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Components of diet, including the total amounts and specific 
types of fat, affect the composition of the intestinal microbiome 
in both animal models and cohort studies of humans. Amounts 
of total fat and specific fatty acids (FA) are some of the most 
variable nutritional components of breast milk. Evaluations of 
the microbiome in premature infants have shown decreased 
diversity of species and increased proportions of potentially 
pathogenic bacteria. Microbial patterns in premature infants 
may be affected by nutritional fat intake, altering risk of dis-
eases such as necrotizing enterocolitis. Dietary FA may also 
impact disease susceptibility through molecular mechanisms. 
Specifically, intestinal Toll-like receptor 4 expression is altered 
by manipulation of FA in murine models. Abnormal increased 
expression of Toll-like receptor 4, the receptor for lipopolysac-
charide, has been implicated in necrotizing enterocolitis. This 
report will review the role of dietary fat in the composition of 
the intestinal microbiome, the extreme variability of FA intake 
in premature infants, and associations of both dysbiosis and FA 
intake with the development of necrotizing enterocolitis.

With plausible relationships between the intestinal micro-
biome and disease risk, scientists continue to explore 

factors that affect diversity and flux of the intestinal flora in 
neonates and infants. Intestinal bacteria metabolize macronu-
trients to create essential products such as vitamins and energy 
sources and yet macronutrients may influence the composition 
and functions of the microbiome. Fat intake contributes over 
40% of the total energy (TE) ingested by infants, often the high-
est proportion of energy, and thus this nutrient deserves atten-
tion as a possible influential factor in microbial composition.

Prematurity-related influences affect intestinal colonization 
including higher rates of cesarean delivery, antibiotic exposure, 
delayed exposure to breast milk feedings, and significant delays 
in breastfeeding due to immaturity (1–3). Comparison find-
ings between premature and term neonates include interindi-
vidual diversity in both groups and reduced species diversity 
in those born premature (3,4). Feeding breast milk vs. formula 
may lead to different grouping patterns and variability (2).

This review will discuss the influences of dietary fat intake 
on the microbiome as documented in animal and human 

studies, the variability of fat intake and absorption by pre-
mature infants, as well as the relationship of fatty acids (FA), 
microbes and Toll-like receptor 4 (TLR4) activation with nec-
rotizing enterocolitis (NEC).

CONTROLLED ALTERATIONS OF FAT INTAKE IN ANIMALS
Predominant phyla documented in animal models are often 
Bacteroidetes and Firmicutes, and it should be noted that 
premature infants reveal different patterns of phyla predom-
inance (5–7). Using adult mice, Liu et al. (8) investigated a 
low fat diet (19% of TE as fat) compared with high fat diets 
(34–40% of TE) with varying degrees of FA unsaturation. The 
high fat diet richest in saturated fatty acids (SFA) caused the 
largest proportional reduction, by 28%, in Bacteroidetes. With 
higher polyunsaturated fatty acids (PUFA), smaller reductions 
occurred with no difference whether diets were high in n-6 
vs. n-3 PUFA, 12% and 10% reductions, respectively. The n-3 
PUFA source was flaxseed oil, containing more α-linolenic 
acid (18:3n-3, LNA) than eicosapentaenoic acid (20:5n-3, 
EPA) or docosahexaenoic acid (22:6n-3, DHA). Turnbaugh 
et al. (9) also found that a diet with 40% fat, majority SFA, 
reduced relative abundance of Bacteroidetes relative to a low-
fat diet. Phylum Firmicutes showed a relative increase with 
the SFA diet, including genus Enterococcus. It is noteworthy 
that Turnbaugh’s mice were originally germ-free and had 
microbes obtained from human fecal specimens transplanted 
before dietary interventions.

