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Sudden infant death syndrome (SIDS) is a significant clinical 
problem without an accepted pathological mechanism, but 
with multiple conflicting models. Mutations in a growing 
number of genes have been found postmortem in SIDS cases, 
notably genes encoding ion channels. This can only account 
for a minority of cases, however. Our recent work on a novel 
mouse model of SIDS suggests a potentially more widespread 
role for cardiac arrhythmia in SIDS without needing to invoke 
the inheritance of abnormal ion-channel genes. We propose a 
model for SIDS pathogenesis whereby postnatal hypoxia leads 
to delayed maturation of the cardiac conduction system and 
an increased risk of cardiac arrhythmia. Our model may inte-
grate several epidemiological findings related to risks factors 
for SIDS, and agrees with previous work suggesting a common 
final pathological pathway in SIDS.

Sudden infant death syndrome (SIDS, also known as “cot 
death”) remains an intractable clinical problem. No defini-

tive unifying disease mechanism has been described, and 
there are several competing models of pathogenesis, all with 
some circumstantial supporting evidence. The definition of 
SIDS is an unexplained, sudden death of an infant below 1 y 
of age (1). A diagnosis of SIDS can be made only after forensic 
examination of the death scene and postmortem pathological 
examination that includes a range of additional investigations 
(1). Incidence in the United Kingdom has been estimated at 
0.40 deaths per live birth (2).

Our poor understanding of SIDS as a syndrome is a result of 
the fact that this is a diagnosis of exclusion, and the likelihood 
is that a number of different causative pathologies are lumped 
together as “SIDS” (3). There is also the general difficulty in 
ascertaining a definitive cause of death purely from postmor-
tem pathology. However, there is a well-documented common 
set of postmortem pathological findings in the majority of 
SIDS cases, as recently reviewed by Goldwater (3). This has led 
to the view that a wide number of pathologies result in a final 
common pathway and sudden death.

The absence of a clear single pathological mechanism in SIDS 
led to the development of a “multi-hit” hypothesis, whereby 
the combination of several risk factors (which may be insignif-
icant on their own) leads to death. The “triple risk hypothesis” 
was advanced in 1994 and centered on abnormal brainstem 
function (4,5). Alterations in brain parenchymal structure 

and neurotransmitter release have also been described in the 
periaqueductal gray matter (6), arcuate nucleus (7), medulla 
oblongata (8), and carotid body (9). Whether these lesions are 
causative or merely reflect chronic hypoventilation/hypoxia 
remains to be determined. A retrospective case review found 
evidence of an unexpectedly high incidence of Staphylococcus 
aureus and Escherichia coli colonization/infection in SIDS 
cases (10), supporting the hypothesis that bacterial infection 
is involved in SIDS pathogenesis (11,12). Furthermore, it has 
also been shown that cigarette smoke exposure, a known SIDS 
risk factor, attenuates the immune response to bacterial infec-
tion, and so might augment the effect of bacterial infection 
(13). Sleeping in the prone position, another risk factor for 
SIDS, may activate temperature-sensitive bacterial toxins (14), 
emphasizing the complexity of the interactions of multiple 
etiological factors in SIDS. These interactions are incompletely 
understood. For example, in an Austrian epidemiological 
study, incidence of SIDS increased with altitude, but this was 
only in prone sleepers (15). Interestingly, the study of whether 
sleeping in the prone position per se lowers oxygen levels has 
produced equivocal results (16). More recently, evidence has 
been advanced to support the role of catastrophic diaphrag-
matic weakness as a causative factor in SIDS (17). How this 
relates to established epidemiological risk factors remains to be 
seen. More widespread and efficient use of genome sequencing 
is suggesting other inherited risk factors, e.g., mutant sarco-
mere protein genes (18), and in future this technology will pro-
vide more candidate genes and perhaps mechanistic insight.

Several autopsy findings are commonly reported in victims 
of SIDS, although there is considerable heterogeneity, consis-
tent with multiple causative etiologies for SIDS. Intrathoracic 
petechiae are regularly reported (19), as is dilated right ven-
tricle and hepatic erythropoiesis, consistent with chronic 
hypoventilation (3,20). More recently, anatomical abnormali-
ties in the cardiac conduction system and autonomic nervous 
system have been reported in SIDS victims (21–24). In addi-
tion, it was reported in one series that hearts in SIDS cases 
were significantly smaller than controls, implying that postna-
tal growth and maturation of the heart is somehow affected in 
SIDS victims (25).

