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Background: Antenatal corticosteroid (ANCS) treatment 
hastens fetal lung maturity and improves survival of prema-
ture infants, but the long-term effects of ANCS are not well-
described. Animal models suggest that ANCS increases the 
risk of cardiovascular disease through programmed changes 
in the renin-angiotensin (Ang)-aldosterone system (RAAS). We 
hypothesized that ANCS exposure alters the RAAS in adoles-
cents born prematurely.
Methods: A cohort of 173 adolescents born prematurely 
was evaluated, of whom 92 were exposed to ANCS. We mea-
sured plasma and urine Ang II and Ang-(1–7) and calculated 
Ang II/Ang-(1–7) ratios. We used general linear regression 
models to estimate the difference in the RAAS between the 
ANCS-exposed and unexposed groups, adjusting for con-
founding variables.
Results: In unadjusted analyses, and after adjustment for 
sex, race, and maternal hypertension, ANCS exposure was 
associated with increased urinary Ang II/Ang-(1–7) (estimate 
0.27 (95% CI 0.03, 0.5), P = 0.03), increased plasma Ang-(1–7) 
(0.66 (0.26, 1.07), P = 0.002), and decreased plasma Ang II/Ang-
(1–7) (−0.48 (−0.91, −0.06), P = 0.03).
Conclusion: These alterations indicate an imbalance in the 
urinary RAAS, promoting the actions of Ang II at the expense 
of Ang-(1–7), which over time may increase the risk of renal 
inflammation and fibrosis and ultimately hypertension and 
renal disease.

Antenatal corticosteroids (ANCS), given to pregnant 
women expected to deliver prematurely to accelerate fetal 

lung maturity, increases survival and improves outcomes in 
the offspring, but the long-term effects of ANCS are not well-
characterized (1–3). Data from preclinical models that simu-
late human exposure suggest that ANCS may increase the risk 
for hypertension (HTN) and cardiovascular disease (4,5). 
The increased risk may be mediated in part by chronic dys-
regulation of the renin-angiotensin (Ang)-aldosterone system 

(RAAS), leading to increased renal and cardiovascular disease 
in adulthood (6,7). Human studies offer conflicting conclu-
sions regarding relationships between ANCS exposure and 
cardiovascular outcomes in adolescents and young adults and 
have not evaluated the effect of ANCS exposure on the RAAS 
(8–12).

The RAAS includes the Ang-converting enzyme (ACE)/
Ang II pathway and the ACE2/Ang-(1–7) pathway, is impor-
tant in renal and cardiovascular development, and is subject to 
developmental changes early in life (13,14). Ang II is a vaso-
constrictor, enhances sodium retention directly and through 
stimulation of aldosterone, and promotes inflammation and 
fibrosis, while Ang-(1–7) has variable effects on sodium trans-
port and glomerular filtration and has anti-inflammatory and 
anti-fibrotic effects in numerous organ systems, including the 
kidney (6,15–19). An altered RAAS is associated with adverse 
health outcomes, including HTN and chronic kidney disease 
(20). RAAS components measured in the urine are markers 
of the intrarenal RAAS (21–23). We measured RAAS compo-
nents in adolescents born prematurely to evaluate the hypothe-
sis that ANCS exposure is associated with long-term alteration 
of the balance between Ang II and Ang-(1–7) in plasma and 
urine.

RESULTS
Study Population
Reflective of the larger ANCS study’s design, approximately 
half the study sample was born to mothers who received ANCS 
(53%) (Table 1). The majority of subjects were female (55%), 
43% were black, and 35% were overweight/obese at 14 y of age. 
Maternal HTN complicated 36% of pregnancies. Blacks were 
less likely to receive ANCS. The ANCS group had a higher rate 
of maternal HTN and was taller.

