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ABSTRACT: Small for GA (SGA) children are at risk for develop-
ing the metabolic syndrome. Those who do not catch up, and remain
short (SSGA), may benefit from GH therapy. 11� Hydroxysteroid
dehydrogenase type 1 (11�-HSD-1) is expressed in visceral fat and is
implicated in metabolic morbidity. We hypothesized that SSGA
children will have increased basal and glucocorticoid (GC)-
stimulated 11�-HSD-1 activity. Twenty SSGA children, aged 7.1 �
1 y (mean � SD), were studied before and while on GH therapy and
compared with 12 normal age-matched controls. 11�-HSD-1 activity
was evaluated by gas chromatography mass spectrometry (GCMS) of
urinary steroid product/substrate ratios. GC-stimulated 11�-HSD-1
activity was assessed after overnight dexamethazone (DEX), by oral
cortisone conversion to cortisol. In SSGA children, 11�-HSD-1
activity was lower (p � 0.05) and GC-stimulated activity enhanced.
SSGA children had maximal cortisol generation of 883 � 108
compared with 690 � 63 nmol/L in controls (p � 0.04). GH
treatment suppressed 11�-HSD-1 activity. GC-stimulated enzyme
activity correlated negatively with GA (r � �0.53, p � 0.01) and
birth weight (r � �0.55, p � 0.01). SSGA is associated with
enhanced GC-stimulated 11�-HSD-1 activity. This may be pro-
grammed in utero, as it is not a function of body composition or
secondary metabolic derangement. GH therapy normalizes GC-
stimulated 11�-HSD-1 activity. (Pediatr Res 70: 208–212, 2011)

By definition, 5–10% of all neonates are born small for GA
(SGA). Some of these children do not catch up (1,2) and

remain short. They may benefit from GH therapy (3–5). This
subgroup is designated in this article as short SGA (SSGA).
Regardless of their later growth pattern, SGA children are at
risk for developing the metabolic syndrome later in life (6–
10). This increased risk for future morbidity has been docu-
mented more in SGA individuals who had catch up growth
(11–13), than in those who did not (14–16).

Fetal programming might be coupled with several endo-
crine pathways (17), including the hypothalamic-pituitary-
adrenal (HPA) axis (18–20). Indeed, elevated cortisol levels
have been reported for adults born SGA (21) and in SSGA
children (22–24). Elevated cortisol levels may also be in-
volved in pre- and postnatal growth, as demonstrated by the
inverse correlation between cortisol levels in cord blood and
embryo length gained during the first trimester in intrauterine
growth retarded (IUGR) children (25).

Prereceptor modulation of cortisol by 11�-hydroxysteroid
dehydrogenase type 1 (11�-HSD-1) converts cortisone to
cortisol for intracrine action (26). Among other regulatory
mechanisms of enzyme activity (27), GH inhibits 11�-HSD-1
activity and gene expression, while GH deficiency is associ-
ated with enhanced enzyme activity (28–31).

The working hypotheses of this study were that SSGA
children will have increased basal and GC-stimulated 11�-
HSD-1 activity and that these will be inhibited by GH treat-
ment. Toward these hypotheses, we studied in vivo 11�-
HSD-1 activity, as measured by the ratios of urinary cortisol/
cortisone metabolites and cortisone-generated cortisol, and
their response to GC in prepubertal SSGA children at baseline
and while on human GH (hGH) therapy.

PATIENTS AND METHODS

Patients. Between November 2004 and May 2005, 32 prepubertal nono-
bese children enrolled in this study: 20 SSGA and 12 normal controls, who
were appropriate for GA (AGA) siblings of the SSGA group. For SSGA
children, pretreatment height was shorter by �2.5 Standard Deviation Score
(SDS), and birth weight or length smaller by �2 SDS for GA. SSGA children
did not receive glucocorticoids (GCs) during the perinatal period; they were
healthy, with no anomalies or perinatal morbidity and had normal GH
response to provocative stimulation. Inclusion criteria for controls were good
health, prepubertal, normal birth weight, and normal current weight and
height for age (Table 1). The Helsinki Committee of the Rambam Medical
Center approved the protocol. Parents of all participants signed informed
consent after receiving explanations of the study.