Discrepancies in findings exist at lower taxonomic levels than 
phylum. Turnbaugh et al. (10) found increases in Mollicutes, 
but Hildebrandt et al. (11) showed more substantial increases 
in Clostridiales, both classes within Firmicutes. Both dietary 
interventions were high fat, predominantly SFA. These vari-
able findings may be due to a combination of differences in 
the quality of fat, sources of samples (cecum vs. fecal pellets) 
as well as methods of sequencing and detection. The duration 
of dietary interventions were of considerable length but varied, 
ranging 3–21 wk (8–10,12).

Different fat sources with similar degrees of saturation can 
impart differential changes (12). Two comparisons used high 
fat (38% of TE) high SFA diets, one based on lard and one 
milk fat. Mice fed lard fat showed an increase in Firmicutes 
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as compared with a low-fat diet (5% of TE), but mice fed milk 
fat had increased Bacteroidetes, an increase comparable with a 
separate group feeding a high fat PUFA-based diet. This does 
lend support to the notion that very specific changes in dietary 
FA content may have relevant influences.

PUFA effects were examined in neonatal piglets (13), 
one of few neonatal animal models reported on this topic. 
Experimental formulas were designed to mimic sow’s milk 
and fat content was approximately 60% of TE. Fish oil (FO) 
or sunflower oil enrichment was added to the formula, with 
FO lowering the n-6:n-3 fatty acid ratio by a factor of two. 
PUFA content affected relative abundances but not total diver-
sity. Proteobacteria and Actinobacteria were more prominent 
in the FO group. The sunflower oil group supported greater 
proportions of Bacteroides spp. compared with the FO group, 
attributable to 3 of 10 bacteria in that species.

Using mice just weaned at 4 wk of age, Ghosh et al. (14) com-
pared a low fat n-6 PUFA diet to two high fat diets, one with 
n-6 PUFA and one containing n-6 and n-3 PUFA from FO. 
Significantly increasing the amount of arachidonic acid (20:4n-
6, ARA), DHA, and EPA in the FO feeding group, there was 
also an increase in SFA. High fat n-6 PUFA diets showed sub-
stantial increases in relative expression of Enterobacteriaceae, 
segmented filamentous bacteria, and Clostridia spp. Diets 
containing n-3 PUFA prevented these increases and promoted 
growth of Bifidobacteria, Lactobacillus, and Enterococcus fae-
cium, but not Enterococcus faecalis. Together, this model sug-
gested that n-3 PUFA-enriched diets supported microbes 
considered beneficial to health and protected against growth 
of bacteria considered pathogenic. After dietary interven-
tions, Citrobacter rodentium infection was induced and dis-
tal colonic histopathology assessed. The most severe damage 
was found with high fat n-6 PUFA diets. Although n-3 PUFA 
enrichment decreased colonic injury, more animals in that 
intervention died of sepsis after infection, highlighting poten-
tial microbial and immune system effects that may also result 
from dietary FA.

The mechanism of fat quality’s influence on microbial com-
position is likely multifactorial. An indirect influence by fat-
induced changes in bile acid composition has been suggested 
(12). A high milk-fat diet promoted growth of Bilophila wad-
sworthia, a change not established with a high fat PUFA-based 
diet. Considering that hydrophobic milk fat could change liver 
conjugation of bile acids, analysis of gall bladder aspirates 
identified a significant increase in taurine-conjugated bile 
acid, a rich source of sulfur for the sulfur-reducing microbe. 
There are likely also effects from direct exposure of intesti-
nal microbes to FA. A high fat, high SFA palm oil diet caused 
increased fecal fat in mice (15). This “overflow,” or decreased 
absorption and increased intestinal SFA transport, was asso-
ciated with a decrease in diversity index as well as increased 
relative amounts of Firmicutes members Bacilli and Clostridia.  
Decreased diversity has been found by others (10). This may 
have relevance to the premature infant, as discussed below.

