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Background: Maternal tobacco smoke (MTS) predisposes 
human and rat offspring to visceral obesity in early adulthood. 
Glucocorticoid excess also causes visceral obesity. We hypoth-
esized that in utero MTS would increase visceral adiposity and 
alter the glucocorticoid pathway in young adult rats.
Methods: We developed a novel model of in utero MTS 
exposure in pregnant rats by exposing them to cigarette 
smoke from E11.5 to term. Neonatal rats were cross-fostered 
to control dams and weaned to standard rat chow through 
young adulthood (postnatal day 60).
results: We demonstrated increased visceral adipos-
ity (193%)*, increased visceral adipose 11-β hydroxysteroid 
dehydrogenase 1 mRNA (204%)*, increased serum corticos-
terone (147%)*, and no change in glucocorticoid receptor 
protein in adult male MTS rat offspring. Female rats exposed 
to MTS in utero demonstrated no change in visceral or sub-
cutaneous adiposity, decreased serum corticosterone (60%)*, 
and decreased adipose glucocorticoid receptor protein (66%)*. 
*P < 0.05.
conclusion: We conclude that in utero MTS exposure 
increased visceral adiposity and altered in the glucocorticoid 
pathway in a sex-specific manner. We speculate that in utero 
MTS exposure programs adipose dysfunction in adult male rat 
offspring via alteration in the glucocorticoid pathway.

Maternal tobacco smoke (MTS) impacts more than 13% of 
pregnancies despite aggressive antismoking campaigns 

(1). In adult human studies, MTS exposure in utero predis-
poses to the development of metabolic syndrome, including 
increased visceral adiposity (2). The increased adiposity seen 
after gestating in an adverse intrauterine environment, such as 
maternal tobacco or nicotine exposure, is often adipose depot 
specific, with the visceral adipose tissue (VAT) increasing in 
excess to the subcutaneous adipose tissue (SAT) (3,4).

VAT seems to have a detrimental role in the development 
of metabolic syndrome (5,6). Even when considering dietary 
and lifestyle choices, MTS exposure in utero independently 
increases the risk of developing visceral obesity (7,8). Children 
whose mothers smoked during pregnancy had decreased birth 

weights yet an increased obesity and BMI index as early as 9–10 
y of age, independent of dietary intake and activity levels (8). 
Furthermore, the effect of MTS on body weight was stronger 
when mothers smoked during pregnancy compared with that 
of isolated smoke exposure in childhood (7). Taken together, 
these findings suggest that MTS exposure during this develop-
mentally sensitive time period both causes intrauterine growth 
restriction (IUGR) and adversely programs obesity later in life.

Little insight exists on how MTS programs increased visceral 
adiposity. Rodent studies examining the effect of in utero MTS 
exposure on the offspring have not examined the etiology of 
increased visceral adiposity. Rodent studies of tobacco smoke 
exposure only during lactation demonstrate increased adipos-
ity (9). Furthermore, rodent studies of maternal nicotine, one 
of the many compounds found in tobacco smoke, demonstrate 
increased obesity in adult offspring when exposed during ges-
tation or lactation (10–12). One potential mechanism through 
which MTS and maternal nicotine may program increased 
visceral adiposity includes alteration of glucocorticoid action 
on adipocytes. One function of glucocorticoids is to increase 
fat deposition in the body. Syndromes that increase glucocor-
ticoid levels demonstrate increased visceral adiposity. Tissue 
response to glucocorticoids involves both depot-specific 
changes in levels of glucocorticoid receptors (GRs) and local 
formation of active glucocorticoids. Glucocorticoid signaling 
occurs through activation of the GR variants, including GR-α, 
which induce transcription of an array of proadipogenic fac-
tors. The conversion of inactive glucocorticoid (cortisone in 
humans, 11-dihydrocorticosterone in rodents) to active glu-
cocorticoid (cortisol in humans, corticosterone in rodents) is 
catalyzed by the adipocyte enzyme 11-β hydroxysteroid dehy-
drogenase 1 (11-β HSD 1). Thus, determination of relative 
amounts of 11-β HSD 1 and GR in adipose depots may provide 
insight into the mechanism through which MTS programs 
increased visceral adiposity. However, despite the importance 
of MTS programming increasing visceral adiposity in the off-
spring, to date relative amounts of GR and 11-β HSD 1 in rats 
exposed to MTS in utero have not been studied.

