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Background: In asthmatic airways secondary ciliary dys-
kinesia contributes to impaired mucociliary clearance. To 
investigate underlying mechanisms, we studied the effects 
of cytokines associated with asthma phenotype on the ciliary 
beat frequency (CBF) in a cell culture model of ciliated human 
respiratory epithelial cells.
Methods: Nasal respiratory epithelial cells of 21 patients 
were used to prepare multicellular cells (spheroids) in the pres-
ence of the T helper (TH) 2 cytokines interleukin (IL)-4, IL-5, IL-9 
and IL-13, and the TH1 cytokine interferon gamma (IFN-γ). CBF 
was determined by high-speed video microscopy.
results: Addition of IL-4 and IL-13 and IL-4 + IL-13 decreased 
the mean CBF by 17, 21, and 22%, respectively, compared with 
untreated controls. Addition of IL-5 and IL-9 lead to an increase 
in mean CBF (20 and 10%, respectively). Lower concentrations 
of IFN-γ (0.1 and 1 ng/ml) decreased mean CBF and higher con-
centrations (10 ng/ml) increased CBF by 6%. Addition of IFN-γ 
to IL-13 reversed the effect of IL-13 on the CBF of spheroids.
conclusion: Cytokines directly influence the ciliary func-
tion of respiratory epithelium and contribute to the impaired 
mucociliary clearance in asthmatic disease. Our study encour-
ages further research to investigate IFN-γ as a treatment option 
in diseases with impaired mucociliary clearance like asthma.

asthma is a major cause of morbidity. It affects up to 300 
million individuals worldwide with a global prevalence 

ranging from 1 to 16% (1,2). Clinical asthma manifestations 
include recurrent episodes of at least partially reversible 
wheezing, dyspnoea, cough, and increased airway mucus pro-
duction. The asthmatic airway is characterized by epithelial 
damage, mucus hypersecretion, submucosal glandular hyper-
trophy, and goblet cell hyperplasia finally impairing mucocili-
ary clearance (3–7). While efficient mucociliary clearance plays 
a fundamental role in the innate immune response system of 
the conducting airways, the impaired mucociliary clearance in 
asthma leads to prolonged exposure of inhaled pollutants and 
aeroallergens to the respiratory epithelium and an increased 

susceptibility to infections (4). This aggravates clinical symp-
toms and contributes to the disease burden of asthma. Ciliary 
function is an important factor for the mucociliary clear-
ance (8,9). However, studies on ciliary function in asthma are 
scarce. Since the T helper (TH) 2 cytokines interleukin (IL)-4, 
IL-5, IL-9, and IL-13 are known to play a key role in the patho-
physiology of TH2 high asthmatic airways (8,10), we evaluated 
whether they alter the ciliary beat frequency (CBF) of respira-
tory epithelium cell cultures. Additionally, we investigated the 
effect of the cytokine interferon gamma (IFN-γ). IFN-γ is fun-
damental for many aspects of the innate and adaptive immu-
nity and it inhibits TH2-mediated response (11).

RESULTS
Addition of IL-4 (Figure 1) and IL-13 (Figure 2) to the spher-
oids resulted in CBF decline of 17% (IL-4) and 21% (IL-13), 
respectively (Table 1). In ciliary cultures containing both TH2 
cytokines IL-4 and IL-13 (10 ng/ml each), we observed a CBF 
reduction of 22% (Figure 3; Table 1), hence no additive effect 
as compared to IL-4 alone. IL-4 was added in different concen-
trations (0.1, 1 and 10 ng/ml) to the spheroids and showed a 
dose-dependent effect on the CBF decrease (Figures 1 and 3).

IL-5 showed a dose-dependent increase in CBF with a maxi-
mum increase in CBF by 20% (Figure 4; Table 1) and IL-9 
showed a statistically significant increase in CBF by 10% with 
a concentration of 0.1 ng/ml. There was a trend for increasing 
CBF with concentrations 1 and 10ng/ml, both did not reach 
statistically significance (Figure 5; Table 1).

