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Background: Animal models have shown that insulin-like 
growth factor I (IGF-I) may mediate protein-induced kidney 
growth. Our aim was to analyze the effect of IGF-I on protein-
induced kidney growth in healthy infants.
Methods: This is a secondary analysis of a randomized trial 
that compared growth of infants fed with a higher-protein (HP) 
(n = 169) vs. lower-protein (LP) (n = 182) formula (in the first 
year of life). Outcome measures were anthropometric param-
eters, kidney volume (cm3), and total and free IGF-I (ng/ml).
results: The highest levels of total and free IGF-I were found 
in the HP group. Both parameters correlated significantly with 
BMI z-score (r = 0.229, P < 0.001 and r = 0.223, P < 0.001, respec-
tively), kidney volume (r = 0.115, P = 0.006 and r = 0.208, P < 
0.001, respectively), and kidney volume/body length (r = 0.109, 
P = 0.010 and r = 0.194, P < 0.001, respectively) at 6 mo. Linear 
regression analyses showed a significant effect of free IGF-I on 
kidney volume in models, including significant effects of HP 
formula and anthropometry. The structural equation model 
revealed a significant direct effect of the HP formula on kidney 
volume and an indirect effect mediated by free IGF-I.
conclusion: This study suggests that IGF-I partly mediates 
protein-induced kidney growth in healthy infants. IGF-I could 
be involved in a pathway for the programming of the renal 
system.

recent research on the early origins of adult diseases has 
highlighted the importance of nutrition early in life. Early 

nutrition could affect body structures and tissue development, 
which could be expressed as a permanent effect on a function 
that could affect health in adulthood (1). This is what is known 
as nutritional programming. Nutritional factors could act in dif-
ferent tissues and systems during a critical period of develop-
ment affecting growth (2). Programming through early growth 
mechanisms may affect different body tissues and organs, such as 
bone, muscle, adipose tissue, the heart, and the kidney. Different 
nutritional interventions early in life have been shown to 

produce permanent effects on kidney function and structure. For 
instance, it has been proposed that poor nutritional status during 
gestation may affect nephrogenesis in the offspring, which could 
lead to impaired kidney development that could induce hyper-
tension risk as well as poor kidney function in adulthood (3,4). 
Conversely, increased protein supply has been reported to stimu-
late kidney growth not only prenatally but also in postnatal life, 
both in animal models (5) and in humans (6). One of the mecha-
nisms that may induce compensatory kidney growth in response 
to an increase in protein supply is the increased renal workload 
in response to urea and other compounds derived from protein 
metabolism (7,8). Furthermore, animal models have shown that 
insulin-like growth factor I (IGF-I) may also mediate protein-
induced kidney growth. However, there is little evidence suggest-
ing a direct effect of IGF-I on kidney size or function in humans. 
The relationship between IGF-I and kidney volume in humans 
has been postulated in different scenarios. In patients with uni-
lateral nephrectomies, compensatory growth of the remaining 
kidney is accompanied by an increase in IGF-I levels (9). Human 
recombinant IGF-I treatment also promoted an increase in kid-
ney size and function in a series of patients with chronic renal 
failure (10) and in a series of healthy patients (11).

In healthy infants, it has been demonstrated that increased 
protein intake stimulates kidney growth (6) and is also directly 
related to higher serum IGF-I concentrations (12,13). However, 
the possible mediation of kidney growth by IGF-I has not been 
tested. Deciphering this mechanism could lead to a better 
understanding of the possible pathways for programming kid-
ney and cardiovascular disease, such as renal insufficiency or 
hypertension. The aim of this study was to analyze the effects 
of IGF-I on protein-induced kidney growth in healthy infants.

