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Background: Breast-fed infants have a lower incidence 
of acute gastroenteritis due to the presence of several 
 anti-infective factors in human milk. The aim of this work is to 
study the capacity of human milk glycosaminoglycans (GAGs) 
to inhibit the adhesion of some common pathogenic bacteria.
Methods: GAGs were isolated from a pool of milk samples 
collected from different mothers during the first month of 
lactation. Experiments were carried out to study the ability of 
GAGs to inhibit the adhesion of two intestinal  micro-organisms 
(enteropathogenic Escherichia coli serotype 0119 and 
Salmonella fyris) to Caco-2 and Int-407 cell lines.
results: The study showed that the GAGs had an 
 anti-adhesive effect on the two pathogenic strains studied 
with different degrees of inhibition. In particular, in the pres-
ence of human milk GAGs, the adhesion of S. fyris to Caco-2 
cells and to Int-407 cells of both tested strains was significantly 
reduced.
conclusion: Our results demonstrated that GAGs in human 
milk can be one of the important defensive factors against 
acute diarrheal infections in breast-fed infants.

in infancy, a wide variety of bacteria, viruses, and parasites 
are responsible for gastrointestinal infections. There is strong 

evidence to support the correlation between breastfeeding and 
a lower incidence of diarrhea. In fact, several anti-infective 
substances (secretory antibodies, lactoferrin, oligosaccharides, 
etc.) are present in human milk (1,2). Oligosaccharides, in par-
ticular, play several important protective, physiological, and 
biological roles including growth stimulation for beneficial gut 
microbiota and inhibition of pathogen adhesion and immuno-
regulation (3,4).

Glycosaminoglycans (GAGs) are highly sulfated, complex, 
linear natural polysaccharides constituted by repeating disac-
charidic units. They are generally grouped into four classes: 
hyaluronan, keratan sulfate, sulfated galactosaminoglycans 
represented by chondroitin sulfate and dermatan sulfate bear-
ing d-galactosamine, and sulfated glucosaminoglycans with 

heparan sulfate and heparin having d-glucosamine. Each spe-
cific disaccharidic unit is formed of a hexosamine (galactos-
amine or glucosamine) residue alternated with a hexuronic 
acid (glucuronic or iduronic acid) with the exception of kera-
tan sulfate containing galactose. Sulfate groups are esterified 
on various positions of carbohydrate backbones producing 
structures possessing high heterogeneous sequences and 
charge density (5).

Contrary to oligosaccharides, GAGs are able to specifically 
(and aspecifically) interact with other biological components 
due to the presence of a great number of sulfate and carboxyl 
groups capable to generate highly specific sequences produc-
ing strong anionic interactions (5–7). As a consequence, it 
emerges that human milk GAGs could play a role as soluble 
receptors and would therefore have the power to inhibit the 
binding of different pathogens to the intestinal mucosa, thus 
protecting the infant from infections. Furthermore, human 
milk hyaluronan was recently demonstrated to stimulate pro-
tective antimicrobial defense in the newborn (8).

After the pioneering studies of Newburg et al. (9), a complete 
quantitative and qualitative evaluation of GAGs has recently 
been reported both in term and preterm human milk (10,11). 
From the quantitative point of view, the highest concentra-
tion of GAGs was found in colostrum (9.3 and 3.8 g/l in pre-
term and term milk, respectively), followed by a progressive 
decrease to 4.3 and 0.4 g/l at the end of the first month of lacta-
tion. From these data, it follows that breast-fed newborns daily 
ingest consistent amounts of GAGs. From the qualitative point 
of view, chondroitin sulfate and heparan sulfate/heparin repre-
sent 55 and 42% of total GAGs, respectively, whereas dermatan 
sulfate and hyaluronan make up the remaining 3% (12).

Milk GAGs are synthesized in the mammary gland by the 
sequential action of specific glycosyltransferases, linked to 
a protein “core” and excreted as proteoglycans. At the small 
intestine level, the proteolytic enzymes secreted in the pan-
creatic juice digest the “core” of proteoglycans, liberating the 
GAG chains. As the intestinal wall and microvilli lack specific 
glycosidases and sulfatases, the free GAGs persist undegraded 
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in the upper part of the digestive system (13) where, behaving 
as soluble receptors, they could play an anti-infective role, as 
already demonstrated for human milk oligosaccharides (14).