We observed a variable effect of IFN-γ at different concentra-
tions (0.1, 1, and 10 ng/ml) on the CBF. Whereas lower concen-
trations resulted in a CBF decrease (Figure 6; Table 1), a CBF 
increase of 6% was observed at the highest IFN-γ concentra-
tion (10 ng/ml). Addition of increasing concentrations of IFN-γ 
(0.1, 1, and 10 ng/ml) to the spheroid cultures containing IL-13 
(10 ng/ml) resulted in an increase in CBF, which was statisti-
cally significant for 0.1 ng/ml and with a trend to a dose-depen-
dent increase in CBF for 1 and 10 ng/ml (Figure 7; Table 1). 
Thus, IFN-γ reversed the negative effect of IL-13 on CBF.
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DISCUSSION
We show in a human respiratory cell culture model that the 
cytokines IL-5 and IL-9 increase the CBF in ciliated spheroid 
cultures, whereas the TH2 cytokines IL-4 and IL-13 impair the 
ciliary function. The TH1 cytokine IFN-γ improves the ciliary 
function and dominates the effect of IL-13 on the CBF.

IL-13 plays a key role in the pathophysiology of TH2 high 
asthma (12–14). IL-13 is produced by innate lymphoid cells 
and TH2 cells and induces several characteristic changes in 
the asthmatic airway epithelium resulting in subepithelial 
fibrosis, mucinous metaplasia, altered ciliated cell differen-
tiation and function and an increase in goblet cells (15–17). 
Impairment of ciliary function has previously been shown 
for IL-13 in human cell culture models (15,18). Our data 
confirm these results.

IL-4 also impairs mucociliary clearance by inducing mucin 
hypersecretion (19,20). IL-4 stimulates TH2 cell development 
and suppresses TH1 cell development, and it induces immu-
noglobulin E switching in B cells and mediates tissue adhesion 

and inflammation in asthma (21–23). We here show that IL-4 
directly impairs ciliary function. Incubation of spheroids with 
both IL-4 and IL-13 results in a CBF decrease, too, but we did 
not find an additive effect. A reason for that may be both cyto-
kines competitively bind to the type II IL-4R receptor that was 
completely saturated at the concentrations used. Overall, IL-4 
had a bigger effect on the CBF than IL-13, possibly because 
IL-4 additionally binds to the type I IL-4R receptor whereas 
IL-13 does not (20,24,25).

Figure 1. Influence of IL-4 on the ciliary beat frequency. Presentation of 
the mean ciliary beat frequency (CBF) in IL-4-treated cells. The CBF is sig-
nificantly decreased after IL-4 treatment. The plots indicate mean values 
and SD. **Statistically significant with P < 0.001.
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Figure 2. Influence of IL-13 on the ciliary beat frequency. Presentation of 
the mean ciliary beat frequency (CBF) in IL-13-treated cells. The CBF is sig-
nificantly decreased after IL-13 treatment. The plots indicate mean values 
and SD. *Statistically significant with P < 0.05.
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table 1. Influence of cytokines on ciliary beat frequency

CBF ΔCBF P value n

IL-4

  Control 7.72 (0.78) 156

  0.1 ng/ml 7.60 (1.11) −0.12 (0.52) 0.8169 166

  1 ng/ml 7.57 (1.23) −0.15 (0.46) 0.7463 110

  10 ng/ml 6.38 (0.89) −1.34 (0.17) <0.0001** 142

IL-5

  Control 7.28 (0.40) 116

  0.1 ng/ml 8.20 (0.38) 0.92 (0.77) 0.2359 96

  1 ng/ml 8.63 (0.02) 1.35 (0.38) 0.0004** 124

  10 ng/ml 8.76 (0.11) 1.48 (0.29) <0.0001** 128

IL-9

  Control 6.60 (0.06) 109

  0.1 ng/ml 7.26 (0.35) 0.66 (0.29) 0.0235* 91

  1 ng/ml 7.15 (0.48) 0.55 (0.42) 0.1970 99

  10 ng/ml 7.31 (0.56) 0.71 (0.50) 0.1592 126

IL-13

  Control 7.54 (0.38) 70

  10 ng/ml 5.98 (0.89) −1.56 (0.51) 0.0028* 75

IL-4 (…ng/ml) + IL-13 (10 ng/ml)