ANCS Exposure and Urinary RAAS
There were no differences in Ang II, Ang II/creatinine, Ang-
(1–7), or Ang-(1–7)/creatinine (Table 1). Ang II/Ang-(1–7) 
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was higher in the ANCS group and this difference persisted 
when adjusting for race, sex, and maternal HTN (estimate 0.27 
(95% CI 0.03, 0.5), P = 0.03) (Table 2).

ANCS Exposure and Plasma RAAS
There were no differences in plasma renin activity, aldosterone, 
aldosterone-to-renin ratio (ARR), or Ang II (Table 1). The 
ANCS group had higher plasma Ang-(1–7) and lower Ang II/
Ang-(1–7), and these differences persisted when adjusted for 
race, sex, and maternal HTN (Ang-(1–7): 0.66 (0.26, 1.07), 
P = 0.002; Ang II/Ang-(1–7): −0.48 (−0.91, −0.06), P = 0.03) 
(Table 2, Figure 1). The associations of ANCS with higher 
plasma Ang-(1–7) and lower Ang II/Ang-(1–7) were stronger 
among black study participants (Ang-(1–7): 1.13 (0.61, 1.66), 

P < 0.001; Ang II/Ang-(1–7): −0.91 (−1.48, −0.33), P = 0.003) 
(Figure 2).

Although log-transformed waist-to-height ratio was asso-
ciated with both plasma Ang-(1–7) and Ang II/Ang-(1–7) 
(−1.44 (−2.65, −0.23), P = 0.02; 2.26 (1.04, 3.47), P < 0.001), 
adding waist-to-height ratio to the regression models did not 
substantially alter the association between ANCS and plasma 
RAAS.

DISCUSSION
Among adolescents born prematurely, ANCS exposure was 
associated with increased urinary Ang II/Ang-(1–7), increased 
plasma Ang-(1–7), and decreased plasma Ang II/Ang-(1–7). 
The increased urinary Ang II/Ang-(1–7) among preterm 

Table 1.  Clinical characteristics and the renin-angiotensin-aldosterone system profile at 14 y

Clinical characteristics

All subjects ANCS No ANCS

N = 173 92 (53%) 81 (47%)

Male 78 (45%) 44 (48%) 34 (42%)

Black 74 (43%) 27 (29%)* 47 (58%)

Maternal hypertension 63 (36%) 40 (43%)* 23 (28%)

GA (weeks) 27.8 (2.6) 27.7 (2.4) 27.9 (2.9)

Birth weight (g) 1053 (265) 1033 (269) 1075 (261)

Birth weight z-score −0.29 (0.84) −0.35 (0.74) −0.22 (0.93)

SGA 21 (12%) 9 (10%) 12 (15%)

Height (cm) 161.6 (9.3) 163.2 (8.9)* 159.8 (9.5)

Weight (kg) 56.0 (47.5, 69.5) 56.6 (48.7, 68.6) 56.0 (46.3, 71.8)

BMI (kg/m2) 21.1 (18.6, 26.5) 20.5 (18.4, 26.0) 22.5 (19.0, 26.6)

Overweight/obese 60 (35%) 28 (30%) 32 (40%)

Waist-to-height ratio 0.46 (0.42, 0.53) 0.45 (0.42, 0.51) 0.48 (0.43, 0.54)

Sexual maturity ratinga 4.5 (4.0, 5.0) 4.5 (4.0, 5.0) 4.5 (4.0, 5.0)

Systolic blood pressure 106.3 (9.9) 107.2 (10.4) 105.2 (9.2)

Systolic blood pressure z-score −0.40 (0.89) −0.36 (0.98) −0.45 (0.79)

Diastolic blood pressure 61.3 (8.9) 61.6 (8.9) 60.9 (8.9)

Diastolic blood pressure z-score −0.28 (0.78) −0.26 (0.79) −0.29 (0.77)

Urinary RAAS profile N = 173 n = 92 n = 81

Ang-(1–7) (pmol/l) 70.1 (48.6, 94.8) 70.9 (44.6, 94.4) 68.7 (49.0, 98.4)