The aim of this study is to verify whether the purified com-
plex of human milk GAGs is able to inhibit the adhesion of two 
pathogen bacteria of diarrhea in infancy, such as Escherichia 
coli and Salmonella fyris (15) to Caco-2 and Int-407 cells.

RESULTS
Preliminary cell adhesion experiments demonstrated that both 
E. coli O119 and S. fyris were able to adhere to Caco-2 and 
Int-407 monolayers (data not shown). The Caco-2 and Int-407 
cells’ viabilities after incubation with GAGs dissolved at a con-
centration of 1.5 mg/ml were evaluated using the Trypan blue 
assay. In this test, only living cells are able to exclude the dye. 
After 1-h incubation, the cell viability of GAGs-treated mono-
layer was identical to that of the corresponding controls. In par-
ticular, the percent of viability of Caco-2 in presence of GAGs 
was 99.68 ± 0.56% vs. control having 99.39 ± 0.69% and that of 
Int-407 was 97.19 ± 1.08% vs. control showing 96.32 ± 0.95%.

In agglutination assays performed with GAGs at the same 
concentration used in cell adhesion inhibition experiments, no 
agglutination of both E. coli O119 and S. fyris was detected. 
These results give us no possibility to measure any specific 
binding capacity between human milk GAGs and bacteria.

On the basis of these results, several adhesion experiments, 
performed in triplicate and repeated at least three times, were 
conducted by infecting Caco-2 and Int-407 cells with E. coli 
O119 and S. fyris, both in the presence of GAGs and in their 
absence. A significant reduction in the percentage of adhesion 
of S. fyris to Caco-2 cells and of E. coli O119 and S. fyris to 
Int-407 cells was observed in the presence of purified human 
milk GAGs complex dissolved at a concentration of 1.5 mg/ml 
(Figure 1). In particular, the percentage of adhesion of S. fyris 
to Caco-2 cells dropped from 7.7 ± 1.2 to 5.4 ± 0.6 (P = 0.0412) 
(Figure 1a) whereas that of E. coli O119 and S. fyris to Int-407 
cells dropped from 8.5 ± 2.6 to 2.1 ± 1.0 (P = 0.0043) and from 
32.1 ± 5.5 to 15.2 ± 8.9 (P = 0.0112), respectively (Figure 1b). 
The reduction of E. coli O119 adhesion to Int-407 monolayers 
in the presence of GAGs was also appreciable by Giemsa stain-
ing (Figure 2a,b). On the contrary, no effect of purified GAGs 
on E. coli O119 adhesion to Caco-2 monolayers was observed 
(Figures 1a and 2c,d).

DISCUSSION
Microbial infection is a complicated process largely dependent 
on the host–microbe relationship. Usually, adhesion is the first 
step leading to colonization and subsequent infection (16). 
Various cellular components on eukaryotic cells and tissues 
have been identified as targets for adhesion by micro-organ-
isms, and many of them are characterized as proteoglycans. 
Recent studies have suggested that carbohydrate-containing 
molecules rather than proteins mediate bacterial attachment 
to the surface of eukaryotic cells (17). A considerable number 
of carbohydrate-binding specificities have been reported and, 
in some cases, the bacterial attachment to host animal cells has 

been linked directly to the interactions with GAGs (18,19). 
The overall process of binding involves the meeting of a sol-
vated polyhydroxylated glycan placed on the surface of cells 
with a solvated protein-combining site (adhesin) present on 
the pathogenic agent. The forces involved in this link are rep-
resented by hydrogen binding, Van der Walls interactions, and 
charge and dipole attraction (20,21), suggesting that, if a sur-
face on the glycan is complementary to the protein-combining 
site, water can be displaced and binding occurs.

Receptors present on the surface are made up of oligosac-
charidic residues of glycoproteins and glycolipids of cell mem-
branes. It has been proved that the adhesion to such receptors 
can be inhibited or reduced by the presence of free oligosac-
charides with a structure analogous to that of cell receptors so 
that the pathogenic agent binds with them and not with the 
cell membrane, with a reduction of the pathogenic effect as a 
consequence (22).