It is possible that cardiac arrhythmia is the ultimate mode 
of death in SIDS, as is the case in many adult cases of sudden 
death. Several pieces of circumstantial evidence support a role 
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for cardiac arrhythmia in SIDS. A large prospective study of 
33,034 infants found that 50% of the infants who died of SIDS 
had a prolonged QTc interval in the first week of life (26). In 
general pediatric and adult populations, QTc prolongation has 
long been accepted as a marker for increased susceptibility to 
ventricular arrhythmia (27,28), and inherited channelopathies 
with prolonged QTc are associated with sudden death in both 
pediatric and adult populations (29). “Molecular autopsy” 
of 173 cases of SIDS, by genotyping for five genes associated 
with long QT syndrome and the ryanodine receptor 2 gene, 
revealed mutations in these arrhythmia-sensitizing genes in 44 
out of 173 of cases (26%) (30). Although this is an increase 
on the ~10% of SIDS cases previously thought to carry func-
tionally significant genetic variants in sodium and potassium 
channels causing prolonged QT duration (31), the majority of 
cases have no obvious molecular substrate at the moment.

Further circumstantial evidence linking SIDS to changes 
in QTc comes from the study of electrocardiography changes 
after birth. It is perhaps under-appreciated that the neonatal 
human cardiac conduction system remodels following birth, 
with increasing QTc interval up to 4 postnatal months, then 
significant decreases in QTc and PR interval throughout child-
hood to adolescence (32,33). It is well known that sensitivity to 
SIDS parallels this change: decreasing after 4 mo of birth, when 
QTc is known to peak in humans (33).

Postnatal remodeling of the cardiac conduction system is 
incompletely understood, and is one area where animal stud-
ies are required. Efforts are currently underway to analyze 
postnatal cardiac conduction system remodeling in mice, for 
example by using mouse lines expressing green fluorescent 
protein in conduction tissue (34). This process is thought to 
involve a controlled program of apoptosis and proliferation 
called “resorptive degeneration” (35). A full description is out 
of the scope of this review—the interested reader is directed 
to a review by Ottaviani et al. (35). Anatomical abnormalities 
of the cardiac conduction system related to abnormal post-
natal maturation are likely to be under-recognized in SIDS 
victims, probably as a result of under-investigation at autopsy 
(36). Abnormal conduction tissue, such as accessory path-
ways and abnormal nodal architecture (37), and evidence of 
defective remodeling (38) have been reported in autopsies of 
SIDS victims, which could very plausibly lead to fatal cardiac 
arrhythmia (as it does in the fetus), although the contribu-
tion of this to the overall incidence of SIDS cases is somewhat 
contentious (39). Furthermore, epidemiological studies have 
linked maternal smoking and, specifically, exposure to smok-
ing-derived carbon monoxide (recognized risk factors for 
SIDS) with histological abnormality in the cardiac conduc-
tion system (40). The generally poor adherence to standard-
ized protocols for postmortem examination of SIDS victims 
(41,42) has probably led to under-recognition of the role of 
abnormal postnatal cardiac conduction system development 
in the pathogenesis of SIDS. It has been argued that formal 
histological examination of the central nervous system and 
cardiac conduction system of SIDS victims is warranted, 
despite the labor-intensive nature of such studies, as it will 

give a clearer picture of the prevalence of abnormalities in 
these tissues (43).

In addition to the circumstantial evidence linking QTc to 
SIDS, most risk factors for SIDS are associated with a reduced 
oxygen environment. Multiple risk factors for SIDS have been 
discovered from epidemiological studies of SIDS victims, 
including prone sleeping position (44), head covering, respira-
tory control disorders (45), maternal smoking (46), and high 
altitude (15,47,48). The result of epidemiological work has 
been arguably the major advance in prevention of SIDS. The 
“back to sleep” campaign, which started in the 1990s, encour-
aged parents to only allow their babies to sleep on their backs. 
It has been estimated that this led to a sustained 50% drop in 
the SIDS incidence rate, which has gradually declined further 
since then. These environmental risk factors for SIDS could 
all lead to hypoventilation and relative hypoxia. Furthermore, 
interventions that increase ventilation in an infant’s room 
show reductions in SIDS incidence; a study looking at fan use 
suggested a 72% reduction in SIDS incidence when a fan was 
used to ensure better air circulation in the room (49). Hypoxia 
is implicated in risks of an organic nature too: immaturity 
of the respiratory centers in the brainstem might cause fatal 
hypoventilation, known as “congenital central hypoventilation 
syndrome” (4,5,45), and diaphragmatic malfunction may lead 
to exacerbation of hypoventilation and thus fatal hypoxia (17).