Ang-(1–7)/creatinine (pmol/g) 0.41 (0.31, 0.59) 0.39 (0.29, 0.61) 0.43 (0.33, 0.57)

Ang II (pmol/l) 9.3 (6.3, 15.3) 10.5 (6.5, 16.6) 8.7 (5.9, 13.8)

Ang II/creatinine (pmol/g) 0.05 (0.04, 0.1) 0.06 (0.04, 0.11) 0.05 (0.03, 0.1)

Ang II/Ang-(1–7) 0.15 (0.1, 0.23) 0.17 (0.1, 0.27)* 0.14 (0.1, 0.19)

Plasma RAAS profile N = 120 n = 70 n = 50

Plasma renin activity (pmol Ang I/l/h) 2.4 (1.2, 3.2) 2.5 (1.4, 3.2) 1.9 (1.0, 3.0)

Aldosterone (pmol/l) 9.9 (5.3, 14.1) 9.9 (6.2, 13.3) 9.9 (4.3, 17.8)

Aldosterone-to-renin ratio (pmol/l per pmol Ang I/l/h) 4.2 (3.0, 6.6) 4.1 (3.1, 6.2) 4.6 (2.5, 8.7)

Ang-(1–7) (pmol/l) 5.6 (2.9, 13.5) 9.0 (2.6, 14.7)* 2.7 (1.4, 7.0)

Ang II (pmol/l) 21.5 (16.7, 32.1) 22.3 (17.1, 33.3) 21.0 (15.6, 29.1)

Ang II/Ang-(1–7) 3.7 (1.9, 6.8) 3.0 (1.6, 7.8)* 6.3 (3.5, 13.3)

N (%), mean (SD), median (IQR). an = 154. *Denotes significant difference between groups with P < 0.05 by chi-square test, t-test, or Wilcoxon Rank-Sum test.
ANCS, antenatal corticosteroids; RAAS, renin-angiotensin (Ang)-aldosterone system; SGA, small for gestational age.
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adolescents exposed to ANCS may be due to a higher renal 
(urinary) Ang II. This shift in the kidney, toward Ang II and 
away from Ang-(1–7), is consistent with the finding that off-
spring of pregnant ewes exposed to clinically relevant doses of 
ANCS (betamethasone given at 0.6 gestation: the equivalent 
of about 24 wk gestation in humans) develop alterations in the 
renal RAAS, decreased renal function, and elevated blood pres-
sure as adults. RAAS alterations include attenuated responses 
to Ang-(1–7), enhanced responses to Ang II, increased expres-
sion of the Ang II type 1 receptor, increased serum ACE activ-
ity, decreased serum ACE2 activity, and decreased proximal 
tubular ACE2 activity and expression. Together these altera-
tions indicate an imbalance in the RAAS which promotes the 
actions of Ang II at the expense of Ang-(1–7) (6,7,24,25).

Over time, elevated renal Ang II levels could increase the 
risk for renal inflammation and fibrosis and may lead to HTN 
and renal disease (26). This mechanism could accentuate other 

perinatal renal insults such as ischemia and nephrotoxic expo-
sure (21,27). In contrast to RAAS alterations in urine, plasma 
levels of Ang-(1–7) were higher among ANCS-exposed adoles-
cents, which might serve to attenuate the physiologic effects of 
an elevated Ang II to Ang-(1–7) ratio in the kidney. A potential 
explanation for this finding is that it may reflect a compen-
satory upregulation to counteract further inflammation and 
fibrosis by Ang II as ACE2 expression and elevated Ang-(1–7) 
levels are evident in several pathologic states (28,29). ANCS 
exposure could also directly lead to increased systemic or vas-
cular ACE2/Ang-(1–7) pathway activity.