Using a novel model of MTS exposure during pregnancy, 
we hypothesized that in utero MTS exposure would program 

Received 4 October 2013; accepted 24 January 2014; advance online publication 7 May 2014. doi:10.1038/pr.2014.58

1Division of Neonatology, Department of Pediatrics, University of Utah, Salt Lake City, Utah; 2Department of Pediatrics, Medical College of Wisconsin, Milwaukee, Wisconsin.  
Correspondence: Erin K. Zinkhan (Erin.Zinkhan@hsc.utah.edu)

Maternal tobacco smoke increased visceral adiposity and 
serum corticosterone levels in adult male rat offspring
Erin K. Zinkhan1, Brook Y. Lang1, Baifeng Yu1, Yan Wang1, Chengshe Jiang1, Melanie Fitzhugh1, Marjanna Dahl1, 
Michael S. Campbell1, Camille Fung1, Daniel Malleske1, Kurt H. Albertine1, Lisa Joss-Moore1 and Robert H. Lane2

Copyright © 2014 International Pediatric Research Foundation, Inc.  Volume 76  |  Number 1  |  July 2014      Pediatric RESEARCh 17

http://www.nature.com/doifinder/10.1038/pr.2014.58
mailto:Erin.Zinkhan@hsc.utah.edu


Articles         Zinkhan et al.

adipose tissue dysregulation in young adult rat offspring. 
Specifically, MTS would increase visceral adiposity, serum cor-
ticosterone levels, and VAT GR and 11-β HSD 1 levels.

RESULTS
Weight Gain, Food Intake, and Cotinine Levels
No MTS-exposed dams died nor had to be removed from MTS 
exposure because of illness during these experiments. MTS-
exposed rat dams gained less weight and ate less food during 
smoke exposure compared with control dams (Table 1). Litter 
sizes and pup male-to-female ratios were same in all groups. 
MTS increased maternal serum cotinine levels compared with 
control dams. Correspondingly, MTS increased fetal serum 
cotinine levels compared with control fetuses (not detected in 
the control neonatal rats, and 306 ± 18 ng/ml in the neonatal 
MTS rats, P < 0.05, pooled serum from the whole litter).

All MTS-exposed pups weighed 12% less than their gender-
matched control pups at birth (Table 2). In addition, placentae 
from MTS-exposed rat dams weighed 6% less compared with 
control placentae. By postnatal day 21, male and female MTS 
rats continue to weigh less than control male and female rats, 
respectively (MTS male: 57.3 g, control male: 60.9 g, P < 0.001; 
MTS female 55.4 g, control female: 59.3 g, P < 0.001). However, 
by postnatal day 60, MTS males and females caught up to the 
body weight of respective control rats. MTS decreased food 
and caloric intake in males at postnatal day 60.

Adipose Depot Quantification, Adipocyte Size, and Total 
Adipocyte Number
MTS increased VAT and the ratio of VAT to SAT in males 
compared with control males (Figure 1). MTS did not alter 
female VAT, SAT, or ratio of VAT:SAT.

MTS did not change adipocyte size in either VAT or SAT 
in males or in females in the representative subset VAT and 
SAT depots (Figure 2). MTS did not change the number of 
adipocytes per tissue points in either VAT or SAT in males or 
in females.

Serum Corticosterone and Adipokines
MTS increased serum corticosterone in males but decreased 
serum corticosterone in females (Figure 3). MTS did not 
change serum leptin or adiponectin levels in either sex.

VAT and SAT mRNA and Protein
With respect to VAT, MTS did not change leptin or adiponec-
tin mRNA in either gender (Figure 4). MTS increased 11-β 
HSD 1 mRNA in males and females. MTS decreased total 
GR and GRα protein in females, with no change in males 
(Figure 5).

With respect to SAT, MTS increased leptin and 11-β HSD 1 
mRNA in males, and adiponectin, and 11-β HSD 1 mRNA in 
females (Figure 4). MTS decreased GRα protein in females, 
with no change in males (Figure 5).