RESULTS
Study Sample
Of the 652 formula-fed infants remaining in the study at 6 mo 
(324 higher-protein (HP) formula-fed and 328 lower-protein 
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(LP) formula-fed), 601 (92%) returned to the study centers for 
the kidney ultrasound assessment. Of those, 50 (8.3%) were 
not included in the analyses due to measurement errors or 
kidney anomalies. Of the remaining 551 participants in the 
formula-fed groups, 46 (8.3%) declined to perform the blood 
sample analysis. A blood sample was drawn from 506 formula-
fed infants, and 438 IGF-I measurements were valid (68 blood 
samples did not have enough serum or were excluded for other 
reasons) (Figure 1). There were no differences in anthropo-
metric and socioeconomic baseline characteristics of children 
randomized to the formula groups. We did not find any effect 
of gender, country, or feeding group in withdrawals or reasons 
for sample exclusion (Figure 1).

Of the 236 breastfed (BF) infants remaining in the study at 
6 mo, 204 had a kidney ultrasound, and 186 were analyzed for 
comparison as well (18 (10%) were excluded for incorrect mea-
surements or kidney anomalies). Of those, 185 participated in 
the blood sample analysis. IGF-I concentrations were obtained 
from 165 BF infants.

Effect of Protein Intake on Body and Kidney Growth
Feeding groups exhibited significant differences in anthropo-
metrical parameters and kidney volume at 6 mo. Infants fed 
with the HP formula had significantly higher body weight 
z-scores (P = 0.009) than did the infants fed with the LP 

formula (Figure 2a), whereas no differences existed for body 
length z-score (0.38 (±0.96) vs. 0.33 (0.90)). Kidney volume 
was also significantly greater among the infants fed with the 
HP formula (P < 0.001) (Figure 2b).

Effect of Protein Intake on Total and Free IGF-I
The highest levels of total and free IGF-I were found in the HP 
group, which exhibited an ~35% increase in median levels as 
compared with the LP group (P < 0.001 for total and free IGF-I 
between formula groups) (Figure 3a,b).

Relationship Among the IGF-I Axis, Anthropometry, and the 
Kidney
Total and free IGF-I were significantly correlated with all 
anthropometric parameters (weight, length, BMI, and body 
surface area) at 6 mo (Table 1) among formula-fed infants.

IGF-I was also correlated with kidney volume; the correla-
tion was slightly stronger for free IGF-I in formula-fed infants 
(Table 1). Similarly, free IGF-I was significantly correlated 
with estimated glomerular filtration rate (r = 0.22, P < 0.001).

Effect of the IGF-I Axis on Protein-Induced Kidney Growth
Linear regression analyses revealed a slight effect of total IGF-I 
concentrations on kidney volume (β = 0.025 (0.005, 0.046), 
P = 0.016) in a linear regression model including the infant 

Figure 1. Flow diagram of randomization, allocation, follow-up, and data analysis. Solid line: formula groups (randomized intervention trial), dashed line: 
observational group of breastfed infants as a reference.
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formula; however, this effect disappeared after adjusting for 
current anthropometrical variables.

Free IGF-I concentrations showed a stronger effect on kid-
ney volume in a linear regression model including the type 
of formula and current anthropometrical parameters, and 
adjusted for country and gender, explaining up to 22.3% of its 
variability (P < 0.001) (Table 2).

Breastfeeding showed no effect on kidney volume as com-
pared with the lower-protein formula. The effect of gender on 
kidney volume disappeared after adjustment for anthropo-
metrical variables.

The direct and indirect effects of the formula and IGF-I on 
kidney volume were calculated in a structural equation model. 
The strongest effect of the intervention on kidney volume was 
direct (the HP formula increased the standardized kidney vol-
ume by 0.12 (95% confidence interval 0.19, 0.45) as compared 
with the LP formula). In addition, the HP formula had a signifi-
cant indirect effect through increasing free IGF-I, which in turn 
had a direct and an indirect (through weight) positive effect on 

kidney volume. The total of all indirect effects can be derived 
by adding the product results along each path (i.e., 0.16 × 0.14 
(formula effect directly through free IGF-I) + 0.16 × 0.18 × 0.17 
(formula effect through free IGF-I and weight) = 0.029). Thus, 
the indirect effects of formula on kidney volume through free 
IGF-I make up ~24.3% of its total effect (Figure 4). The statis-
tical power calculation a posteriori shows that the direct and 

