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Background: Bronchopulmonary dysplasia (BPD) is one of 
the leading causes of morbidity and mortality in babies born 
prematurely, yet there is no curative treatment. In recent years, 
a number of inhibitors against TGFβ signaling have been tested 
for their potential to prevent neonatal injury associated with 
hyperoxia, which is a contributing factor of BPD. In this study, 
we assessed the contribution of activin A—a member of the 
TGFβ superfamily—to the development of hyperoxia-induced 
lung injury in neonatal mice.
Methods: We placed newborn C57Bl6 mouse pups in con-
tinuous hyperoxia (85% O

2
) to mimic many aspects of BPD 

including alveolar simplification and pulmonary inflamma-
tion. The pups were administered activin A receptor type IIB-Fc 
antagonist (ActRIIB-Fc) at 5 mg/kg or follistatin at 0.1 mg/kg on 
postnatal days 4, 7, 10, and 13.
Results: Treatment with ActRIIB-Fc and follistatin protected 
against hyperoxia-induced growth retardation. ActRIIB-Fc also 
reduced pulmonary leukocyte infiltration, normalized tissue: 
airspace ratio and increased septal crest density. These findings 
were associated with reduced phosphorylation of Smad3 and 
decreased matrix metalloproteinase (MMP)-9 activity.
Conclusion: This study suggests that activin A signal-
ing may contribute to the pathology of bronchopulmonary 
dysplasia.

Premature birth refers to birth before 37 wk of gestation. There 
are a large number of medical complications associated with 

being born prematurely, many of which are a consequence of 
life-saving interventions, including bronchopulmonary dyspla-
sia (BPD). Historically, BPD was originally described in 1967, 
as a form of chronic lung disease observed in premature babies, 
resulting from the injurious effects of high oxygen tension and 
airway pressure used during mechanical ventilation (1). This 
form of lung disease is commonly referred to as “old BPD”. 
Today, this is rare due to gentler ventilation strategies and the 
use of surfactant and antenatal steroids. Instead, a “new BPD” 
has emerged, defined as the requirement of supplemental oxy-
gen at 36 wk postconceptional age (2). The pathological hall-
marks are suggestive of arrested septation and alveolarisation 
triggered by inflammation, corticosteroids, and hyperoxia (3). 

There is currently no cure for BPD and asides from ventilatory 
support, clinical management involves the use of steroids, which 
is associated with an increased incidence of cerebral palsy. There 
is thus a need for new therapeutic approaches.

In the past decade, much light has been shed on the contri-
bution of TGFβ signaling to neonatal lung development and 
injury. TGFβ1 has been shown to be important for the sur-
vival and repair of type II alveolar epithelial cells (AEC2) (4). 
Specifically, TGFβ1 treatment of hyperoxia damaged AEC2 
improved cell survival, migration, and secretion of proan-
giogenic ligands such as vascular endothelial growth factor 
(VEGF) and matrix proteins such as fibronectin. However, 
inhibition of TGFβ signaling by curcumin and PPARγ agonist, 
rosiglitazone, were protective against hyperoxia-induced lung 
injury in neonatal rat models of BPD (5,6). These reports point 
to the need for better understanding of TGFβ signaling within 
the context of BPD.

Activin A, a member of the TGFβ superfamily, has been 
reported to contribute to adult lung disease. In adult animals, 
overexpression of activin A in the lungs results in an alteration 
in the composition of the lung epithelial cell populations where 
ciliated cells dominate, with fewer AEC2 (7). These changes 
result in a compromise to lung compliance and a significant 
reduction in surfactant protein C-expressing AEC2. In another 
study, blocking activin A using follistatin following in bleomy-
cin challenge, prevented lung inflammation and fibrosis (8). 
While these studies support a role for activin A in adult inflam-
matory and fibrotic lung injury, its role in neonatal lung injury, 
repair and development has never been previously studied.

In this study, we exposed newborn mice to hyperoxia (85% 
O2) and administered either soluble ActRIIB-Fc (5 mg/kg) or 
follistatin (0.1 mg/kg) twice weekly to determine the contribu-
tion of activin A signaling to the pulmonary phenotype. We 
assessed changes to lung remodeling, activin A levels, Smad 
signaling and markers of lung injury including leukocyte infil-
tration, cell death, and proliferation.