  Control 8.69 (0.62) 139

  0.1 ng/ml 8.51 (0.91) −0.18 (0.34) 0.6232 111

  1 ng/ml 7.87 (1.39) −0.82 (0.79) 0.3077 138

  10 ng/ml 6.79 (0.92) −1.90 (0.32) <0.0001** 119

IFN-γ

  Control 11.11 (1.38) 158

  0.1 ng/ml 9.42 (1.36) −1.69 (0.44) 0.0001** 120

  1 ng/ml 10.33 (1.01) −0.78 (0.52) 0.1362 131

  10 ng/ml 11.80 (1.18) 0.69 (0.34) 0.0411* 139

IFN-γ (…ng/ml) + IL-13 (10 ng/ml)

  Control 7.54 (0.42) 178

  0.1 ng/ml 7.85 (0.32) 0.31 (0.15) 0.0354* 155

  1 ng/ml 7.97 (0.72) 0.43 (0.45) 0.3436 158

  10 ng/ml 8.32 (0.65) 0.78 (0.46) 0.0892 195

The table shows the mean CBF with sD within the different experiments. estimates for 
mean and sD are based on the underlying two-level random intercept mixed model.  
P values refer to associated pairwise comparisons with control.
CBF, ciliary beat frequency; ΔCBF, intervention minus control CBF; IFN-γ, interferon 
gamma; IL, interleukin; n, number of spheroids examined.
*statistically significant with P < 0.05; **statistically significant with P < 0.001.
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It has been shown that a decreased CBF impairs mucociliary 
clearance (26). Our results suggest that the impaired mucocili-
ary clearance in asthma is not only caused by epithelial dam-
age, mucus metaplasia, and changes in mucus rheology, but 
also by direct effects of TH2 cytokines on the ciliary function. 
Impaired mucociliary clearance increases the time aeroaller-
gens and pathogens spend on airways. This likely increases the 
risk of exacerbations and infections in asthma and contributes 
consequently to the burden of asthma.

IFN-γ has several effects in asthmatic bronchial epithelium: 
in an asthma cell culture model in mice it has been shown 
that IFN-γ reduces the mucous cell metaplasia (16). Nebulized 
IFN-γ inhibits eosinophilic airway inflammation (27,28). 
In subjects who benefited from allergen immunotherapy, 
an increased IFN-γ production of T-lymphocytes has been 

Figure 3. Influence of IL-4 plus IL-13 on the ciliary beat frequency. 
Presentation of the mean ciliary beat frequency (CBF) in IL-4 (different  
concentrations given on the x-axis) + IL-13 (10 ng/ml)-treated cells. The 
CBF is significantly decreased after IL-4 + IL13 treatment. The plots indicate 
mean values and SD. **Statistically significant with P < 0.001.
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Figure 4. Influence of IL-5 on the ciliary beat frequency. Presentation 
of the mean ciliary beat frequency (CBF) in IL-5-treated cells. The CBF is 
significantly increased after IL-5 treatment. The plots indicate mean  
values and SD. **Statistically significant with P < 0.001.
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Figure 5. Influence of IL-9 on the ciliary beat frequency. Presentation 
of the mean ciliary beat frequency (CBF) in IL-9-treated cells. The CBF is 
significantly increased after IL-9 treatment. The plots indicate mean values 
and SD. *Statistically significant with P < 0.05.