Figure 2. Effect of feeding type on (a) body growth and (b) kidney vol-
ume (means (SEM)). Higher-protein formula–fed infants had higher body 
weight (z-score) and kidney volume (cm3) than lower-protein formula–fed 
infants (P = 0.009 and P < 0.001, respectively). Breastfed infants had lower 
body weight than both formula-fed groups (P < 0.001 and P = 0.005, as 
compared with higher- and lower-protein formulas, respectively) and 
lower kidney volume than infants fed with the higher-protein formula (P 
< 0.001). Breastfed infants did not differ from lower-protein formula–fed 
infants in kidney volume.
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Figure 3. Effect of feeding type on (a) total and (b) free IGF-I serum levels 
(mean (SEM)). Lower-protein formula–fed infants had lower total and free 
IGF-I concentrations than infants fed with the higher-protein formula (P < 
0.001, both parameters). Breastfed infants had lower concentrations than 
both formula groups of total IGF-I (P < 0.001, both comparisons) and free 
IGF-I (P < 0.001 and P = 0.004, as compared with higher- and lower-protein 
formula–fed infants, respectively). IGF-I, insulin-like growth factor I.
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table 1. Correlations of IGF-I with body measures and kidney 
volume at 6 mo of age among formula-fed infants (n = 451)

Total IGF-I (ng/ml) Free IGF-I (ng/ml)

Weight z-score 0.29*** 0.29***

Length z-score 0.19*** 0.19***

BMI z-score 0.23*** 0.22***

Body surface area (m2) 0.23*** 0.22***

Kidney volume (cm3) 0.123** 0.19***

Kidney volume/cm 0.11* 0.18***

IGF-I, insulin-like growth factor I.

spearman’s ρ correlations, *P < 0.05, **P < 0.01, ***P < 0.001.
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indirect effects of the formula on kidney volume had a power 
of 100%, with a confidence interval of 95%.

DISCUSSION
IGF-I and the Kidney
This is the first clinical trial to show that the IGF-I axis may 
affect kidney size and possibly kidney function in healthy 
infants.

Our results are consistent with those published in the litera-
ture, mainly based on animal models. Rats treated with human 
recombinant IGF-I exhibit kidney growth and an increase in 
glomerular filtration rate (14). Models for compensatory kid-
ney growth after partial nephrectomy have shown a relation-
ship among the operation, an increase in IGF-I levels, and sub-
sequent compensatory kidney growth (9). The possible direct 
effect of the IGF-I axis on kidney growth is supported by the 
IGF-I receptor patterns found in both rat and human kidneys.

In our study, we found significant direct associations between 
the IGF-I axis and kidney volume and a slight but significant 

correlation between the free IGF-I axis and kidney function. It 
is possible that the limitations of the estimation of glomerular 
filtration using creatinine plasma values (through the Schwartz 
equation) instead of a 24-h urine evaluation could partially 
mask these results (7).

Animal models had previously shown a direct relation 
between HP intake and higher total and free IGF-I levels in the 
serum (15–17). This effect has also been shown for infants and 
children in observational studies (18–20) and, more recently, in 
the randomized Childhood Obesity Project (CHOP) trial (12).

A possible limitation of the study is the number of subjects 
available for analysis by feeding group (<50% of the infants 
originally recruited at birth). However, we do not expect that 
the effect of IGF-I on the kidney could be biased by the num-
ber of subjects available, given that we did not find differences 
in baseline characteristics of remaining subjects or in reasons 
to withdraw from the study.