RESULTS
ActRIIB-Fc and Follistatin Treatment Improved Bodyweights
Hyperoxia reduced bodyweights of pups as previously 
reported. The bodyweights of animals from the hyperoxia 
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+ saline cohort were significantly lower compared to the 
normoxia  +  saline cohort at postnatal day 14 (Figure  1a). 
Treatment with ActRIIB-Fc and follistatin significantly 
improved the bodyweights of pups subjected to hyperoxia such 
that they were not significantly different to the normoxia treat-
ment groups. Hyperoxia was associated with increased activin 
levels (Figure  1b, P  <  0.05), which remained unchanged by 
ActRIIB-Fc treatment but significantly reduced by follistatin 
(P < 0.05).

ActRIIB-Fc Treatment Improves Septation
Hyperoxia increased Smad3 phosphorylation as previously 
reported by Dasgupta et al. (9) (Figure 2a, P < 0.05). This was 
significantly reduced by ActRIIB-Fc and follistation (P < 0.01). 
Representative western blots are provided in Figure 2b. Typical 
of hyperoxia exposure, we saw a reduction in tissue: airspace 
ratio (Figure 3a, P < 0.01) as increased oxygen tension induced 
alveolar simplification. Treatment with ActRIIB-Fc signifi-
cantly increased tissue: airspace ratio in hyperoxia-treated ani-
mals (P < 0.0001), suggesting that there was some prevention 
of alveolar simplification.

Smad 2/3 signaling is increased in mouse models of 
hyperoxia-induced lung injury (5) as well as sheep mod-
els of antenatal inflammation-associated lung injury (10). 
Given the effects of ActRIIB-Fc treatment on improving tis-
sue: airspace ratio and reducing phosphorylation of Smad 3, 
we sought to assess the effects of ActRIIB-Fc and follistatin 
on septation. Secondary septal crest density was thus deter-
mined by morphometric analysis. We confirmed that hyper-
oxia significantly reduced septal crest density (Figure  3a, 
P  <  0.001). Administration of ActRIIB-Fc increased septa-
tion in the hyperoxia-treated animals (P  <  0.0001) while 
follistatin treatment had no significant impact on septation. 
Representative images of septal crest imaging are shown in 
Figure 3c.

ActRIIB-Fc Treatment Reduced Pulmonary Leukocyte Infiltration 
and IL-6 Production
Unsurprisingly, hyperoxia increased the recruitment of leu-
kocytes in the lungs as determined by CD45 immunohisto-
chemistry (Figure 4a, P < 0.05). This was significantly reduced 
by ActRIIB-Fc treatment (P < 0.01) where the percentage of 
CD45+ cells was reduced to numbers comparable to that of 
normoxia + saline animals. Given that ActRIIB-Fc treatment 

Figure 1.  Hyperoxia reduced bodyweights of neonatal mouse pups. Hyperoxia reduced bodyweights of developing pups. They are significantly lighter 
at postnatal day day 14 compared to normoxia pups (a, *P < 0.05). Administration of ActRIIB-Fc and FS288 significantly increased bodyweights of 
hyperoxia-exposed pups (†P < 0.001, ‡P < 0.0001). Activin A levels were elevated in hyperoxia animals, which was reduced following FS288 treatment 
(b, *P < 0.05).
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Figure 2.  Treatment with ActRIIB-Fc and follistatin reduced 
hyperoxia-induced Smad 3 phosphorylation. Hyperoxia significantly 
increased Smad 3 phosphorylation (a, *P < 0.05). This was reduced in 
ActRIIB-Fc- and FS288-treated animals (**P < 0.01). Representative western 
blots are shown (b).
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had the greatest impact on immune cell numbers, we fur-
ther assessed the effect of this treatment on macrophage and 
neutrophil numbers. Here we observed no significant effect 
of ActRIIB-Fc treatment on numbers of lung macrophages 
(Figure  4b) or neutrophils (Figure  4c). However, pulmo-
nary levels of IL-6 were increased in the neonatal mouse pups 
exposed to hyperoxia as previously reported (11) (Figure 4d, 
P  <  0.01). This was prevented by ActRIIB-Fc treatment 
(P < 0.0001).

ActRIIB-Fc Treatment Prevents Pathological Lung Remodeling
We next asked if improvements in tissue: airspace ratio was due 
to modulation of matrix metalloproteinase activity since matrix 
metalloproteinase (MMP)-2 and -9, were previously reported 
to contribute to lung remodeling during hyperoxia (12). Here 
we found at postnatal day 14, that hyperoxia had no significant 
effect on MMP-2 activity in the lungs (Figure 5a), but signifi-
cantly increased MMP-9 activity (Figure 5b, P < 0.001). This 
was significantly reduced by ActRIIB-Fc treatment (P < 0.01).