DISCUSSION
The primary finding of this study is that MTS exposure in utero 
increased visceral adiposity and serum corticosterone but not 
GR protein levels in the adult male rat. Moreover, increased 
visceral adiposity in the adult male MTS rat occurred despite 
decreased food intake. Increased visceral adiposity and 
increased serum corticosterone without a change in VAT GR 
protein levels in male rats suggest that increased visceral adi-
posity may be a result of increased corticosterone.

In humans, multiple studies demonstrate that maternal 
smoking decreases birth weight (13,14). Greater variability 
in humans exposed to MTS compared with other forms of 
IUGR may be found from the variation in duration and quan-
tity of tobacco smoke or nicotine intake during gestation. 
The mechanism through which maternal smoking induces 
growth restriction is unknown, although likely occurs through 
multiple mechanisms. These potential mechanisms include 

table 1. Effect of tobacco smoke exposure on pregnant dams

Controls  
(n = 28 dams)

MTS 
(n = 32 dams)

Maternal weight gain  
(E11–E21) (g)

122.3 ± 10.4   45.3 ± 17.3*

Maternal food intake  
(E11–E21) (g/d)

26.2 ± 7.7 19.2 ± 4.8*

Litter sizes 11.6 ± 2.6 10.3 ± 2.1

Litter male-to-female ratio 1:0.94 1:0.96

Maternal serum cotinine 
(ng/ml)

Not detected 119 ± 27*

Tobacco smoke exposure decreased maternal weight gain and food intake. MTS 
increased maternal cotinine levels. Twenty-eight to thirty-two rat dams were analyzed 
per tobacco smoke exposure group; data represented as mean ± SEM.
MTS, maternal tobacco smoke.
*P ≤ 0.05 MTS dam compared with control dam.

table 2. Effect of maternal tobacco smoke exposure on offspring

Control male MTS male Control female MTS female

Body weight at birth (g) (n = 94–258) 4.26 ± 0.446 3.77 ± 0.400* 4.07 ± 0.409 3.57 ± 0.448

Placental weight (g) (n = 64–170) 0.609 ± 0.111 0.566 ± 0.110* 0.580 ± 0.093 0.544 ± 0.129*

Body weight at day 60 (g) (n = 12) 373.8 ± 31.4 366.1 ± 26.0 230.8 ± 16.7 225.6 ± 18.1

kcal consumed/day (n = 8) 91 ± 2 76 ± 3* 44 ± 3 46 ± 3

MTS decreased fetal and placental weights at birth compared with sex-matched controls. MTS males and females caught up to their respective controls by postnatal day 60. MTS 
males consumed less food compared with control males. The number of rats per sex per group analyzed is represented above; data represented as mean ± SEM.
MTS, maternal tobacco smoke.
*P ≤ 0.05 MTS compared with sex-matched control.
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carbon monoxide and catecholamine-induced vasoconstric-
tion, hypoxia, toxins from the large array of chemicals in 
tobacco smoke, and decreased nutrient consumption (15,16). 
Furthermore, unlike other forms of IUGR, MTS exposes the 
fetus to greater than 4,800 chemicals found in cigarette smoke 
during a time of sensitivity to developmental programming. 
One such chemical is nicotine, which induces vasoconstric-
tion, decreasing blood supply to the uterus and developing 
fetus. The standard measurement used for quantifying nicotine 
levels is cotinine, a stable metabolite of nicotine. Neonatal rat 
cotinine levels fell well within the range of 200 to 800 ng/ml, 
indicating an “active smoker” according to ARUP laboratories.