Data available so far regarding the activity of human milk 
oligosaccharides toward E. coli and S. fyris show the capac-
ity of fucosyl-oligosaccharides containing fractions to inhibit 
the adhesion of enteropathogenic E. coli O119. Moreover, the 
anti-adhesive effect on S. fyris, even though rather weak, was 
obtained by acid and neutral low-molecular-weight oligosac-
charides (14).

As already demonstrated for other human milk (oligo)sac-
charides, exogenous GAGs have shown the ability as com-
petitive inhibitors of bacterial adhesion, among which heparin 
has been studied most (3,23). As concerns the possible physi-
ological role of GAGs in the gastrointestinal tract of breast-fed 
newborns, it is important to underline that undigested GAGs 
reach the small intestine because there are no specific enzymes 
present on the intestinal wall able to degrade them. Therefore, 
these molecules could behave as soluble receptors having the 
power to interact with pathogens and to compete for their 
adhesion to the intestinal wall.

The present study confirms that GAGs are effective in inhib-
iting the adhesion of S. fyris to Caco-2 and Int-407 cells and 
adhesion of E. coli O119 to just Int-407. On the other hand, the 
presence of GAGs does not significantly inhibit the adhesion 
of E. coli O119 to Caco-2 cells. The adhesion values for S. fyris 
and E. coli O119 to Int-407 cells are concordant with those pre-
viously reported by comparing different configurations of cell 
cultures as an intestinal epithelium model (24). The adhesion 
percentages of these bacteria were reduced when the cell sus-
pensions were co-incubated with GAGs, suggesting that GAGs 
may be involved in bacteria–epithelial cell interaction.

As concerns E. coli O119 and the lack of specific adhesion 
inhibition to Caco-2, such a phenomenon could be explained 
by the different molecular structures of the receptors belong-
ing to the two cellular types. The human milk GAG pool might 
show a greater similarity to the Int-407 receptors than the GAGs 
located on Caco-2. Moreover, previous studies suggested that 
reduced adherence is due to lower levels of adherence proteins 
rather than to physical inhibition (25,26). Finally, the differ-
ent degree of the adhesion inhibition to Int-407 cells compared 
with Caco-2 cells could also reflect the origin (embryonic and 
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adult, respectively) of the two cell lines. In fact, the human 
colon carcinoma cells Caco-2, widely used to study the adhe-
sion of intestinal pathogens to human cells and cytotoxicity of 
enterobacteria, are physiologically closer to the natural targets 
of the pathogens as, in culture, they exhibit the differentiated 
features of enterocytes, such as cell polarity and apical brush 
border (27). On the other hand, Int-407, also used in adhesion 
experiments (28), are human embryonic intestinal cells hav-
ing, as a consequence, possible different molecular structure(s) 
of receptor(s) compared with Caco-2.

The human milk GAGs tested are effective on the S. fyris and 
E. coli O119 though with different degrees of intensity. It has 
been shown that GAGs are also effective in inhibiting the HIV 
virus binding to the GP-120 receptor (9). Moreover, Hill et al. 

(8) recently demonstrated that human milk hyaluronan inhib-
its the adhesion of S. typhimurium to cells. From the above 
results, it is derived that human milk GAGs have the capacity 
to act separately on different specific receptors. This effect may 
be related to their heterogeneous composition, structure, and 
properties of each single polysaccharide component. Our pres-
ent results regarding the ability of human milk GAGs to inhibit 
the adhesion of enteropathogens to intestinal cells, as previ-
ously reported for human milk oligosaccharides, are a further 
demonstration that the anti-infective effect of human milk is 
the result of the presence of bioactive (macro)molecules able to 
protect newborns from the adhesion of some common patho-
genic bacteria at gastrointestinal level.

On the basis of these results, further investigations will be 
performed using different GAG concentrations as well as sin-
gle purified component present in human milk complex GAGs 
to better understand their possible physiological role and their 
involvement in the inhibition of bacteria adhesive mechanism.

METHODS
GAGs Isolation
Human milk GAGs were obtained from a pool of samples collected 
during the first month of lactation and stored at −20 °C until use. 
Purified free GAGs were obtained and isolated as previously described 
in details (10). Briefly, single aliquots of human milk were defatted 
with acetone, and after centrifugation and drying at 60 °C, pellet was 
solubilized in adequate buffer and treated with a proteolytic enzyme. 
After boiling for 10 min and centrifugation, free GAGs were precipi-
tated with three volumes of ethanol. The precipitate was recovered by 
centrifugation, dried at 60 °C and purified on a column packed with 
anion-exchange resin. Column fractions positive to uronic acid assay 
(29) and containing free GAGs were collected and further precipi-
tated with ethanol. Finally, after centrifugation and drying, the free 
purified complex human milk GAGs were analyzed for purity and 
composition and used for adhesion experiments.