ActRIIB-Fc Treatment Does Not Affect AEC2 Proliferation
Further, we asked if ActRIIB-Fc treatment promoted pro-
liferation and of the actively proliferating cells, how many 
were AEC2. To assess this, we performed double immuno-
fluorescence for SPC and Ki67. Representative images of 
immunofluorescence are provided in Figure  6a. We found 
that hyperoxia increased the percentage of AEC2 cells, as was 
recently reported (13) (Figure  6b, P  <  0.01). This was not 
changed by ActRIIB-Fc by postnatal day 14. Assessing total 
Ki67+ cells, we also observed that hyperoxia increased cell 
proliferation (Figure 6c, P < 0.0001)—an effect that was inhib-
ited by ActRIIB-Fc treatment (P < 0.0001). Colocalization of 
these markers indicates that ActRIIB-Fc treatment did not 
negatively impact AEC2 proliferation (Figure 6d).

DISCUSSION
With ever-growing improvements in obstetric and perinatal 
medicine, viable births are being delivered at increasing pre-
maturity. One of the major complications of premature births 

Figure 3.  Changes in tissue: airspace ratio and secondary septation. Tissue: airspace ratio was reduced by hyperoxia (a, **P < 0.01). Treatment with 
ActRIIB-Fc, but not FS288, significantly increased tissue: airspace ratio in hyperoxia-exposed pups (‡P < 0.0001). Septal crest density was reduced by hyper-
oxia (b, †P < 0.001) but prevented by ActRIIB-Fc treatment (‡P < 0.0001). Representative images of Hart’s-stained sections used for septal crest scoring are 
shown (c). Images were taken at 200× magnification. Scale bars: 100 μm. Inset panels show Hart’s stain accumulated at secondary septal crests.
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is BPD, a major cause of morbidity and mortality in premature 
babies. There is still no cure for BPD and it remains a clinical 
problem. Here we evaluate the contribution of activin A in the 
development of hyperoxia-induced lung injury using a neona-
tal mouse model of BPD. We found that both ActRIIB-Fc and 
FS288 were effective in protecting against hyperoxia-associated 
weight loss. Activin A levels and Smad 3 phosphorylation were 
elevated in the lungs of neonatal mice exposed to hyperoxia. 
Activin A levels were normalized by follistatin but phosphoryla-
tion of Smad 3 was most diminished by ActRIIB-Fc. ActRIIB-Fc 
was more effective in reducing leukocyte infiltration. These 
findings were accompanied by increased septal crest density 

and reduction in MMP-9 activity, suggesting that activin A or 
related members of the TGFβ superfamily may place a role in 
the deleterious lung remodeling during hyperoxia.

TGFβ signaling plays an important role during lung devel-
opment where TGFβ levels are developmentally regulated. 
Exogenous TGFβ can promote survival and restoration of 
hyperoxia-depleted autocrine VEGF secretion in AEC2 and 
TGFβ-mediated Smad signaling is important for the main-
tenance of this cell population (4). Conditional knockout of 
TGFβ II receptor (TβRII) in the lung epithelium resulted in 
retardation of postnatal alveolarisation with marked reduction 
in type I alveolar epithelial cells (AEC1) (14). Similar findings 
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Figure 4.  Antagonism of activin A signaling offered limited protection against hyperoxia-induced inflammation. Hyperoxia increased leukocyte numbers 
and this was reduced by ActRIIB-Fc treatment (a, *P < 0.05, **P < 0.01). Representative images were taken at 400× magnification. Hyperoxia did not 
change macrophage numbers (b, representative images taken at 200× magnification) but increased neutrophil numbers (c, representative images 
were taken at 200× magnification). Scale bars 100 μm. Black arrows point at positive stained cells. (i) normoxia + saline; (ii) normoxia + ActRBIIB-Fc; 
(iii) hyperoxia + saline; (iv) hyperoxia + ActRIIB-Fc IL-6 levels in lung homogenates were elevated in hyperoxia-treated animals (d, **P < 0.01) and reduced 
with ActRIIB-Fc treatment (‡P < 0.0001).
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were reported in Smad3-deficient mice, where pronounced 
lung alveolarisation was observed at postnatal days 7–28 (15). 
These reports thus indicate that Smad3 is an important posi-
tive regulatory element in normal lung development. During 
hyperoxic neonatal lung injury, however, inhibition of TGFβ 
signaling can be beneficial. In a neonatal hyperoxia mouse 
model, alveolar arrest was shown to correspond strongly to 
dysregulation expression and immunohistochemical localiza-
tion of ALK-1, -3, and -6 and TGFβ receptor, as well as Smads 
1, 3 and 4, in lung tissues. The same study showed that TGFβ 
signaling increased in lung epithelial cells upon exposure to 
hyperoxia in vivo and in vitro (16).