Design. Fasting second morning urine samples were collected on d 1 for
steroid analysis by gas chromatography mass spectrometry (GCMS) (32). At
2300 h of d 1, subjects received 1 mg/m2 dexamethazone(DEX) to suppress
endogenous cortisol production and to evaluate the effect of GC on 11�-
HSD-1 activity. The next morning, a clinical test of in vivo cortisol generation
from cortisone (33) was performed to evaluate 11�-HSD-1 activity under the
influence of a GC. At 0800 h the following day, serum cortisol was measured
and subjects received enterally 25 mg/m2 cortisone acetate (Rekah, Israel) as
a substrate for 11�-HSD-1. The enzymatic product cortisol was measured
after 2 and 4 h. Cortisol generation was defined as the increased level over the
DEX-suppressed baseline. SSGA children repeated the urine analysis and the
GC-stimulated cortisol generation test after 3 mo of GH treatment (Nordit-
ropin Simplexx, Novonordisk, Denmark; 0.03 mg/kg/d).

Medical surveillance at baseline and after 3 mo of hGH treatment included
auxology; IGF-1 levels; complete blood count; electrolytes; fasting plasma
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glucose; serum insulin and lipid levels; and a safety panel of liver, renal, and
thyroid functions.

Methods. GCMS was performed to evaluate urinary metabolites of cortisol
and cortisone as previously described, using gas chromatography equipped
with an Agilent 7683 Autoinjector interfaced to an Agilent 5972 mass-
selective detector (32).

11�-HSD-1 activity was calculated by the ratios (THF � allo THF)/THE
and (THF � allo THF � a-C � b-C)/(THE � a-CL � b-CL) where THF
denotes tetrahydrocortisol; allo THF, 5 � tetrahydrocortisol; THE, tetrahy-
drocortisone; a-C, � cortol; b-C, � cortol; a-CL, � cortolone; and b-CL, �
cortolone.

11�-HSD-2 activity was calculated by the ratios THE/(THF � allo THF)
and (a-CL � b-CL)/(a-C � b-C). 5� reductase activity was calculated by
An/Et, 11-OH-An/11-OH-Et, allo THB/THB, and allo THF/THF where An
denotes androsterone; Et, etiocholanalone; 11-OH-An, 11-hydroxy-
androsterone; 11-OH-Et, 11-hydroxy etiocholanalone; and allo THB, 5 �
tetrahydrocorticosterone) (34,35).

Cortisol generation test is based on:

Cortisone—11�-HSD-1—–�Total cortisol

11�-HSD-1-generated cortisol � Total cortisol [�] DEX-suppressedcortisol

Serum cortisol was assayed on Immulite 2000 systems (Siemens, Los
Angeles, CA, USA). Interassay CV% 5.2%–7.4% and Intrassay CV% 6.2%–
9.4%.

Statistical analysis. A separate variance t test was performed to validate
differences between SSGA and control children. After verification of normal
distribution by D’Agostino’s K-squared test (p � 0.04), paired t test was
performed to estimate the impact of GH treatment. Correlations were calcu-
lated to assess interrelation between variables.

Sample size was determined by the number of available patients to this
protocol.

Appropriate statistical techniques and methodic caution were used to
ensure statistical significant results in this sample size.

RESULTS

Patients’ surveillance, including complete blood count;
electrolytes; fasting plasma glucose; serum insulin and lipid
levels; and a safety panel of liver, renal, and thyroid functions,
and IGF-1 levels, was normal in all subjects.

The mean basal 11�-HSD-1 activity, calculated from uri-
nary (THF� allo THF)/THE and (THF � allo THF � a-C�b-
C)/(THE� a-CL�b-CL) ratios, was lower in the SSGA group
(0.69 � 0.24 and 0.53 � 0.16, respectively, mean � SD) than
in the control group (1.00 � 0.53, p � 0.034 and 0.71 � 0.31,
p � 0.044, respectively, Fig. 1).

Mean basal urinary 11�-HSD-2 and 5� reductase activities
were comparable in the two groups and on hGH therapy
(Table 2).

Overnight DEX suppressed 0800 h endogenous cortisol to
mean values of 28 � 20 and 23 � 17 nmol/L in SSGA and
control groups, respectively. Cortisol levels after subtracting
baseline cortisol are presented in Figure 2. GC-stimulated
11�-HSD-1 activity, as reflected by cortisone-generated cor-
tisol, was enhanced in SSGA children versus controls; SSGA
children had maximal cortisol generation of 883 � 108 com-
pared with 690 � 63 nmol/L in controls (p � 0.040).

Three-month treatment with hGH in SSGA children re-
sulted in height velocity SDS of 3.8 � 1.7, and increased
IGF-1 levels from 105 � 71 to 150 � 82 ng/mL (p � 0.02).
hGH treatment of SSGA children resulted in a reduction of
calculated urinary 11�-HSD-1 activity, expressed as (THF�
allo THF)/THE ratio, from 0.69 � 0.24 to 0.54 � 0.15 (p �
0.008); and (THF � allo THF � a-C�b-C)/(THE� a-CL�b-
CL) from 0.53 � 0.16 to 0.45 � 0.12 (p � 0.014, Fig. 1). hGH
therapy inhibited GC-stimulated 11�-HSD-1 activity in SSGA
and normalized it to 750 � 63 nmol/L (p � 0.05), levels that
are not statistically different from normal controls (Fig. 2).