Not only does MTS predispose the fetus to IUGR, but it 
also increases the risk of obesity in childhood (2,7,8,17,18). 
Certainly, social factors interplay with MTS exposure dur-
ing pregnancy, such as decreased physical activity, parental 

education, and socioeconomic status associated with postnatal 
cigarette exposure. Furthermore, catch-up growth, or growth 
that allows an IUGR fetus to “catch up” in weight to a normally 
grown peer, may also contribute to the formation of obesity 
in childhood. Low birth weight humans who had subsequent 
catch-up growth demonstrated an increased incidence of obe-
sity (19). Similar results have been seen in animal studies. 
Several rat studies of IUGR induced by nutrient restriction and 
subsequently allowed ad libitum access to nursing and rat chow 
showed evidence of increased adiposity (20,21). Similarly, rats 
in this study demonstrate catch-up growth and visceral adipos-
ity by postnatal day 60. While catch-up growth likely impacts 
the results of increased adiposity seen in this study as well as 
many other human and animal studies, catch-up growth is 
necessary for proper neurodevelopmental function and thus 
critical for the IUGR offspring. Furthermore, when correcting 

Figure 1. (a) Maternal tobacco smoke (MTS) increased visceral adiposity in male rats. (b) MTS did not change subcutaneous adiposity. (c) However, MTS 
increased the ratio of VAT to SAT in young adult males. (d) Magnetic resonance images of representative adipose depots in male and female control and 
MTS rats. n = 4, data represented as mean ± SEM. Control data are shown in gray bars, and MTS data in white bars. *P ≤ 0.05 MTS compared with sex-
matched control. SAT, subcutaneous adipose tissue; VAT, visceral adipose tissue.
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Figure 2. Representative adipose depot images for (a) visceral adipose tissue (VAT) and (b) subcutaneous adipose tissue (SAT); scale bar in the upper 
left panel of a represents 50 µm. MTS did not alter adipocyte size in (c) VAT or (d) SAT or adipocyte number per tissue point in (e) VAT or (f) SAT. n = 4, data 
represented as mean ± SEM. Control data are shown in gray bars, and MTS data in white bars. MTS, maternal tobacco smoke.
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for these factors, MTS remains an independent risk factor 
for childhood obesity (2,7,8,17,18). The independent risk of 
obesity with maternal smoking suggests that MTS programs 
altered adipocyte physiology, leading to increased adiposity in 
the progeny.

One way through which MTS may increase childhood obe-
sity is through increased caloric consumption in the offspring. 
In humans, MTS increased highly palatable food consumption 
and BMI by age 14 y (22). Limited information is available in 
animal models about caloric consumption in the offspring 
exposed to MTS in utero, however, maternal nicotine exposure 
leading to increased caloric consumption has been examined. 
Prenatal intravenous nicotine exposure in pregnant Sprague-
Dawley rats increased sucrose seeking behavior in offspring 
without altering locomotor activity (23). Interestingly, in our 
study of MTS exposure, male offspring consumed fewer total 
calories as tobacco-naive rats. Increased caloric consumption 
seen in other studies may be programmed by increased con-
sumption of highly palatable food, but not necessarily typical 
rat chow. Importantly, MTS increased visceral adiposity despite 
decreased food intake in adult male rats, suggesting that in 
utero MTS exposure alters VAT energy storage homeostasis.

Examination of adipose tissue in obese humans demon-
strates altered expression of genes involved in glucocorticoid 
metabolism, such as 11-β HSD 1, the enzyme that converts 
inactive to active glucocorticoid. In obese humans, 11-β HSD 1 
mRNA and its activity are increased in SAT (24). Furthermore, 
increased 11-β HSD 1 in adipose tissue predicts increased adi-
posity 2.5 y later (25). Animal models of increased adiposity 
have shown similar findings. Animals with increased adiposity 
have increased adipose tissue 11-β HSD 1 (26). Importantly, 
increased 11-β HSD 1 seems to be causal for increased vis-
ceral adiposity. Transgenic mice that overexpress 11-β HSD 
1 develop increased visceral adiposity (27) while 11-β HSD 1 
knockout mice are resistant to developing increased adiposity 
when fed a high-fat diet (28). Increased 11-β HSD 1 in VAT 
suggests increased glucocorticoid reactivation within the VAT 
tissue itself, which can lead to increased serum corticosterone 
as seen in our study. There is also evidence that perinatal stress 
programs increased adipose tissue 11-β HSD 1 mRNA and 
subsequent increased adiposity in the marmoset offspring (29). 
Furthermore, maternal nicotine during lactation increases 