Given the nature of activin A, having been described as hav-
ing both pro- and anti-inflammatory effects, and sharing com-
mon Smad signaling intermediates with TGFβ1, an assessment 
into the role of activin A in hyperoxic lung injury is warranted. 
This is the first study to evaluate the contribution of activin A 
signaling to the development of hyperoxia-induced lung injury 
and the first study to use ActRIIB-Fc as an experimental treat-
ment for lung injury.

Follistatin is a naturally occurring protein that binds 
strongly to activins (Kd 50-900mP) and inhibits their activin 
bioactivity. Follistatin can also bind to other members of 
the TGFβ superfamily including BMP-4, -6, and -7, albeit at 

Figure 5.  Changes to metalloproteinase-2 and -9 activity. Activity of matrix metalloproteinase (MMP)-2 did not differ between experimental groups (a). 
Hyperoxia increased MMP-9 activity in lung lysates (b, †P < 0.001). This was increased by ActRIIB-Fc (**P < 0.01).
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lower affinities (17). Notably, ActRIIB-Fc binds most strongly 
to activin A, but it is also able to bind to other members of 
the TGFβ superfamily such as GDF-8 and -11, as well as 
BMP-2 and -7, with up to 100-fold lower affinity (18). Activin 
A was previously reported to induce proinflammatory cyto-
kines such as IL-6, TNFα, IL-1β, and iNOS in macrophages 
in vitro (19). In other studies, activin A suppressed IL-6 sig-
naling (20), macrophage-derived nitric oxide (21), dendritic 
cell maturation (22), induction of regulatory T cells (23,24). 
Activin A has also been implicated in matrix remodeling 
and promotion of a Th2 immune response for wound heal-
ing (25,26). It is perhaps unsurprising then, that the antago-
nism of activin A signaling using ActRIIB-Fc or FS288 did 
not wholly ameliorate all pathological aspects of hyperoxia-
induced lung injury. It was, however, unexpected that fol-
listatin treatment, but not ActRIIB-Fc, reduced activin A 
levels since one would expect that both treatment regimes 
target the downstream effects of activin A. This limitation 
could be addressed in subsequent studies by measuring free 
activin and/or activin activity levels instead of total activin A, 
as performed in our current study.

The reduction in pulmonary leukocyte infiltration and levels 
of proinflammaory cytokine IL-6 does suggest, however, that 
inhibition of activin A signaling during hyperoxia may be pro-
tective either by reducing local inflammation brought on by 
hyperoxia or by reducing leukocyte chemotaxis. That we did 
not observe the same effect in follistatin-treated animals was 
unexpected and this may be due to insufficient dosage of fol-
listatin since only one dosage was tested in this study. Dose 
studies using follistatin and specific inhibitors for the members 
of the TGFβ superfamily will be needed to resolve confound-
ing data from follistatin treatment groups. Despite the absence 
of an effect on total macrophage numbers in the lungs, it may 
be useful to determine if inhibition of activin A affects macro-
phage polarization.

In vitro, activin A negatively regulates IL-10 production by 
murine M2 macrophages and impairs their acquisition of an 
anti-inflammatory phenotype and cytokine profile via Smad 
2/3 phosphorylation (27). This supports the role of activin A in 
inflammatory diseases including BPD since macrophage polar-
ization is a relevant event during wound healing and resolution 
of inflammation. Understanding the regulation of activin sig-
naling in a disease such as BPD is important since M2 macro-
phages are implicated in early lung development, where they 

localized to branching points of the developing mouse lung 
(28). Keeping in mind the potential benefits and detrimen-
tal effects on the developing lungs, developing therapies that 
target activin A signaling can thus be precarious. Certainly in 
our hands ActRIIB-Fc and follistatin treatments showed some 
beneficial effects to lung development but thorough studies 
into macrophage polarity, concurrent alveolarisation, and sec-
ondary septation are needed to ascertain the feasibility of such 
a therapeutic strategy.