*

C
B

F

6.0

6.5

7.0

7.5

8.0

8.5

Con
tro

l

10
 n

g/
m

l

1 
ng

/m
l

0.
1 

ng
/m

l

Figure 6. Influence of IFN-γ on the ciliary beat frequency. Presentation 
of the mean ciliary beat frequency (CBF) in IFN-γ-treated cells. The CBF is 
decreased in lower concentrations of IFN-γ and it is increased after treat-
ment with IFN-γ in 10 ng/ml solution. The plots indicate mean values and 
SD. *Statistically significant with P < 0.05; **Statistically significant with 
P < 0.001.
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Figure 7. Influence of IL-13 plus IFN-γ on the ciliary beat frequency. 
Presentation of the mean ciliary beat frequency (CBF) in IL-13 + IFN-γ-
treated cells. The CBF is significantly increased after IL-13 + IFN-γ treat-
ment. 10 ng/ml IL-13 is added to different concentrations of IFN-γ solutions 
(0.1, 1, and 10 ng/ml). The plots indicate mean values and SD. *Statistically 
significant with P < 0.05.
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demonstrated suggesting a protective role for IFN-γ in aller-
gic diseases (29). IFN-γ is suggested to be involved in down-
regulating TH2 asthma (30,31). We have shown that IFN-γ is a 
potentiator of ciliary function by increasing the CBF. In addi-
tion, IFN-γ reverses the negative effect of IL-13 on the CBF. 
Our study adds evidence that IFN-γ enhances the mucocili-
ary clearance by improving ciliary function. This may encour-
age clinical trials with topical IFN-γ or drugs that increase the 
IFN-γ airway concentration as a possible treatment option in 
well-defined asthma cases.

Other cytokines in asthma pathophysiology are IL-5 and 
IL-9. IL-5 is a promoter for activation, differentiation, and 
adhesion of eosinophils. IL-5 levels in bronchoalveolar lavage 
fluids correlate with asthma severity (32,33). Treatment with 
substances targeting IL-5 reduces exacerbation rate and spu-
tum eosinophilia and increases the quality of life in clinical 
trials with patients having refractory eosinophilic asthma 
(34). IL-9 has effects on ciliated cell differentiation and mucus 
hypersecretion (16,35,36). Although IL-5 and IL-9 are relevant 
cytokines in asthma pathophysiology their influence on CBF is 
not yet known. We show that both IL-5 and IL-9 improve cili-
ary function and therefore deserve further research as poten-
tial agents that may enhance mucociliary clearance.

We used respiratory epithelium from nonasthmatic subjects. 
This approach is beneficial, as we were able to study the direct 
influence of different TH2 cytokines and IFN-γ on the ciliary 
function of respiratory epithelium naive to typical second-
ary changes seen in asthmatic subjects. Our primary research 
focus was to show whether ciliary function in human respira-
tory cells is dependent on TH2 cytokines or IFN-γ. We did not 
try to study other mechanisms affecting mucociliary clearance 
beyond ciliary function such as mucus composition, structural 
tissue damage or presence of inflammatory cells: a cell culture 
model would not be sufficient to address these questions. The 
majority of the observed effects showed dose dependency and 
were statistically significant. We did not investigate the inter-
actions between cytokines and the function of ciliary motor 
protein complexes. It is known that the CBF is regulated by 
cAMP, intracellular calcium concentration, cGMP, changes in 
pH, and possibly intracellular bicarbonate (37) or NO signal-
ing pathways (38). It is not clear, whether or which of these 
mechanisms are involved in the regulation of the CBF by cyto-
kines. Our study was not designed to investigate the underly-
ing mechanisms leading to the observed effects of cytokines 
on CBF. Future research will be needed to elucidate these 
questions. A better understanding of CBF regulation may help 
developing drugs that improve mucociliary clearance in dis-
eases like asthma, cystic fibrosis or primary ciliary dyskinesia, 
in which impaired mucociliary clearance is a major patho-
physiological mechanism.

In conclusion, we show that cytokines directly influence cili-
ary function in human respiratory epithelial cells. Thus, tar-
geting these effects seems a promising approach in improving 
mucociliary clearance disorders such as asthma where these 
cytokines are altered.