Figure 5. Maternal tobacco smoke (MTS) exposure decreased total GR 
protein (a) and GR-α protein (b) in female VAT. MTS did not change GR or 
GR-α protein in either adipose depot in males (a,b). MTS did not change 
either GR or GR-α protein in SAT in either sex (c). MTS decreased GR-α 
protein in females in SAT (d). Representative western blots of GR and GR-α 
relative to control gene β-actin are shown below the graphical representa-
tion of the data. n = 6, data represented as mean ± SEM. Control data are 
shown in gray bars, and MTS data in white bars. *P ≤ 0.05 MTS compared 
with sex-matched control. GAPDH, glyceraldehyde-3 phosphate dehydro-
genase; GR, glucocorticoid receptor; SAT, subcutaneous adipose tissue; 
VAT, visceral adipose tissue.
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Figure 3. Maternal tobacco smoke (MTS) increased serum corticosterone 
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male offspring adiposity and serum corticosterone levels in 
rats (30). MTS, another type of perinatal stress, may program 
increased 11-β HSD 1, providing local tissue level and serum 
increases in glucocorticoid levels and leading to increased vis-
ceral adiposity.

Increased visceral adiposity and unchanged visceral adipo-
cyte size indicate that the VAT depot increased by increasing the 
total number of adipocytes. In animal models of chronic gluco-
corticoid exposure, chronic glucocorticoid exposure increased 
the total number of adipocytes in VAT when the whole VAT 
depot was examined (31). However, chronic glucocorticoid 
exposure did not change adipocyte size and decreased VAT GR 
in male rats with increased adiposity (31). Interestingly, despite 
increased total VAT in MTS males on magnetic resonance 
imaging, MTS did not change adipocyte size or number of adi-
pocytes in the small subset of representative adipose depot sec-
tions. This finding suggests that MTS programs increased the 
total number of adipocytes throughout the whole VAT depot, 
but not adipocyte size in the male rat offspring.

Adverse intrauterine environments, such as maternal smok-
ing, often alter metabolic outcomes in a sex-specific man-
ner. In humans, MTS exposure increases visceral adiposity 
in males earlier than in females (32,33). Animal studies also 
demonstrate sex specificity in metabolic outcomes from 
adverse intrauterine environments. Perinatal insults, includ-
ing MTS, often affect male offspring earlier than female off-
spring (34–36). Consistent with these findings, male MTS rats 
demonstrated increased VAT in our study, while female VAT 
remained unaffected. MTS increased 11-β HSD 1 mRNA in 
both sexes. Consistent with increased 11-β HSD 1 mRNA, 
MTS male rats had increased serum glucocorticoid levels 
without changes in GR protein levels. MTS may disrupt the 
mechanisms regulating 11-β HSD 1 and GR expression in 
male rats, and may represent one mechanism through which 
MTS leads to the formation of increased adiposity in males. 
Conversely, MTS decreased serum corticosterone and adipose 
GRs in females. Elevated 11-β HSD 1 mRNA can increase local 
tissue corticosterone without affecting systemic circulating 
levels (27). Irrespective of the local adipose tissue corticoste-
rone levels, the response to adipose tissue corticosterone may 
be blunted by decreased adipose tissue GRs in MTS females.

A limitation of this study is that pregnant dams are exposed 
to tobacco smoke only during the latter half of gestation. This 
timeframe was chosen because the detrimental health effects of 
MTS on offspring are largely seen in the second and third tri-
mesters (8,37). Furthermore, this MTS regimen allowed us to 
ask a specific perinatal question of how prenatal MTS increases 
visceral adiposity in the adult offspring (8,37). Second, the 
neonatal MTS rats were cross-fostered to tobacco-naive moth-
ers for rearing consistency. Therefore, neonatal rats were not 
exposed to postnatal tobacco smoke as many human babies 
born to tobacco-smoking mothers would be. While we cannot 
exclude the possibility of cross-fostering affecting the results, 
we were able to isolate the effects of MTS exposure in utero 
from extrauterine exposure, which provides valuable insight 
into a potential mechanism of increased visceral adiposity.