The composition of purified GAGs was assessed by agarose-gel 
electrophoresis (30) and disaccharide determination after specific 
enzymatic treatment (10). The purity of the complex GAGs was 
greater than 85% as evaluated by uronic acid assay (29) with the 
remaining formed of salt and a very low content (<1%) of proteins/
peptides. Human milk oligosaccharides were found absent due to the 
adopted protocol useful for the purification of GAGs, in particular 
the purification on strong-anion exchange resin and several precipita-
tions with organic solvent (not shown).

Figure 1. Inhibition of bacterial adhesion to intestinal cells by glycosaminoglycans (GAGs). Adhesion (percentage of the initial inoculum) of E. coli O119 
and S. fyris (a) to Caco-2 and (b) to Int-407 cells in presence (gray bars) and absence (black bars) of GAGs. Values are expressed as mean ± SD. Symbols on 
the figure denote statistically significant values compared with the control. *P = 0.0112. **P = 0.0043. †P = 0.0412.
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Figure 2. Standard light microscopy of Giemsa-stained cell monolay-
ers infected with E. coli O119. Adhesion to Int-407 monolayers in the 
(a) absence and (b) presence of glycosaminoglycans (GAGs): a significant 
reduction in the adhesion of E. coli O119 was observed in the presence of 
GAGs. Adhesion to Caco-2 monolayers in the (c) absence and (d) presence 
of GAGs: no effect of GAGs on E. coli O119 adhesion to Caco-2 mono-
layers was observed in the presence of GAGs. Magnification = ×1000. 
Bar = 0.01 mm.
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Bacteria and Culture Conditions
Two enterobacterial strains, both isolated from infants with diar-
rhea in Italy, were used: enteropathogenic E. coli ser. O119 (31) and 
Salmonella enterica subsp. enterica ser. Fyris (4,12:1, v,4,2 serotype), 
here named S. fyris. Both strains were previously used in inhibition 
studies with oligosaccharides (14). Enteropathogenic E. coli strains 
infect human populations throughout the world and remain one of 
the primary causes of acute infantile gastroenteritis in developing 
countries (32). In particular, enteropathogenic E. coli strains of the 
O119 serogroup have been found in association with infantile diar-
rhea in many countries (33). S. enterica subsp. enterica is an inva-
sive, facultative intracellular pathogen of both animal and man with 
the ability to colonize various niches in diverse host organisms (34). 
The pathogenesis of infections by S. enterica subsp. enterica requires 
adhesion to cell surfaces, and a large number of adhesive structures 
can be found (35). Brain heart infusion (BHI) broth and agar (Difco 
Laboratories, Detroit, MI) were used for the routine growth of bac-
teria. Strains were maintained in glycerol at −70 °C and subcultured 
twice before testing.

Cell Lines
The human colon carcinoma Caco-2 (ATCC HTB37) (36) and the 
human embryonic intestine Int-407 (ATCC CCL6) cell lines were used 
(37). Cells were routinely cultured in 50 ml (25 cm2) plastic tissue cul-
ture flasks (Corning Costar, Milan, Italy) in an atmosphere with 5% 
CO2 at 37 °C in Modified Eagle Medium (Gibco, Grand Island, New 
York) supplemented with 1% (v/v) l-glutamine (Gibco), 1% (v/v) non-
essential amino acids (Gibco), and 10% (v/v) fetal calf serum (Gibco). 
Confluent cell monolayers were trypsinized and adjusted to a concen-
tration of 2.5 × 105 cells/ml in culture medium; 1-ml cell suspension 
was dispensed into each 22-mm well of a 12-well tissue culture plate 
(Corning Costar) and incubated to obtain confluent monolayers.

The range of cell passage numbers used for the different experi-
ments was 28–45 for Caco-2 cells and 312–320 for Int-407 cells.

