characteristics were also collected.

Assessment of Clinical Course
Infant demographics and clinical details were collected from the elec-
tronic database discharge summary document and the medical notes. 
Blinded to infant identity and physiological data, two consultant 
neonatologists (P.F. and E.D.) reviewed the discharge summary docu-
ments and medical notes for all infants. Each infant was classified as 
either at high or low risk of later morbidity based on their clinical 
course score. Infants were allocated as high risk of morbidity if they 
suffered from any of the five major complications during their time 
in the NICU (Table 4). When grades differed between reviewers, a 
consensus was reached by discussion. Figure 2 illustrates the infant’s 
course in the NICU.

Two-Year Outcome Assessment
Neurodevelopmental outcome was assessed at 2 y corrected age in all 
surviving infants using the Bayley Scales of Infant Development III, 
performed by a single specialist neonatal physiotherapist (A.M.C.). 
This assessment measures the child’s motor, cognitive and language 
development and provides three subscale scores. An abnormal out-
come was defined as any of the three subscales being below 1 SD from 
the mean; thus for the standardized scores, a value of less than 85 
in any of the three subscales was deemed abnormal (36). Conversely, 
a normal outcome was defined as every subscale being 85 or above. 
Infants who died were also allocated to the abnormal outcome group.

Statistical Analysis
For statistical analysis, EEG grades were grouped into two categories: 1 = 
normal or mildly abnormal and 2= moderately or severe abnormal (37).

Continuous variables were described using mean (SD) and median 
(interquartile range) where appropriate and categorical variables 
described using number (percentage). The ability of each physi-
ological feature to predict either normal or abnormal outcome was 
assessed using the Mann-Whitney U-test (continuous data) and the 
Fisher exact test (binary data). The AUC, sensitivity and specificity, 
and positive predictive values and negative predictive values were 
used as performance metrics. Confidence intervals (CI) of the AUC 

Table 4.  Definitions for major neonatal complications

Five major complications

• � Grade III/IV intraventricular hemorrhage or cystic periventricular 
leukomalacia

• � Bronchopulmonary dysplasia as defined by oxygen dependency at 
36 wk postmenstrual age

• � Necrotizing enterocolitis Bells stage 2b or greater

• � Infection – positive blood culture with abnormal inflammatory 
markers, white cell count or C-reactive protein levels

•  Retinopathy of prematurity stage 2 or greater

Figure 2.  Timeline of infant’s stay in the neonatal intensive care unit 
through to the neurodevelopmental follow-up at 2 y of age. IVH, 
intraventricular hemorrhage; cPVL, cystic periventricular leukomalacia; 
BPD, bronchopulmonary dysplasia; NEC, necrotizing enterocolitis; ROP, 
retinopathy of prematurity

Birth

Time

First 72 h of life
-EEG, SpO

2
, HR

Inpatient risks of:- Clinical course score Bayley scales of infant
development III·   IVH/cPVL

·   BPD
·   NEC
·   Sepsis
·   ROP
·   Death

NICU Discharge Home 2 y

386  Pediatric Research          Volume 80  |  Number 3  |  September 2016



Copyright © 2016 International Pediatric Research Foundation, Inc.

Predicting outcome in preterm infants         Articles
were computed using the bootstrap approach with 1,000 iterations. 
A multivariate logistic regression model was used to combine all fea-
tures. Only one feature from each of the four modalities (EEG, SpO2, 
HR, and GA–BW) was included in the regression model, as limiting 
the number of features eliminates overtraining for the model; AUC 
rankings determined which feature from each modality to include.

Performance of the regression model was assessed using leave-
one-infant-out cross validation. This method trains the regression 
model by fitting parameters from all infants minus one. Performance 
is then tested on this single left-out infant, and this process is iter-
ated through all infants (38). To eliminate stratification bias caused by 
unbalanced class proportions in each training iteration, the training 
set was modified to retrain constant proportions over all iterations. 
This modification removes, at random and at most, one infant’s data 
per training iteration (39). The cross-validation procedure provides a 
better estimate of the generalization performance (the performance 
on the entire population) compared to the training and testing on the 
same sample (38).

OR was calculated for each of the four features within the multi-
variate model and a 95% CI was calculated from the distribution of 
OR values over all iterations of the cross-validation. A feature signifi-
cantly contributed to the model if the 95% CI excluded 1. And lastly, 
the AUC for the multivariate model was compared to the AUC for 
the clinical course score and EEG grade alone using the bootstrap 
method in (40). All analyses were performed in MATLAB (version 
R2013a, The Mathworks, Natick, MA). All tests were two-sided and a 
P value <0.05 was considered to be statistically significant.
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