Consistent with data showing obesity is associated with an 
upregulated ACE/Ang II pathway (30), we found that waist-
to-height ratio, a measure of central adiposity, was associated 
with decreased plasma Ang-(1–7) and increased plasma Ang 
II/Ang-(1–7). Obesity-driven RAAS dysregulation is associ-
ated with inflammation, insulin resistance, and metabolic 

Table 2.  Relationship between antenatal corticosteroid exposure and the renin-angiotensin (Ang)-aldosterone system

Unadjusted Adjusteda Stratifieda

Estimate (95% CI) P value Estimate (95% CI) P value Estimate (95% CI) P value

Urine Ang II/Ang-(1–7) 0.26 (0.04, 0.48) 0.02 0.27 (0.03, 0.5) 0.03 – – –

Plasma Ang II/Ang-(1–7) −0.49 (−0.88, −0.11) 0.01 −0.48 (−0.91, −0.06) 0.03 Blackb −0.91 (−1.48, −0.33) 0.003

Non-Blackc −0.21 (−0.78, 0.36) 0.46

Plasma Ang-(1–7) 0.65 (0.28, 1.02) <0.001 0.66 (0.26, 1.07) 0.002 Blackb 1.13 (0.61, 1.66) <0.001

Non-Blackd 0.37 (−0.18, 0.92) 0.19

General linear regression models. aAdjusted for sex, race, and maternal HTN; bn = 15; cn = 54; dn = 55.

Figure 1.  Relationship between antenatal corticosteroids (ANCS) and renin-angiotensin (Ang)-aldosterone system (RAAS). Gray arrows indicate direction 
of association with the RAAS: dark gray indicates upregulation of Ang II and light gray indicates upregulation of Ang-(1–7).
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disease (31). Racial differences in plasma renin activity and 
aldosterone are well-documented. Our finding that asso-
ciations between ANCS and the RAAS were stronger among 
black study participants suggests the possibility that long-term 
effects of ANCS might differ for blacks and non-blacks.

Our study is limited by the nonrandomized allocation of the 
exposure (ANCS), leaving open the possibility of confounding 
due to factors we did not measure. We could not fully account 
for all the potential factors that influence the RAAS, such as 
genetic influences and dietary variability. Further, we lack 
measurements of RAAS enzymatic activity, specifically ACE 
and ACE2, which could better characterize the profiles of the 
ACE/Ang II and ACE2/Ang-(1–7) pathways in this cohort.

In conclusion, in a cohort of adolescents born prematurely, 
ANCS exposure was associated with alterations in the RAAS, 
specifically increased urinary Ang II/Ang-(1–7), increased 
plasma Ang-(1–7), and decreased plasma Ang II/Ang-(1–7). 
An altered systemic and intrarenal RAAS may modify an indi-
vidual’s cardiovascular risk profile and negatively impact kid-
ney function later in life.

METHODS
Study Participants
Study participants were recruited from among living members of a 
premature birth cohort of 193 patients born between 1 January 1992 
and 30 June 1996 at a regional perinatal center (Forsyth Medical 
Center in Winston Salem, NC). This cohort included (i) children 
with whom we had contact through at least 1 y of age, (ii) were not 
wards of the state, and (iii) were successfully contacted at 14 y of age. 
Sixty-two percent of those contacted were enrolled (n = 193). Of the 
193 cohort subjects, seven were excluded from the analysis (two were 
twins, three had congenital anomalies, and two had maternal oral 
steroid use). The members of the cohort were evaluated at 14 y of 
age as part of a larger study of ANCS exposure and cardiovascular 
and metabolic outcomes among preterm adolescents (Figure 3). We 
report the measurements made at the third study visit, at which 173 
subjects were evaluated (92 of 94 in the ANCS group, 81 of 92 in the 
unexposed group). All the subjects provided urine specimens and 120 
provided blood specimens. More detailed information on materials 
and methods, including specific inclusion and exclusion criteria, have 
been published previously (32). The Wake Forest School of Medicine 
and Forsyth Medical Center Institutional Review Boards approved 
the study. We obtained informed consent from parents or legal guard-
ians and assent from participants.