Differential effects of PUFA on growth and viability of 
Lactobacillus have been evaluated in vitro. Lactobacillus GG, 

Lactobacillus bulgaricus and Lactobacillus casei Shirota strains 
were exposed to increasing concentrations of linoleic acid 
(18:2n-6, LA), LNA, γ-LNA, ARA, and DHA individually in 
growth media (16). Higher concentrations of PUFA inhibited 
growth, each PUFA having a different threshold concentration 
of impact, which also varied by strain. In surviving bacteria, 
viability as measured by membrane permeability was not com-
promised by any PUFA at any concentration. ARA and γ-LNA 
at low doses actually supported growth compared with con-
trols. Exposures such as this in vivo, with stepwise changes in 
concentrations and assessments of species level effects, have 
not been reported.

CHANGES IN DIETARY FAT INTAKE AND EFFECTS IN 
HUMANS
Although growing literature exists regarding dietary influences 
on the microbiome in humans, measures of dietary fat influ-
ences are limited. Nielsen et al. (17) randomized 9-mo-old 
infants, born at term gestation, using a 2 × 2 randomization 
scheme to assess cow’s milk vs. formula effects as well as the 
addition of FO at the time of starting complementary foods. 
Some infants were still breastfeeding in all groups and none 
had antibiotic exposure. Stool samples were obtained after 1 
mo of intervention. Using denaturing gradient gel electropho-
resis, clustering separated formula and cow’s milk fed infants. 
Amongst cow’s milk fed infants only, clustering occurred based 
on FO exposure. This may be explained by the baseline avail-
ability of n-3 PUFA in the formula.

A 9-mo-long intervention in 132 infants added PUFA, either 
EPA and DHA provided as FO or LA provided as sunflower 
oil, starting at 9 mo of age (18). Dietary intake was otherwise 
not prescribed and TE and macronutrient intake was report-
edly similar between groups. In 15 cases of antibiotic exposure, 
stool samples were not collected until after 2 wk post exposure. 
Bacterial diversity increased at 18 mo in the entire cohort and 
it appeared that Bacteroidetes became more abundant. FO 
exposure increased bacterial diversity only amongst infants 
breastfeeding at enrollment. Principal component analysis 
produced no groupings based on FO intervention. Significant 
changes in a few terminal restriction fragment frequencies 
occurred with FO exposure. Many findings were significantly 
affected by duration of breastfeeding.

Evaluating children 1–6 y of age, De Filippo et al. (19) 
took advantage of natural differences in dietary habits 
between rural Africa and Western Europe. Dietary fat con-
stituted approximately 25–28% of TE in the African cohort and 
44–47% in European children. Although the four predominant 
phyla were similar between these groups, Actinobacteria 
and Bacteroidetes were increased in the African children 
and Firmicutes and Proteobacteria were represented less. 
Bacteroidetes and Firmicutes created the most substantial 
distinctions between the two groups. There were other nutri-
tional differences between these cohorts, including total 
duration of breastfeeding, calorie intake, protein sources, 
and amounts of fiber, preventing conclusions based on any 
specific nutrient.
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Awareness of findings in adult populations may help with 

future investigations of the role of fat in intestinal microbial 
alterations as comparable interventional or observational 
studies do not currently exist in the neonate, to the best of 
our knowledge. Adult subjects at risk for metabolic syndrome 
were assigned to a high fat (38% of TE) high SFA diet or one of 
four other interventions varying total fat and ratios of unsat-
uration, all with equal TE (20). PUFA were consistently 6% 
of TE in all intervention arms and diets lasted at least 24 wk. 
Lower fat (28% of TE), lower SFA diet increased Bacteroides 
and Bifidobacterium spp. and monounsaturated FA had no 
apparent influence. The high fat interventions reduced the 
total fecal bacteria count. Dietary recalls analyzed by Wu et 
al. (21) showed positive associations between SFA intake and 
Bacteroidetes as well as Actinobacteria, and negative associa-
tions with Firmicutes and Proteobacteria. In addition, trans-
FA, to be discussed later, also showed positive and negative 
associations. The false discovery rate used in models was con-
sidered high at 25%. Walker et al. (22) found changes within 
Firmicutes and Actinobacteria but not Bacteroidetes using 
a crossover design; however, within individual intervention 
arms, there were extremes of fat intake as % of TE.