We hypothesize that neonatal hypoxia leads to abnormal 
electrical conduction as a potential cause of, or contribution to, 
sudden death in neonates. There are established links among 
hypoxia, cardiac ischemia, prolonged QTc, and ventricu-
lar arrhythmia in adults (50,51). Human populations at high 
altitude have been found to exhibit a high SIDS rate (47) and 
higher rates of unexplained neonatal death in hospital (52). 
Interestingly, QTc has been found to be relatively prolonged in 
high-altitude pediatric populations compared with lower alti-
tude controls (53). We therefore studied the effect of hypoxia 
and elevated hypoxia signaling on neonatal mice to investigate 
the role of ambient oxygen levels in neonatal cardiac matura-
tion and sensitivity to sudden death (54).

We found that maturation of the cardiac conduction system 
after birth in mice is dependent on reduced levels of hypoxia 
signaling in the myocardium. Mice, like humans, undergo a 
postnatal process of cardiac electrophysiological maturation, 
as evidenced by progressive decreases in QTc duration over the 
first postnatal month. Mice either born into a hypoxic environ-
ment or genetically engineered to have increased myocardial 
hypoxia signaling exhibit delayed electrocardiac maturation 
and greatly increased rates of sudden death (54). These experi-
mental conditions also prevented the usual postnatal changes 
in expression of genes encoding ion channels, some of which 
have been implicated in human SIDS cases. Significantly, we 
found that risk of death of wild-type neonatal mice decreased 
with increasing time between birth and exposure to hypoxia, 
defining a period of sensitivity to hypoxia-induced sudden 
cardiac death. We therefore hypothesize that neonatal hypoxia 
leads to cardiac gene expression changes that increase the risk 
of arrhythmogenic death.
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We have not observed any changes in chamber architec-
ture from mice sacrificed shortly before the sudden death 
of their siblings, nor are αMHC-Cre::VHL(fl/fl) hearts smaller 
than their nontransgenic siblings (our unreported data). This 
suggests that the changes in cardiac chamber architecture in 
SIDS may be due to extracardiac factors such as pulmonary 
remodeling or hypoventilation. αMHC-Cre::VHL(fl/fl) mice 
have genetic modification limited to the myocardium and 
exhibited the same respiratory rate as their nontransgenic sib-
lings (unpublished data). Furthermore, we have not observed 
petechiae on the cardiac surface of dead pups (although stud-
ies are continuing). However, postmortem examination of 
neonatal mice is hampered by extremely rapid degeneration 
of tissue and immediate eating of dead pups by their mother, 
emphasizing one significant limitation of the murine system. 
Examination of changes in morphology of the cardiac conduc-
tion system was not carried out in our initial characterization 
of the αMHC-Cre::VHL(fl/fl) model. These studies are ongoing 
and may strengthen our hypothesis placing postnatal hypoxia 
at the center of SIDS pathogenesis. We believe that this mouse 
model will prove useful in studying the molecular and meta-
bolic changes leading up to sudden cardiac death.

Currently, mutations in ion-channel genes can only explain a 
small proportion of SIDS cases. Our hypoxia–arrhythmia model 
would suggest that ambient oxygen levels alter ion-channel 
expression levels (i.e., alteration in expression level of a wild-type 
gene product rather than sequence mutation, meaning that gene 
sequencing will be unhelpful). Our finding that connexin  43 
(Cx43) phosphorylation decreased in hypoxic neonatal mouse 
hearts provides another potential mechanism of arrhythmia. 
Indeed, mutations in Cx43 have been reported postmortem in 
some SIDS cases (55), and dephosphorylation of Cx43 has been 
found to lead to electrical uncoupling during cardiac ischemia 
in adult hearts, which may lead to arrhythmia (56).

We therefore propose a model of SIDS pathogenesis whereby 
hypoxia (resulting from several causes) during a critical post-
natal period leads to delayed maturation of the cardiac con-
duction system and increased probability of cardiac arrhyth-
mia (Figure 1). We suggest that our model is unlikely to be 

exclusive of the other risk factors and pathological mechanisms 
briefly mentioned here; it is likely that defects in the central 
nervous system, carotid body, and diaphragm lead to hypoxia, 
and thus afford an additional risk of death in combination with 
environmental factors such as sleeping position. Given find-
ings of abnormal cardiac conduction system anatomy and his-
topathology (35,38,57), it is an interesting question whether 
the postnatal development of the cardiac conduction system, 
by processes such as resorptive degeneration, is dependent on 
adequate oxygen levels.