In conclusion, MTS exposure programs adipose dysfunc-
tion in adult male rats. Specifically, MTS programs increased 
visceral adiposity, visceral adipose 11-β HSD 1 mRNA, and 
serum glucocorticoids without changing GR protein in male 
rats. These findings suggest that MTS adversely programs sex-
specific glucocorticoid signaling in VAT of adult rats.

METHODS
Animal Model
All animal procedures were carried out according to the US National 
Institutes of Health (Bethesda, MD) (NIH) Guide for the Care and 
Use of Laboratory Animals, and the University of Utah Animal 
Care Committee approved all procedures. Timed pregnant female 
Sprague-Dawley rats were obtained from Charles River (Wilmington, 
MA). Rats were exposed to 80 University of Kentucky 3R4F Research 
Reference Cigarettes (Lexington, KY) per day in a TE-10 Smoke 
Exposure System (Teague Enterprises, Davis, CA). Rats were exposed 
to both mainstream and side stream cigarette smoke in four sessions 
of 35 min cigarette smoke followed by 35 min fresh air. Mainstream 
cigarette smoke was obtained by pulling air through the cigarette. 
Side stream cigarette smoke was obtained by collecting smoke off the 
end of the burning cigarette. Providing both mainstream and side 
stream cigarette smoke to the pregnant dams was chosen because 
human mothers who smoke cigarettes breathe both mainstream 
and side stream cigarette smoke. Rats were exposed daily Monday 
through Friday from E11.5 to term (E21.5) (38). This gestation range 
was selected because birth weight is most significantly decreased 
by smoke exposure in the latter half of gestation (8). Tobacco-naive 
control rats were housed similarly but were not exposed to tobacco 
smoke. At delivery, all pups were cross-fostered to control dams to 
isolate prenatal MTS exposure. Litters were culled to six for rearing 
consistency. Pups were weaned on postnatal day 21, the standard 
time for weaning, and allowed ad libitum access to food and water for 
the remainder of the study. Food was weighed weekly for the latter 
2 wk of the study (2 wk before postnatal day 60) to determine food 
intake. Postnatal day 60 was examined because this time point repre-
sents a pubertal or young adult rat, and puberty in the MTS-exposed 
human is associated with the first signs of obesity (8). A total of 46 
MTS-exposed pregnant dams, 42 control dams, and offspring from 
these dams were used in this study. There were no differences in body 
weight between subgroups used for the following analyses and the 
population as a whole.

Measurement of Serum Cotinine Levels
Cotinine, a stable metabolite of nicotine, was measured to determine 
serum levels of nicotine. Maternal and fetal serum cotinine levels 
were measured using a solid phase competitive enzyme-linked immu-
nosorbent assay kit (BQ Kits, San Diego, CA) following manufactur-
er’s protocol. A total of 32 pregnant dams exposed to MTS and 28 
pregnant dams as controls were used for measuring maternal cotinine 
levels, and their respective pooled litters obtained via Cesarean sec-
tion at E21.5 were used for measuring fetal cotinine levels.

Abdominal Magnetic Resonance Imaging for Fat Quantification
Abdominal magnetic resonance images were performed, and data 
were analyzed as previously described (39). In brief, magnetic reso-
nance imaging was performed on 60-day-old rats at the small ani-
mal imaging facility at the University of Utah. Paired images of water 
and fat plus water were obtained from diaphragm to pelvis. Images 
were analyzed using ImageJ software (National Institutes of Health, 
Bethesda, MA). Magnetic resonance images were analyzed from kid-
ney to pelvis for visceral fat, using retroperitoneal fat as a representa-
tive visceral fat depot, and from diaphragm to pelvis for subcutaneous 
fat. Total subcutaneous and visceral fat depots were analyzed for four 
unrelated rats per sex per group, and these rats were not used for 
other analyses in this study.