In SSGA, but not in control children, GC-stimulated 11�-
HSD-1 activity correlated negatively with both GA (r �
�0.53, p � 0.01) and birth weight (r � �0.55, p � 0.01,
Fig. 3); activity was higher in children with shorter gestation
and lower birth weight. GC-stimulated 11�-HSD-1 activity
did not correlate with age, height SDS, weight SDS, BMI
SDS, or Homeostatic Model Assessment for Insulin Resis-
tance (HOMA-IR), and there was no sexual dimorphism.
GC-stimulated 11�-HSD-1 activities did not correlate with the
growth response to GH therapy, and urinary calculated 11�-
HSD-1 activity did not correlate with any anthropometric or
metabolic parameter. Due to lack of statistical evidence of a
relation between body size and 11�-HSD-1 activity, no ad-
justment was made for body size in calculations relating to
SSGA children.

DISCUSSION

The pathophysiology of the increased risk for metabolic
syndrome in SGA individuals is poorly understood. Neverthe-
less, this risk has been clinically documented. Several theories

Table 1. Anthropometric data of SSGA and control subjects

SSGA Controls

n 20 12
Sex (female/male) 9/11 4/8
GA (wk) 37.2 � 2.5 40.3 � 2.1
Age range (y) 5–9 4.6–11
Age average (y) 7.1 � 1 8.2 � 1.9
Birth weight (g) 2070 � 390* 3250 � 340
Birth weight (SDS) �2.46 � 1.1* �0.4 � 0.1
Current height (cm) 107.5 � 6.5* 125.9 � 13.2
Current height (SDS) �2.86 � 0.45* �0.4 � 0.7
Current weight (kg) 17.2 � 3.1* 26.5 � 8.4
BMI (SDS) �0.8 � 0.7* �0.1 � 1.2

Mean � SD.
* p � 0.0001. Figure 1. Basal urinary 11�-HSD-1 activity in SSGA and control children,

as calculated from the product/substrate ratios (THF � allo THF)/THE (�)
and (THF � allo THF � a-C�b-C)/(THE� a-CL�b-CL) (f). Mean � SD,
control vs SSGA, *p � 0.034, **p � 0.044. Basal vs. hGH-treated calculated
urinary 11�-HSD-1 activity in SSGA. Mean � SD, §p � 0.008, †p � 0.014.
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have been proposed to explain the connection between fetal
growth and metabolic morbidity (36–38). One theory suggests
that increased fetal exposure to cortisol might program the
fetus for later hypertension and metabolic disease (39,40). In
pregnant rats, dietary restriction has been shown to induce
hypomethylation of GC receptor genes in the liver of the
offspring (41).

Results of this study show basal activity of 11�-HSD-1 to
be lower in SSGA children than in controls, while GC-
stimulated activity, measured as cortisol generation from cor-
tisone, was higher. In SSGA children, 3 mo of GH treatment
down-regulated and normalized 11�-HSD-1 activity. This
difference may be due to GC induction of 11�-HSD1 at the
transcriptional level (42).

There are several limitations, which were unavoidable in
the design of this study. DEX, which is known to up-regulate
11�-HSD-1 (43), is an essential component in the in vivo
cortisol generation test and is required to suppress endogenous
cortisol production. On the other hand, DEX suppression is
not required for enzyme activity assessment by urinary me-
tabolites. We therefore present the two aspects separately,
showing GCMS-based calculation of enzyme activity in the
basal state and GC-stimulated cortisol generation.

The urinary metabolite ratios (Fm/Em–Cortisol metabo-
lites/Cortisone metabolites) reflect the combined activity of
11�-HSD-1, 11�-HSD2, and the relative activity of the A-ring
reductase. Urinary 11�-HSD-2 and 5� reductase activities
were comparable in SSGA and controls, and therefore we used
urine metabolite ratio as a measure of global 11�-HSD-1
activity.

The contribution of the HPA axis to growth and morbidity
in SGA has been addressed extensively in the literature (21–
24,44,45). For one, SSGA children have demonstrated less
suppression by DEX, a finding that might be related to reports
of their having a higher 0800 h cortisol level (21,45).