IGF-I and Body Growth
The IGF-I axis has been shown to be closely related to body 
growth in infants (21,22) and children (22). It has been 
reported that IGF-I concentrations in infancy are predictive of 
early postnatal growth rates (22), differential length gain, and 
adiposity (23). In our sample, consistent with the literature, 
total and free IGF-I were both directly correlated with weight, 
length, BMI, and body surface area.

IGF-I as a Mediator of Protein-Induced Kidney Growth
Our research team has already reported a significant effect of 
protein intake during the first months of life on kidney size 
(6). Infants fed a HP diet exhibited increased levels of urea and 
other renal workload parameters. In turn, these metabolites 
were correlated with kidney volume.

Research in animal models has shown that increased renal 
workload (by a HP supply) could induce adaptive kidney 
overgrowth. In addition, HP intake stimulates IGF-I secre-
tion, which in turn could promote kidney growth directly 
(17). The present work reveals that the main effect on kidney 
size is the one produced directly by the HP formula through 
yet unknown mechanisms, as shown by the mediation model 
analyses. Furthermore, consistent with our hypothesis, this 
study suggests that IGF-I may partly mediate the protein-
induced kidney growth in healthy infants. IGF-I may have a 
direct effect on kidney growth and on body weight gain. In 
turn, the resultant higher body mass may cause a renal work 
overload through an increased production of nitrogenous 
products such as creatinine (7).

Therefore, a triple mechanism may induce increased kidney 
growth upon protein intake: compensatory kidney growth 
induced by the increase in nitrogen substances derived from 
protein metabolism (the main mechanism); hypertrophy pro-
duced by increased IGF-I secretion, which may act directly on 
the kidney; and protein-induced body growth (also promoted 
by an increase in IGF-I secretion), which may also be accom-
panied by kidney growth. Figure 5 shows the different path-
ways that may participate in protein-induced kidney growth.

table 2. Effect of dietary protein content and IGF-l on kidney volume 
at 6 mo of age (n = 440)

Variable affecting 
kidney volume (cm3) β Estimate

95% CI  
(upper, lower) P value R2

Formula (lower- vs. 
higher-protein 
formula)

2.289 (0.824, 3.755) 0.002 0.22

Free IGF-l (ng/ml) 1.608 (0.239, 2.976) 0.021

Length (cm) 1.031 (0.586, 1.476) <0.001

Body weight (kg) 1.784 (0.657, 2.912) 0.002

CI, confidence interval; HP, higher protein; IGF-I, insulin-like growth factor I; LP, lower 
protein.

Formula codes were LP = 1 vs. HP = 2. Regression adjusted by gender (1 = male, 2 = 
female), which showed no effect, and study country (1 = Germany, 2 = Belgium, 4= 
Poland, and 5= spain), which had a significant effect on kidney volume (β = −0.898, 
P < 0.001).

Figure 4. The results from a structural equation model. This figure shows 
the effect of each factor through each path (represented by arrows). 
Numbers are standardized coefficients (SCs); one change in SC of a factor 
leads to x SC change in the next factor, e.g., as compared with the lower-
protein formula, the higher-protein formula increases the kidney volume 
directly by 0.12 (95% CI: 0.19, 0.45). In addition, we see an indirect effect 
mediated through free IGF-I by 0.029 (addition of product results along 
each path). The indirect effects of formula on kidney volume through free 
IGF-I explain 24.3% of the kidney volume variability. For clearer depiction, 
the paths included in the model of country of origin on free IGF-I, weight, 
height, and kidney volume are not shown. *P < 0.01, **P < 0.005. CI, confi-
dence interval; IGF-I, insulin-like growth factor I.
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However, these different pathways could have different con-
sequences. It has been suggested that protein intake early in 
life may be correlated with later obesity risk (24–26). Published 
results from this randomized clinical trial show an increased 
weight and BMI among infants fed with the HP formula, at 2 y 
of life, 1 y after the end of nutritional intervention. These find-
ings support a possible role for protein intake in nutritional 
programming, the proposed mechanism of which is the stimu-
lation of the IGF-I axis. Considering that this increased body 
growth (programmed by IGF-I modulation early in life) could 
be permanent, we foresee a slight long-term effect on hyperfil-
tration that in turn may program kidney volume at later stages.