Surprisingly, treatment with ActRIIB-Fc did not change 
neutrophil numbers in the lungs, given that adenoviral overex-
pression of activin A in adult mouse lungs increased neutrophil 
influx into the lungs with an accompanying “cytokine-storm” 
of MCP-1, IL-1β, IL-4, IL-5, IL-6, IL-10, IL-17, TNFα, and 
IFNγ (7). However, the relationship between activin A and 
neutrophils is very poorly understood. Indeed, there have been 
no studies describing how activin A influence the neutrophil 
chemotaxis into the lungs, nor the regulation of activin A pro-
duction by neutrophils during lung injury.

Septal crest density was improved in ActRIIB-Fc-treated 
animals, suggesting that lung development is benefitted by 
reduced inflammation. Metalloproteinases contribute to the 
pathological remodeling in neonatal rats exposed to 100% oxy-
gen (29). In this study, 85% oxygen did not significantly change 
MMP-2 activity, but MMP-9 activity was increased. These 
findings were similar to a previous study performed using 90% 
oxygen to induce BPD in neonatal rats (12). Increased levels 
of MMP-9 have also been reported in premature infants with 
antenatal lung inflammation preceding chronic lung disease 
(30).

Furthermore, the ratio of MMP-9 to its inhibitor, TIMP-
1, is elevated in premature infants who develop BPD (31). 
Furthermore, MMP-9-/- mice were resistant to hyperoxia-
induced BPD (32). Together, these findings indicate the role 
of MMP-9 in the destruction of lung architecture during BPD. 
We observed in this study that ActRIIB-Fc treatment restored 
MMP-9 activity levels comparable to normoxia animals. This 
reduction in MMP-9 activity, along with increased cell prolif-
eration, may account for the improvement in secondary sep-
tal crest density and overall improvement in lung structure. 
Despite the absence of pre-exisiting data on the influence of 
activin A on MMP-9 activity, the inhibition of activin A signal-
ing using follistatin was recently shown to prevent pathological 
airway remodeling in asthma (33).

Increase in total AEC2 cells following exposure to hyper-
oxia was recently reported by Yee et al. (34). In this study, we 
observed that ActRIIB-Fc treatment reduced the percentage 
of proliferating cells while keeping the percentage of prolifer-
ating AEC2 cells unchanged. This cell proliferation was not, 
however, primarily associated with increased proliferation of 
AEC2 as there was no significant increase in Ki67+SPC+ cells 
following ActRIIB-Fc treatment. Other proliferating cells that 
may have contributed to differences in Ki67+ numbers include 
lung fibroblasts, endothelial cells, and endogenous lung pro-
genitors, all of which are recruited temporally during periods 
of development and repair (6,35,36).

Table 1.  Treatment groups

FiO2 Treatment/dosage

Normoxia alone 0.21 Saline

Hyperoxia alone 0.85 Saline

Normoxia + ActRIIB-Fc 0.21 5 mg/kg

Hyperoxia + ActRIIB-Fc 0.85 5 mg/kg

Normoxia + follistatin 0.21 0.1 mg/kg

Hyperoxia + follistatin 0.85 0.1 mg/kg

FiO
2
, fraction of inspired oxygen.
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Another possibility is that ActRIIB-Fc treatment reversed 

the detrimental effects of activin A on angiogenesis. The VEGF 
signaling pathway drives postnatal angiogenesis and alveolari-
sation, and this is dysregulated in BPD-affected infants where 
there pulmonary capillary density is markedly reduced (37). 
Similarly, hyperoxia-induced rat BPD results in reduced VEGF 
expression and rescuing angiogenesis restores alveolarisation 
(38). It should be noted, however, that the role of activin A in 
vascular formation and alveolarisation has never been studied 
in the lung, during normal or pathological development.

In this study, we observed that inhibition of activin A signaling 
provides some protective effects against hyperoxia-associated 
growth/weight retardation, pathological lung remodeling, and 
leukocyte infiltration. These findings correlated strongly to the 
reduction of Smad 3 phosphorylation in a manner similar to 
that reported in curcumin inhibition of TGFβ activity (5). The 
common signaling intermediates used by TGFβ and activin 
during hyperoxic lung injury suggest that activin may contrib-
ute to lung development and BPD-related pathology.

METHODS
Animal Experiments
All experimental procedures were approved by Monash University 
Animal Ethics Committee and were conducted in accordance with 
the Australian Code of Practice for the Care and Use of Animals 
for Scientific Purposes. We used a newborn hyperoxia lung injury 
model, as previously described (39). Briefly, C57Bl/6 female mice 
aged 8–10 wk were time-mated and acclimatized to plexiglass cham-
bers (12-h day/night cycle at 22 °C and 50–60% humidity) at about 
17 d gestation (term 19–21). Within 24 h of birth, whole litters were 
randomized to either normoxia (21% O2) or hyperoxia (85% O2) for 
14 d. To prevent maternal oxygen toxicity, nursing dams were rotated 
every 2 d.