This study concurs with data suggesting dysregulation of
GCs in SGA (19), a phenomenon that may contribute to the
pathogenesis of metabolic morbidity (46) and that has been
demonstrated even in the absence of overt obesity (47,48). In
obese subjects, the intra-adipose in vitro 11�-HSD-1 was
found to be increased (49). Its in vivo activity has been
reported to be increased (50,51), decreased (33,52), or un-
changed (53).

A recent study demonstrates that basal in vivo 11�-HSD-1
activity in adipose tissue of young adults born SGA was
comparable with controls, while stimulated activity was de-
creased (54). 11�-HSD-1 gene expression was associated with
body fat but not with birth weight. We studied Fm/Em urinary
ratio that reflects global activity of the 11�-HSD-1, while the
liver contributes most of this activity, and it was found to be
decreased in SSGA.

As expected, the mean BMI of SSGA children was lower
than that of age-matched control subjects. This lower BMI

Figure 2. GC-stimulated cortisol generation in SSGA (f) and control chil-
dren (�). Mean � SEM, control vs SSGA, *p < 0.012 (at 240�), **p � 0.04
(maximum cortisol). GH effect on GC-stimulated 11�-HSD-1 activity in
SSGA ( ) compared with SSGA before treatment (f). Mean � SEM, §p �
0.04 (at 240�), †p � 0.05 (maximum cortisol). Baseline cortisol was sub-
tracted from each data point.

Figure 3. (A) GC-stimulated 11�-HSD-1 activity as a function of GA. r �
�0.53, p � 0.01. (B) GC-stimulated 11�-HSD-1 activity as a function of birth
weight. r � �0.55, p � 0.01.

Table 2. Urinary 11�-HSD-2 and 5 � reductase activities of controls vs SSGA before and on GH (mean � SD)

SSGA Controls p SSGA on GH p

5�-reductase activity
An/Et 0.9 � 0.4 1.1 � 0.6 0.12 0.9 � 0.5 0.32
11-OH-An/11-OH-Et 2.6 � 3.3 1.1 � 0.3 0.12 1.9 � 1.4 0.99
allo THB/THB 2.7 � 1.9 3.7 � 2.1 0.87 3.0 � 2.0 0.91
allo THF /THF 0.8 � 0.3 0.9 � 0.4 0.53 0.7 � 0.3 0.85

11ß-HSD-2 activity
THE/(THF � allo THF) 1.58 � 0.53 1.36 � 0.62 0.31 1.9 � 0.6 0.1
(a-CL � b-CL)/(a-C � b-C) 4.6 � 1.7 5.5 � 2.58 0.23 5.8 � 3.6 0.26

An, androsterone; Et, etiocholanalone; 11-OH-An, 11-hydroxy-androsterone; 11-OH-Et, 11-hydroxyl-etiocholanalone; allo THB, 5 a tetrahydrocorticosterone.
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may explain the lower basal 11�-HSD-1 activity, but not the
higher GC-stimulated activity. Enhanced generation of corti-
sol from cortisone after GC stimulation may explain the
enhanced reactivity to stress in SGA individuals and may
contribute to their metabolic morbidity in adult life (20,55).

We found GC-stimulated 11�-HSD-1 activity to correlate
inversely with birth weight (the degree of SGA) and GA
(prematurity). Enhanced GC-stimulated 11�-HSD-1 activity
in children with shorter gestation and lower birth weight SDS
is in agreement with previous reports of cortisol levels in SGA
(21,22,56). However, this finding did not correlate with age,
indicating that the process is not progressive, but rather pro-
grammed from birth. Neither did it correlate with height SDS,
indicating that it is not a function of children’s short stature.
No correlation was found with weight SDS or BMI SDS,
indicating that GC-stimulated enzyme activity is not a re-
sponse to thin body composition. Of note is that correlation to
BMI is only in the low to normal range, because no obese
children were included in our study. GC-stimulated 11�-
HSD-1 activity did not correlate with HOMA-IR, indicating
that it is not secondary to the known insulin resistance of SGA
children.

This is in agreement with the GH-suppressing effect on
11�-HSD-1, which has been documented in vitro and in vivo
(28–31). We are not able to assess whether this enzyme
modulation has any effect on the growth response to GH
therapy. Nevertheless, there was no correlation between basal
or GC-stimulated 11�-HSD-1 activity and the child’s re-
sponse to GH. Our study was designed for a 3-mo period, and
as such evaluates only short-term metabolic effects of GH, and
no conclusion can be drawn on whether GH effect is sustained.

In conclusion, we demonstrated that SSGA programs a
biphasic 11�-HSD-1 response. We speculate that enhanced
GC-stimulated 11�-HSD-1 activity may be a contributing
factor in SSGA metabolic morbidity and suggest another
indication for GH therapy in SSGA: normalization of 11�-
HSD-1 activity.
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