In a Finnish cohort of monozygotic twins, monounsaturated 
FA and n-6 PUFA intake inversely correlated with numbers 
of Bifidobacteria and n-3 PUFA intake positively correlated 
with numbers of Lactobacillus (23). Interestingly, similar SFA 
intake reduced interindividual differences, promoting simi-
larity in Bacteroides spp. between twins. This population had 
a range of BMI, allowing investigators to clarify that energy 
and fat intake, not BMI, were affecting microbial composition. 
Combining observational and interventional data, others sup-
ported that only a long-term dietary intervention could mini-
mize interindividual variability (21).

Looking more broadly at the strength of influence of fat, in 
a separate Finnish cohort, total PUFA, LA, and LNA intake as 
% of TE each influenced the relative abundance of a cluster of 
Bacteroides spp., contributing as much as 30% of the variation 
(24). For multiple species within a Clostridium cluster, over 
10% to approximately 30% of variation was related to % of TE 
from PUFA and LA as well as intake of LA, LNA, and DHA in 
grams per day.

Advocating appropriate caution in making associations 
between nutritional intake and influences on microbes, 
Cilieborg et al. (25) cite methodological differences and a lack 
of accounting for nonnutritive factors in milk amongst many 
reasons for variable findings. Multiple nutritive and nonnutri-
tive factors, including oligosaccharides, lactoferrin and bacte-
ria in breast milk, affect both microbial and gut development 
(26). Evaluating these influences in relation to one another is 
key and yet may prove challenging in infants. Also, the existing 
microbiome prior to dietary changes exerts its own influence 
on susceptibility to change.

Although outcomes vary, collectively results suggest that FA 
balance influences gut microbial flora. Further studies are nec-
essary to confirm potentially important changes on the intes-
tinal microbial environment. Manipulations of FA intake in 

premature infants do exist in study environments (27–29) and 
future studies could couple to evaluate microbial changes.

FAT INTAKE AND ABSORPTION IN PRETERM INFANTS: 
VARIABLE EXPOSURES FOR THE MICROBIOME
Breast milk lipid content highly correlates with the TE content 
making it a significant factor in TE intake of breastfeeding or 
breast milk fed infants (30). Human milk fat concentrations dis-
play considerable interindividual variability. Explanations have 
included maternal dietary nitrogen intake, measures of adipos-
ity, and resumption of menstruation, yet results are conflict-
ing and the reasons for the variability remain to be completely 
understood (30,31). Total fat concentrations in milk expressed 
from women who deliver preterm infants may be higher than 
in milk from women delivering at term gestation (32). In 113 
German women sampled through 8 wk postpartum, milk fat 
concentrations increased with lactation duration. Analysis of 
2,554 samples of donated milk produced by 244 women at a 
Danish milk bank revealed a large range in fat content showing 
concentrations of 1.8 g/dl at the lower 2.5 percentile and 8.9 g/
dl at the upper 97.5 percentile (31). In 415 nationwide samples 
from 273 women in the United States, an extreme range of 0.7–
7.06 g/dl was seen (33). The coefficient of variation for fat was 
the largest of the three macronutrients at 21%.

As with the total lipids, specific FA content of human milk 
shows variability. Breast milk FA, largely in the form of triglyc-
erides, are supplied by maternal plasma FA, partly reflecting 
maternal diet, and FA synthesis in the mammary gland (34). 
Early interventions documenting the impact of maternal diet 
on breast milk FA composition housed a single subject (and 
her newborn) in a “metabolic ward” for 7 wk (35). Introducing 
meals with corn oil as the predominant fat, either 40% or 70% 
of TE, an approximately sixfold increase in milk LA + ALA 
occurred. This reflected the predominance of LA in corn oil, 
and the concomitant decreases in SFA and oleic acid highlight 
that milk FA content shifts relative to dietary intake.