Data Collection
Perinatal characteristics were recorded from medical records and 
research databases. We recorded the presence of maternal hyperten-
sion during pregnancy (maternal HTN) and ANCS exposure, defined 
as maternal treatment with betamethasone and/or dexamethasone (one 
subject’s mother received dexamethasone only and one subject’s mother 
received both betamethasone and dexamethasone). Birth characteris-
tics were noted, including (i) sex, (ii) GA, and (iii) birth weight. Birth 
weight z-score was determined (33). We categorized subjects as born 
small for gestational age (SGA) if their birth weight percentile was less 
than or equal to the 10% (34). Demographic information was recorded 
at 14 y of age, including parental-reported race (black vs. non-black), 
and height, weight, and waist circumference were measured. We calcu-
lated BMI (kg/m2) and waist-to-height ratio, and defined overweight/
obese as BMI ≥ 85% for age and sex (35). Sexual maturity was rated (1 
to 5) using a self-reported questionnaire completed in private and was 
summarized as the average of both determinants of secondary sexual 

Figure 2.  ANCS and renin-angiotensin (Ang)-aldosterone system strati-
fied by race. (a) Plasma Ang II/Ang-(1–7). (b) Plasma Ang-(1–7). *P = 0.002, 
**P <0.001. ANCS = dark gray; no ANCS = light gray. Bar denotes median, 
circle denotes mean, box indicates IQR, and whiskers include ≤1.5× IQR. 
Between-group comparisons by Wilcoxon Rank-Sum test. ANCS, antenatal 
corticosteroids.
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Figure 3.  Study participant flow diagram.
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characteristics (external genitalia development and pubic hair in males; 
breast development and pubic hair in females) (36). Resting blood pres-
sure was measured with a mercury manometer after the subject was 
seated quietly for at least 5 min, and the average of three measurements 
was recorded according to established guidelines (37). Blood pressure 
z-scores were calculated (38).

Laboratory Measurements
Blood was collected from participants in the seated position to mea-
sure plasma renin activity, aldosterone, Ang-(1–7), and Ang II. A spot 
urine sample was provided to measure Ang-(1–7), Ang II, and creati-
nine. We calculated ARR, the Ang II/Ang-(1–7) ratio in the plasma 
and urine, and the urinary Ang-(1–7) and Ang II concentrations 
corrected for creatinine. Specific laboratory methods have been pub-
lished previously (39).

Statistical Analyses
Distributions of continuous variables were described with the mean 
and SD or the median and IQR. We used natural logarithmic trans-
formation to improve the distributional characteristics of the continu-
ous variables when appropriate. Values below the minimum detectable 
thresholds were assigned one-half those threshold values (39). For 
between-group comparisons of continuous variables, we used the t-test 
and Wilcoxon Rank-Sum test; for comparisons of categorical variables, 
we used the Chi-square and Fisher’s Exact tests. Correlations were 
assessed with Pearson or Spearman correlation coefficients.

We used general linear regression models to evaluate the relationship 
of ANCS exposure and RAAS outcomes. We evaluated effect modifica-
tion using product terms (ANCS × modifier). To identify variables that 
might confound the ANCS–RAAS relationships, we evaluated bivari-
ate relationships between each potential confounder and ANCS and 
each potential confounder and RAAS outcome. Potential confounders 
were included in the multivariate models if either of the following were 
found: (i) an association with both the RAAS measure and ANCS at  
P <0.2, or (ii) a >10% change in the regression coefficient for ANCS esti-
mated with general linear models. In addition, sex, race, and maternal 
HTN were identified a priori as potential confounders and effect mod-
ifiers, based on the results of previous studies (39,40). The criterion for 
inclusion in the final multivariate model was P < 0.05. For compari-
sons of the ANCS-exposed and unexposed groups, a two-sided α of 
0.05 was considered statistically significant. We used Enterprise Guide 
software, Version 7.11 of the SAS System for Windows (SAS Institute, 
Cary, NC) for all analyses.
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