METHODS
Primary Respiratory Cell Cultures and Ciliogenesis
Respiratory epithelial cells were obtained from nasal conchae or pol-
yps from 21 patients who underwent ear, nose, and throat surgery. 
The removed tissue was washed with saline and epithelial cells were 
dissociated by incubation with 0.1% filtered pronase (protease XIV, 
Sigma-Aldrich, Taufkirchen, Germany) overnight at 4 °C in 10 ml 
Ham’s F12-DMEM 1/1 (Invitrogen, Karlsruhe, Germany). The cell 
suspension was incubated in 5 ml medium for 1 h in an uncoated 
T25 culture flask at 37 °C, 5% CO2 to remove fibroblasts. The remain-
ing cells were suspended in 15 ml medium containing 2% Ultroser G 
(Cytogen GmbH, Sinn, Germany) and plated on collagen-coated T75 
tissue flasks. Medium was replaced three times per week. After ~3 wk 
cells reached confluency. The collagen gel was resolved using collage-
nase type IV (200 U/ml, Worthington Biochemical Corporation, St. 
Katharinen, Germany) and the cell sheet was slightly disintegrated in 
smaller pieces with a cell scraper. 10 ml medium (containing Ultroser 
G) was added to the cell assemblies and placed in uncoated T25 
culture flasks. To establish suspension cultures, the flask was placed 
on a rotary shaker (80 rpm) and incubated at 37 °C. After 24 h, the 
composition of the medium was changed to Ham’s F12-DMEM 1/1 
supplemented with 10% NU-Serum (Schubert and Weiss GmbH, 
München, Germany) which was replaced every other day. Stable cell 
aggregates (spheroids) started to differentiate into ciliated respiratory 
epithelium.

At 1 wk of suspension culture, the cytokines (all cytokines were 
obtained from Sigma-Aldrich, Germany) were added to the medium 
in different concentrations. The cells were exposed to a given cytokine 
(IL-4, IL-5, IL-9, IL-13, IL-4 + IL-13, IFN-γ and IFN-γ + IL-13) for 
14 d. After 3 wk of suspension culture, spheroids exhibited multiple 
motile cilia and cells were processed for high-speed video microscopy.

Assessment of Ciliary Function by High-Speed Video Microscopy
CBF was determined with Sisson–Ammons Video Analysis (39). 
Respiratory epithelial cells were analyzed with an Olympus IMT-2 
microscope (40× phase contrast objective) equipped with a Redlake 
ES-310 Turbo monochrome high-speed video camera (Redlake, San 
Diego) set at 125 frames per second.

Statistics
The statistical endpoints for this report are the CBF and cytokine con-
centration (control, 0.1, 1 and 10 ng/ml). The cytokines considered in 
this report are: IL-4, IL-5, IL-9, IL-13, IL-4 + IL-13, IFN-γ, and IFN-γ 
+ IL-13. Depending on the cytokine, cellular material was generated 
from 2 to 4 patients and was randomly assigned to the different con-
centration levels.

Univariable distribution of metric variables is described by mean 
and SD. Normal distribution of metric outcomes was assessed graphi-
cally and by statistical measures (skewness, kurtosis). To analyze the 
impact of cytokine concentration on CBF, a two-level random inter-
cept mixed model (40) was fitted for each cytokine. The mixed mod-
els were built with CBF as metric outcome, cytokine concentration 
as fixed effect and a patient-specific random intercept while allow-
ing different variances within the distinct concentration levels. The 
random intercept is included to account for dependence between 
repeated, unordered measurements in cellular material from the same 
individual.

Analyses are regarded as explorative with P values displayed for 
descriptive reasons to detect and study meaningful effects. In par-
ticular, no adjustment for multiple testing was performed and “sig-
nificance” refers to local statistical significance defined as a local, 
unadjusted P value below 0.05.

Statistical analyses and graphs were performed using SPSS ver-
sion 19 (SPSS Inc., Chicago, IL), the SAS 9.4 software package (SAS 
Institute, Cary NC) and GraphPad Prism (version 6.0, GraphPad 
Software, La Jolla, California).

The study was approved by the Institutional Ethics Review Board at 
the University of Freiburg. Written informed consent to participate in 
this study was obtained from each individual.
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