In the face of a multiplicity of contributing pathologies while 
the majority of cases exhibit the same postmortem pathologi-
cal findings, our model suggests a final common pathway of 
cardiac arrhythmia for SIDS, with several potential entrance 
routes. One challenging finding is the apparent relatively low 
incidence of human SIDS in the first postnatal month (58). In 
theory, this could be due to the fact that the mammalian fetus 
is adapted to profoundly low absolute levels of oxygen in utero 
and that this adaptation persists during the first month after 
birth. The mechanisms of fetal hypoxia protection remain to 
be defined.

A maturational effect of hypoxia on the myocardium follow-
ing birth also has implications for cyanotic congenital heart 
disease. It is currently unknown whether congenital cardiac 
malformations leading to cyanosis lead to the same sort of 
electrocardiographic “immaturity” as mice reared in hypoxic 
conditions following birth. If this is the case, an obvious ques-
tion is whether timing of surgical correction might influence 
eventual incidence of cardiac arrhythmia. Certainly, patients 
with repaired congenital cardiac lesions exhibit high rates of 
ventricular arrhythmia and sudden death (59), but there are 
many confounding factors, such as the influence of myocar-
dial surgical scars and abnormal embryonic development of 
the conduction system. This question might be addressed by 
animal modeling and novel imaging techniques in human 
patients, such as those using cardiac magnetic resonance imag-
ing/nuclear magnetic resonance.

There are some important gaps in our understanding of the 
maturation of the mammal in the immediate period follow-
ing birth. In addition to the maturation of cardiac electrical 
conduction, the cardiovascular system undergoes rapid and 
profound morphological remodeling in the immediate period 
following birth. Maturation of the brainstem, and in particular 
the pontine respiratory centers, occurs after birth and is little 
understood (60,61). It is therefore possible that the infant is 
vulnerable to hypoxia during the first year of postnatal life for 
a variety of reasons, as yet unrecognized.

THE FUTURE
As whole-genome sequencing becomes cheaper and more 
practical, it is very likely that new genetic mutations associated 
with SIDS will be identified. This may allow dissection of the 
complex web of pathological findings associated with SIDS. 
Certainly, advances in the understanding of maturational pro-
cesses in the heart, brainstem, immune system, and diaphragm 
following birth will be helpful.

Figure 1.  Suggested model for the pathogenesis of sudden infant death 
syndrome (SIDS). Myocardial hypoxia, from multiple possible causes, 
leads to an increased risk of ventricular arrhythmia. The broad term 
“cardiac conduction system abnormalities” covers conduction system 
defects resulting from generalized cardiac developmental abnormalities 
and those resulting from abnormal postnatal maturation of the cardiac 
conduction system.
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As regards the specific hypothesis that hypoxia leads to 
delayed myocardial maturation and vulnerability to arrhyth-
mia, animal modeling of SIDS and the search for novel bio-
markers of hypoxic stress in neonatal mouse and human hearts 
are already underway. We agree that in the context of a seri-
ous medical problem with no clear pathological basis, animal 
models of SIDS are a vital and arguably under-used tool (3). 
Ultimately, however, there seems to be no substitute for large, 
prospective epidemiological studies combined with advanced 
phenotyping and in-depth necropsy studies concentrating on 
detailed histological examination of the cardiac conduction 
system and autonomic nervous system.

In summary, we suggest hypoxia could be common mecha-
nism for a large proportion of SIDS cases via hypoxia-medi-
ated changes in gap junction electrical coupling, ion-channel 
expression and myocardial maturation. Currently ~1 in 2,000 
infants are victims to SIDS, and this rate remains stubbornly 
high, despite the continuing success of the “back to sleep” cam-
paign in started in 1994 (62,63). A common mechanism trans-
forms a seemingly disparate series of advice to parents into one 
simple message around avoiding a low-oxygen environment 
and sets in motion more obvious preventative measures. These 
could range from a simple fan and an open door or window to 
an oxygen tent for high-altitude infants. Electrocardiography 
screening of infants on attendance of routine health checks 
and vaccinations would help to identify those infants who are 
particularly susceptible owing to prolonged QTc intervals and 
for whom hypoxia-reducing interventions are the most impor-
tant. Finally, we believe that in the face of a serious condition 
with multiple competing theories of etiology, animal modeling 
will be vital for further reductions in mortality.
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