Determination of Cell Viability
The effect of GAGs on Caco-2 and Int-407 monolayers was evaluated 
by using the Trypan blue exclusion assay able to give a measure of the 
cell viability (38). Briefly, Caco-2 and Int-407 monolayers were grown 
on SlideFlask and then incubated with GAGs dissolved at a concen-
tration of 1.5 mg/ml, as described earlier. Control cultures received 
culture medium without GAGs. At the end of 1-h infection period, 
the monolayers were washed, stained with 0.4% Trypan Blue solution 
(Gibco) at room temperature for 30 min, and examined under light 
microscopy at 20× magnification. The viable cell ratio was calculated 
as follows: viable cell ratio (%) = (unstained cell number / total cell 
number) × 100. Cell viability was determined as the percentage of the 
ratio of the number of unstained cells (viable) to the total number of 
unstained (viable) and stained (nonviable) cells.

Agglutination Assay
E. coli O119 and S. fyris strains were used in agglutination assays with 
GAGs, according to Facinelli et al. (39). Briefly, after overnight growth 
in BHI broth at 37 °C, bacterial cells were harvested and suspended 
in PBS to an optical density of 1.0 ± 0.1 at 540 nm. Agglutination 
tests were carried out on sterile U-well microtiter plates (Greiner 
Labortechnik, Frickenhausen, Germany). In each well, 50 µl of cell 
suspension was added to 50 µl of GAGs dissolved at a concentration 
of 1.5 mg/ml. As a control, 50 µl of PBS was added to 50 µl of GAGs 
and to 50 µl of each cell suspension. Plates were incubated at 37 °C 
overnight and then visually inspected.

Cell Adhesion Experiments
Preliminary adhesion experiments were performed with two test 
strains at different incubation times on the basis of previously reported 
data (14). Briefly, after overnight growth at 37 °C in BHI broth, bac-
terial cells were either subcultured in BHI broth and incubated in a 
shaker at 37 °C for 2 h (S. fyris) and then harvested by centrifuga-
tion at 5,000 rpm or were directly harvested by centrifugation (E. coli 
O119). Bacterial cells were resuspended in PBS to OD540 0.6 ± 0.02, 
diluted in Modified Eagle Medium, and added (0.5 ml, approximately 
1 × 108 CFU/ml) to confluent monolayers. After incubation for 90 min 
(E. coli) or 120 min (S. fyris) at 37 °C in 5% CO2, cells were washed 

three times with PBS to remove nonadherent bacteria and then lysed 
in Triton X-100 (0.1% in cold sterile water) to release adherent bacte-
ria. CFU of bacteria were counted by plating suitable dilutions of the 
lysates on BHI agar and incubating for 36–48 h at 37 °C. Results were 
expressed as percentages of the initial inoculum. Adhesion experi-
ments were performed in triplicate and repeated at least three times.

E. coli O119 and S. fyris Adhesion to Cell Monolayers in the 
Presence of GAGs
Adhesion experiments were performed by assessing the rate of recov-
ery of adherent bacteria from infected Caco-2 or Int-407 cells in the 
presence of GAGs. Briefly, after washing, monolayers were covered 
with 250 µl of Modified Eagle Medium containing GAGs dissolved 
at a concentration of 1.5 mg/ml and incubated for 1 h at 37 °C in 5% 
CO2. At the end of the incubation period, 250 µl of bacterial inoculum 
(approximately 2 × 108 CFU/ml) were added. After incubation at 37 
°C in 5% CO2, cells were washed three times with PBS, and adherent 
bacteria were recovered as described earlier. Results were expressed 
as percentages of the initial inoculum. Adhesion experiments were 
performed in triplicate and repeated at least three times.

Bacteria associated with Int-407 and Caco-2 monolayers were also 
evaluated by Giemsa staining. Stained monolayers grown on slides 
(SlideFlask, Nunc GmbH, Weisbaden, Germany) were examined 
microscopically (Leica DMRB microscope, Wetzlar, Germany) using 
the ×100 oil-immersion objective.

Statistical Analysis and Ethical Approval
Each cell adhesion assay was performed in triplicate and repeated at 
least three times. All data are presented as mean ± SD. Significant dif-
ferences between analyzed groups, i.e., cell adhesion in the absence 
and presence of GAGs, were calculated with the paired Student’s t test 
by using GraphPad software. P values less than 0.05 were considered 
statistically significant.

The study protocol was approved by the ethics committee of the 
Italian Association of Human Milk Donor Banks.
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