Human milk DHA and ARA content is well studied given 
potential implications on infant development. Brenna et al. 
(36) evaluated DHA and ARA in milk expressed from women 
worldwide who delivered at term gestation. The range of DHA 
and ARA, as % of total FA, was 0.06–1.40 and 0.24–1.0, respec-
tively (36). Coastal populations consuming marine foods, rich 
in preformed DHA, have higher milk DHA concentrations 
(36–38). Some but not all investigations show higher concen-
trations of saturated and PUFA in milk of women who deliv-
ered preterm (39). With diverse dietary habits, even trans-FA 
are found in breast milk. Southwestern American women 
showed some of the highest trans-FA content in the world, 
approximately 7% of total FA (37). Declining levels of trans-fat 
content in Canadian women reflect population-based changes 
in dietary habits resulting from public health measures, spe-
cifically education of potential health risks and clearer food 
labeling of trans-FA content (40). Differences in breast milk 
total fat content compound variability in FA. With changing 
volumes fed to infants, quantities and quality of fat intake by 
premature infants vary significantly.
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Intestinal fat absorption may be reduced in the premature 
infant, increasing fat exposure to microbes in distal intes-
tines, potentially influencing microbial diversity. Impaired 
lipid digestion and absorption is likely a result of decreased 
production of multiple factors including gastric lipase, intesti-
nal intraluminal bile salts, and exocrine pancreatic hormones 
(41). Bile salt-stimulated lipase is present in human milk and 
shows wide specificity for any lipid products and no discrimi-
nation regarding cleavage at the sn-positions of the triglycer-
ide, increasing the amount and speed of release of FA from the 
triglyceride (42).

Bile salt-stimulated lipase function is reduced by heating 
milk. Measuring fecal fat, a small cohort (n = 5) of very-low-
birth-weight infants showed decreased fat absorption rates 
in a crossover study, when their mother’s own milk was pas-
teurized prior to feedings (43). Fat content appeared to be 
just under 4 g/dl. The mean net absorption coefficient of 88% 
with unpasteurized milk decreased by 17% after pasteuriza-
tion, although not statistically significant likely due to sample 
size (P = 0.063). Donor human milk, with approximately 3 g/
dl total fat content, was fed to very-low-birth-weight infants in 
three forms: unprocessed, pasteurized, and boiled (44). Raw 
milk allowed the highest absorption, 73.6%, and a significant 
reduction occurred with either method of heat treatment, as 
low as 46% with boiled milk feedings. A subject with the high-
est fat intake, 9.88 g/kg per day, showed the lowest fat absorp-
tion as a composite rate from all three milk exposures. An 
inverse relationship was found between weight based fat intake 
and percentage absorbed.

An important methodological difference amongst studies is 
the temperature to which milk is heated, 37 °C in Andersson’s 
cohort and 63 °C in Williamson’s (43,44). Higher temperatures 
may cause a larger reduction in bile salt-stimulated lipase and 
thus greater impairment in fat absorption. Commercial for-
mulas lack bile salt-stimulated lipase, a partial explanation of 
decreased triglyceride cleavage and fat absorption in formula 
fed infants (42,45). Chappell et al. (46) documented reduc-
tions in total fat absorption and coefficients of absorptions for 
medium and long chain FA in very-low-birth-weight infants 
fed formula as compared with a breast milk-fed group with 
comparable fat intake. Although it is believed that premature 
infants have impaired fat absorption, rates comparable with 
term infants, even with formula feedings, are documented 
(41,47). This reflects the variability in dietary interventions 
and methodologies assessing fat absorption. Also, many stud-
ies of fat absorption were completed prior to routine addition 
of longer chain PUFA to commercial formulas and coefficient 
of absorption increases with higher degrees of unsaturation. 
Thus, despite the ability to measure FA content in enteral feed-
ings for premature infants, the amounts absorbed and/or undi-
gested may also affect microbial diversity.