We hypothesize that compensatory hypertrophy through 
an increase in protein intake may be a reversible process that 
could cease with the nutritional intervention (as shown in pre-
vious work) (27). However, kidney growth accompanying body 
weight gain early in life and mediated by the IGF-I axis could 
be a permanent effect. We do not expect that this increase in 
kidney volume may have any health effect in healthy children 
during infancy, but the long-term health implications of such 
overgrowth, if overweight is permanently established, remain 
to be determined. Higher kidney volume, if promoted after 
birth, is not expected to cause a higher renal functional capac-
ity (because nephrogenesis in humans finishes before the end 
of gestation) (28). Although the differences in kidney growth 
in our study sample might not be clinically relevant in the long 
term, on the basis of the observed results, we could hypothe-
size that kidney hypertrophy due to excessive body weight gain 
early in life could result in a permanent functional overload, 
with a possible increasing risk of renal disease and hyperten-
sion (29,30), resulting in kidney programming. Further fol-
low-up of these infants may help to elucidate the possible role 
of IGF-I on programming the renal system, by studying the 
relationship among weight, kidney volume, kidney function, 
and hypertension later in life.

In conclusion, this randomized clinical trial suggests that 
the IGF-I axis affects kidney size and partly mediates protein-
induced kidney growth in healthy infants. The IGF-I axis 
could be involved in the nutritional programming of the renal 
system.

METHODS
Study Design
The data presented were collected in a double-blind randomized con-
trolled trial; this is a secondary analysis of a study designed to detect 
differences in body growth. The details of the study have been pub-
lished previously (24), in addition to other secondary analyses (12,13). 
Term healthy infants fed an HP formula (infant formula: 2.05 g pro-
tein/100 ml; follow-on formula: 3.2 g protein/100 ml) or an LP formula 
(infant formula: 1.25 g protein/100 ml; follow-on formula: 1.6 g pro-
tein/100 ml) during the first year of life were compared. The composi-
tion of HP and LP study formulas fulfilled the 1991 EU Directive on 
Infant and Follow-on Formulae (31) (European Commission directive 
91/321), and the energy contents of the two formulas were identical. 
Further details of these formulas have been published elsewhere (24). 
Families were provided with the formulas during the first year of life and 
did not receive any other nutritional intervention from the study team.

In addition, as a reference for growth and development, a con-
trol group of BF infants (exclusive breastfeeding for a minimum of 
3 mo) was also recruited and observed in parallel during the same 
period, as recommended by the European Society of Paediatric 
Gastroenterology, Hepatology and Nutrition (32). The results of this 
BF infant group are shown as a gold standard reference.

Subjects
Our target population was a sample of 652 formula-fed and 236 BF 
6-mo-old infants from four European countries (Germany, Belgium, 
Poland, and Spain) who had been recruited during the first 8 wk of 
life (median age = 14 d) to participate in the EU Childhood Obesity 
Project. Figure 1 illustrates the recruitment, randomization, and fol-
low-up until the age of 6 mo of studied infants.

Measurements
Anthropometry. The nude weight and the length of the infant were 
determined at recruitment and at 6 mo of life. BMI (weight (kg)/
length (m2)) and body surface area ((m2) = ((weight (kg) × length 
(cm))/3,600)2) were calculated. Weight, length, and BMI were 
expressed as z-scores relative to the World Health Organization 
growth standards for BF infants (33).