Adipocyte Size and Number
A small subset of left retroperitoneal adipose was used as a represen-
tative VAT depot, and a small subset left flank adipose was used as a 
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representative SAT depot. Adipose tissue was fixed in 10% formalin, 
embedded in paraffin, sliced to 5 µm thick, and stained with hemo-
toxylin and eosin at the University of Utah Dermatopathology labora-
tory. Adipocyte diameter was quantified using Bioquant True Color 
Windows Image Analysis System (R&M Biometrics, Nashville, TN) 
measuring five adipocytes per high powered field for 15 high powered 
fields per adipose depot per rat. Adipocyte number was determined 
using Bioquant by counting all adipocytes in a high powered field for 
15 high powered fields per adipose depot per rat. Adipocyte size and 
adipocyte number were analyzed from four unrelated rats per sex per 
group, and these rats were not used for other analyses in this study.

Serum Corticosterone and Adipokine Quantification
Mixed arterial and venous serum was collected at necropsy after a 6-h 
fast in serum separator tubes (BD Vacutainer, BD, Franklin Lakes, NJ) 
and placed on ice. Serum was separated from cellular components 
within 30 min of collection, and serum aliquots were frozen at −80 
°C. Serum corticosterone was quantified using an ELISA kit (Cayman 
Chemical Company, Ann Arbor, MI), with a kit detection limit of 30 
pg/ml. Serum adiponectin and leptin were quantified using an ELISA 
kit (Millipore, St Charles, MI), with kit detection limits of 0.08 ng/ml 
for leptin and 0.155 ng/ml for adiponectin. Serum from six unrelated 
rats per sex per group was analyzed, and these rats were used for adi-
pose tissue mRNA and protein studies.

Adipose Tissue mRNA Quantification
VAT was obtained from the retroperitoneum as a representative 
VAT depot. SAT was obtained from the flank. Visceral and SAT was 
flash frozen in liquid nitrogen and stored at −80 °C. Total RNA was 
extracted as described previously using the RNeasy Lipid Tissue Mini 
Kit (Qiagen, Valencia, CA) for visceral and subcutaneous fat (39). 
Total RNA was quantified spectrophotometrically. The cDNA was 
synthesized from 1 µg RNA using the High Capacity cDNA Reverse 
Transcription Kit (Applied Biosystems, Foster City, CA) per manu-
facturer’s protocol.

Real-Time Reverse Transcriptase PCR
Semiquantitative real-time reverse transcription–PCR quantification 
was performed using glyceraldehyde-3 phosphate dehydrogenase as 
an internal control because Ct values of glyceraldehyde-3 phosphate 
dehydrogenase did not differ between control and MTS animals. 
Relative quantification of PCR products was based on differences 
between glyceraldehyde-3 phosphate dehydrogenase and the target 
using the comparative Ct method (TaqMan Gold RT-PCR manual; 
PE Biosystems, Foster City, CA) (40). Assays were performed with 
Taqman Gene Expression Assays (Applied Biosystems, Carlsbad, CA) 
for 11-β HSD 1, leptin, and adiponectin.

Adipose Tissue Protein Quantification
Visceral and SAT protein was isolated using whole-cell lysates in a 
buffer containing 150 mM NaCl, 50 mM Tris pH 7.4, 1 mM EDTA, 
0.25% Na-deoxycholate, 1% Igepal CA-630. Total protein was quanti-
fied using a bovine serum albumin standard curve. Fifty micrograms 
protein was run on a 4–12% sodium dodecyl sulfate–polyacrylamide 
gel electrophoresis (Bio-Rad, Hercules, CA). Protein was transferred 
to a polyvinylidene diflouride membrane. Membranes were blocked 
with 5% milk. GR and GR-α (ab3578 and ab3580, Abcam, Cambridge, 
UK) antibodies were used to identify and quantify specific protein 
content. β-Actin (A1978, Sigma-Aldrich, St Louis, MO) was used 
as a loading control. Protein was detected with Western Lightning 
enhanced chemiluminescence (PerkinElmer Life Sciences, Waltham, 
MA) using goat anti-rabbit horseradish peroxidase secondary anti-
body from Cell Signaling Technology. Blots were quantified using a 
Kodak Image Station 2000R (Eastman Kodak/SIS, Rochester, NY).

Statistics
Tables and figures were expressed as mean ± SEM. Data analysis was 
completed with ANOVA (Fisher’s protected least-significant differ-
ence) and Student’s unpaired t-test. A P value ≤0.05 was considered to 
be statistically significant.
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