NECROTIZING ENTEROCOLITIS: DYSBIOSIS AND PUFA 
INTERACTIONS WITH TLR4
Varying methodologies have assessed intestinal micro-
bial patterns in premature infants that developed NEC. A 

predominance of Proteobacteria (Gram negative) and a 
marked reduction of Firmicutes have been found in fecal 
samples from infants developing NEC compared with con-
trol infants (48–50). Decreased diversity was apparent in NEC 
(48,49) yet Mai et al. (50) did not find this in samples collected 
within the week prior to diagnosis. Morrow et al. (48) and Mai 
et al. (50) detected changes in Actinobacteria, with decreases 
at or within the phylum level, yet the phylum was not reported 
by others (49). Some inconsistencies may result from different 
colonization patterns at different institutions and differences in 
timing of sampling. Within a single cohort, different patterns 
developed in samples obtained from days 4–9 vs. 10–16 (48).

TLR4 activation triggers a signaling cascade, including NFκB 
activation, leading to increased gene expression and produc-
tion of proinflammatory mediators (51). Intestinal epithelial 
TLR4 expression should decrease with postnatal development 
and its expression remains elevated in all gut segments in 
experimental models of NEC (52,53). With lipopolysaccharide 
as the ligand for murine TLR4, increased expression coupled 
with Gram-negative bacteria exposure provides a plausible 
mechanism for development of NEC (54,55). Gram-negative 
bacteria have been more commonly identified in neonatal rats 
developing NEC compared with controls (55).

The degree of FA unsaturation has affected TLR4 signaling. 
In murine cell cultures, SFA induced expression of downstream 
products of TLR4 activation in a dose-related manner (56). 
Mono- and polyunsaturated FA mitigated signaling activation 
caused by SFA. This supported regulation by FA at TLR4 recep-
tor level but did not delineate whether the receptor directly 
interacted with the FA. Neonatal rats fed PUFA in an established 
model of NEC had lower incidences of NEC compared with 
control animals fed formula without PUFA (53). Different types 
of PUFA exposure occurred; egg phospholipid, ARA and DHA, 
or DHA alone were added to the control formula. Lower rates of 
NEC correlated with decreased TLR4 mRNA expression in all 
four intestinal segments in rats fed PUFA. In vitro experiments 
in that same study showed an inhibitory effect of PUFA on plate-
let activating factor receptor in ileal and colonic cells (53), pro-
viding another avenue for protection against intestinal injury.

Although not measuring affects related to TLR4, rats with 
reduced incidences of NEC had decreased plasma levels of 
lipopolysaccharide in animals supplemented with PUFA (57). 
In this context, independent of the influence that FA may have 
on the microbiome, FA impart additional effects influencing 
downstream proinflammatory signaling, intestinal integrity, 
and susceptibility to NEC.

CONCLUSION
Collection and analysis of detailed nutrient provisions to pre-
mature infants is feasible in studies evaluating the intestinal 
microbiome. Measuring breast milk composition allows for 
documentation of fat intake. Measuring metabolism (i.e., FA 
cleavage and absorption) is not as straight forward. Fat is a 
predominant energy source and lipid subcomponents are vital 
for growth and brain development throughout infancy and 
childhood, and naturally occurring variability can be used 
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in cohort analyses. Conflicting data of the dietary influences 
on the microbiome exist, as well as uncertainty of any given 
microbiome’s influence on disease risk, and there remains a 
paucity of evidence in human infants. Variable findings result 
from different methodologies of microbial detection and tim-
ing of sampling, and possibly from a lack of depth of account-
ing for specific nutrient intake. Statistical analyses measuring 
microbial changes specifically due to lipids is challenging con-
sidering the numerous factors in breast milk that influence the 
microbiome. It is possible that dietary FA cause minimal influ-
ence on microbes as related to risk of disease, but there are still 
likely important influences of FA on immune system function, 
or dysfunction, at the level of the intestinal mucosa. Growing 
evidence suggests value in reporting specific nutrient intake, 
more than just breast milk or formula feedings, in investiga-
tions measuring influences on the intestinal microbiome in 
premature infants.
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