Blood and urine sampling and analysis. At 6 mo of age, a venous blood 
sample was drawn, and a urine sample was collected using an adhe-
sive urine collection bag. Efforts were undertaken to draw blood no 
less than 2 h after the last feed. Total and free IGF-I (ng/dl) were deter-
mined using a highly specific commercially available radioimmuno-
assay test in a single laboratory (Children’s Memorial Health Institute, 
Warsaw, Poland). Serum creatinine and urea (both in mg/dl), as well 
as urine urinary creatinine (mg/dl) and osmolarity (mmol/l), were 
determined at local laboratories. The estimated glomerular filtration 
rate (ml/(min × 1.73 m2)) was calculated according to the Schwartz 
equation (estimated glomerular filtration rate = (0.45 × length (cm))/
(serum creatinine) (mg/dl)).

Kidney measures. Ultrasonographic kidney measurements were 
taken by 17 trained and blinded radiologists using a linear or sector 
ultrasound (5–7.5 MHz) by a posterior approach or lateral approach 
in the prone position to measure the longest length possible (34).

Infants who exhibited anomalous kidney development, urinary 
tract disease (such as hydronephrosis), or kidney asymmetry (con-
sidered as a >15% length difference between kidneys) were excluded 
from the analyses. Measures of length, width, maximum depth in the 
longitudinal section (D1), and maximum depth in the transverse sec-
tion (perpendicular to the hilar region) (D2) of both kidneys were 
measured (cm).

Figure 5. Dietary protein and kidney size and function: deciphering the 
possible mechanism. IGF-I, insulin-like growth factor I.
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Kidney volume (hereafter also “kidney size”) was calculated accord-
ing to the equation for an ellipsoid (kidney volume (ml) = length × 
width × 0.5 (D1 + D2) × 0.523) (35) and presented as the absolute 
value (cm3) and corrected by body length (cm3/cm). The analysis was 
based on the sum of the right and left kidney volumes.

Data Analyses
Z-scores for anthropometry variables were calculated using the World 
Health Organization Anthro for personal computers software, ver-
sion 3.2.2, 2011 (World Health Organization, Geneva, Switzerland). 
Descriptive results were expressed as means and SDs. Skewed vari-
ables were transformed to their logarithmic form; t-test for normally 
distributed variables and Mann–Whitney U-test for skewed variables 
were used for statistical comparisons between the feeding groups. The 
BF group of infants was used as a reference in descriptive analyses, 
but not included in analyses to relate feeding with IGF-I and kid-
ney volume (because this was a not randomized group). Pearson’s 
or Spearman’s correlations were used to test for linear associations 
among continuous variables, as appropriate. Linear regression analy-
sis was applied to assess the effect of feeding type (HP vs. LP formula, 
encoded as LP = 1 and HP = 2), total and free IGF-I, body length, 
and body weight on kidney volume, adjusting for the potential con-
founders gender (encoded as male = 1, female = 2), and country (1 = 
Germany, 2 = Belgium, 4 = Poland, and 5 = Spain).

Structural equation modeling (36) was performed to separate the 
direct and indirect effects of the type of formula and IGF-I, including 
the additional effects of weight, height, and study country. Structural 
equation modeling is a straightforward extension of multiple regres-
sion that provides estimates of the magnitude and significance of 
hypothesized causal connections between variables. This is performed 
by the decomposition of observed correlations between the analyzed 
variables and is best depicted in a path diagram. Because this was not 
the primary hypothesis of the project, we did not perform the calcu-
lation for the sample size needed a priori. Therefore, we calculated 
the statistical power a posteriori. The linear regression model and the 
structural equation model considered significant effect values in 95% 
confidence intervals.

Data management and statistical analyses were conducted with SAS 
version 9.2 (SAS Institute, Cary, NC), Stata version 12.0 (Stata, College 
Station, TX), and SPSS Statistics version 17.0 (SPSS, Chicago, IL).

Ethical Issues
The project was approved by the ethical committees of all study cen-
ters. Informed consent was obtained from all of the families that par-
ticipated in the study.

The study followed the Declaration of Helsinki (37) and the 
CONSORT Statement (38).

The clinical trial was registered at http://www.clinicaltrials.gov as 
the EU Childhood Obesity Project (NCT00338689).
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