Experimental Groups
Litters were randomly assigned to one of six groups (four litters per 
group): normoxia alone, hyperoxia alone, normoxia  +  ActRIIB-Fc, 
hyperoxia  +  ActRIIB-Fc, normoxia  +  follistatin, hyperoxia  +  fol-
listatin. All treatments were administered in 20 μl saline via intraperi-
toneal injections twice weekly. Detailed breakdown of these groups 
are shown in Table 1. The detailed production of soluble ActRIIB-Fc 
has been previously described (40) and used at 5 mg/kg. Recombinant 
follistatin (FS288) was obtained from R&D systems (Minneapolis, 
MN) and used at 0.1 mg/ml.

Postmortem and Tissue Collection
Animals were humanely killed at postnatal day 14 with sodium 
pentobarbitone (Virbac, Regents Park, NSW, Australia). Pups were 
randomly assigned for histological and molecular analyses. For his-
tological analyses, lungs were instilled with 4% paraformaldehyde at 
20 cmH2O pressure and immersed in 4% paraformaldehyde for 24 h 
before processing. For molecular analyses, lungs were either snap-
frozen with liquid nitrogen or placed in RNAlater (Life Technologies, 
Carlsbad, CA) and stored at −80 °C.

Immunohistochemistry and Image Analysis
Lungs were cut to a thickness of 5 μm. Sections were stained with 
hematoxylin and eosin or Hart’s stain to determine tissue-airspace 
ratio and septal crest density, scoring 10 fields of view (five per 
individual lung) at 400× magnification. Briefly, the area fraction of 
positive tissue was quantified by digital image analysis using Image J 
software (NIH, Bethesda, MA). Each image was converted to a 16-bit 
black-and-white image and threshold values adjusted to include only 
stained areas. Threshold values were maintained for all samples. The 
active area score was defined as the percentage of stained pixels per 

field of view. Ten fields of view (five per individual lung) were assessed 
at 400× magnification.

To assess numbers of total leukocytes, neutrophils and macro-
phages, tissue sections were stained with antibodies against CD45 
(560501, 1:200, BD Biosciences, Franklin Lakes, NJ), myeloperoxi-
dase (ab45977, 1:200, Abcam, Cambridge, UK), or F4/80 (MCA 497R, 
1:200, Serotec, Oxford, UK) respectively as previously described. The 
percentage of CD45+, MPO+, F4/80+ cells was determined by Image J 
analysis (NIH). Ten fields of view (five per lung) were assessed at 400× 
magnification. Double staining of proliferating type II alveolar epi-
thelial cells was performed using antibodies against Ki67 (ab15580, 
1:250, Abcam) and surfactant protein C (SPC, sc-7705, 1:200, Santa 
Cruz Biotechnology, Santa Cruz, CA) and appropriate fluorescent 
secondary antibodies (Life Technologies).

Protein Analyses
Protein concentration of lung lysates was determined by BCA assay 
(Thermo Fisher, Waltham, MA). Forty micrograms of total protein 
were loaded into each well of a 4–12% bis-tris polyacrylamide gel 
under reducing conditions prior to transfer onto a polyvinylidene 
fluoride membrane. The membranes were blocked with 5% bovine 
serum albumin before probing with antibodies against total and 
phosphorylated Smad 3 (#9513, 1:200 and C25A9, 1:200, respec-
tively) and appropriate secondary biotinylated secondary antibod-
ies. All antibodies were purchased from Cell Signaling Technology 
(Danvers, MA). Bands were visualized using Supersignal West Pico 
chemiluminescent substrate (Thermo Fisher) and quantified using a 
Chemidoc XRS+ (Biorad, Hercules, CA). Phosphorylation of Smad 3 
was expressed as a ratio to total Smad 3. Activin A and IL-6 enzyme-
linked immunosorbent assay was performed according to manufac-
turer’s instructions (SEA001Mu, Life Research, Scoresby, Victoria, 
Australia and R&D Systems).

Statistical Analysis
Data were analyzed using GraphPad Prism 5 for Mac OS X (GraphPad 
Software, La Jolla, CA). Data are expressed as means ± SEM. One-way 
ANOVA and post hoc Bonferroni’s test were used for multiple group 
comparisons. Statistical significance was accorded for P values <0.05.
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