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ABSTRACT: Protein degradation is the cell’s mechanism of elim-
inating misfolded or unwanted proteins. The pathway by which
proteins are degraded occurs through the ubiquitin-proteasome sys-
tem. Ubiquitin is a small 9-kD (kDa) protein that is attached to
proteins. A minimum of four ubiquitins are required for proteins to be
recognized by the degradation machinery, known as the 26S protea-
some. Defects in ubiquitination have been identified in a number of
diseases, including cancer, neurodegenerative diseases, and meta-
bolic disorders. We sought to exploit the delicate balance between
protein synthesis and degradation to treat cancer by designing a
chimeric molecule, known as Protac (Proteolysis Targeting Chimeric
molecule). Protacs are heterobifunctional nanomolecules that are
approximately 10 nm in size and can recruit proteins that cause
cancer to the ubiquitin-proteasome machinery for degradation. In this
review, we discuss the development of this novel technology for the
treatment of cancer. (Pediatr Res 67: 505–508, 2010)

UBIQUITIN-PROTEASOME SYSTEM

The ubiquitin-proteasome system (UPS) is a major pathway
that regulates the levels of intracellular proteins and provides
a fine balance between protein synthesis and degradation. In
addition to protein synthesis, the UPS regulates a number of
critical functions within cells, including cell cycle progres-
sion, apoptosis, protein localization, growth signaling path-
ways, autophagy, and DNA repair (1–3). Multiubiquitination
of proteins with a minimum of four ubiquitins attached to
proteins results in degradation by the 26S proteasome (4).
Monoubiquitination regulates other cellular functions, e.g.
transcription, localization, signal transduction, DNA repair
(1,5). Recently, a class of proteases known as deubiquitinating
enzymes (DUBs) have been identified, which act to remove or
remodel ubiquitin moieties from target proteins (6). Because
the UPS plays an important role in so many functions, they are
likely targets for cancer therapy.

Ubiquitin is a small 9-kDa protein that consists of 76 amino
acids and is conserved throughout evolution from yeast to hu-
mans (7). The UPS consists of ubiquitin, a three-enzyme com-
plex known as the ubiquitin ligase, and the 26S proteasome (8).
The components of the UPS exist in the cytoplasm and the
nucleus (5,9,10) and act in a sequential manner to ubiquitinate
target proteins. First, the ubiquitin activating enzyme or E1

attaches the ubiquitin to a substrate in an ATP-dependent reac-
tion. Second, the ubiquitin is transferred to the ubiquitin-
conjugating enzyme or E2, which transfers the ubiquitin together
with an E3 ubiquitin ligase, to the protein (Fig. 1). The E3
ubiquitin ligase confers specificity to the protein target. In the
human genome, there is one E1 enzyme, approximately 50 E2
enzymes, and more than 600 E3 enzymes (4,5,11,12).

Mutations or abnormal regulation of ubiquitin ligases have
been identified in cancer. In addition, several targets of E3
ubiquitin ligases are mutated or are overexpressed in tumors.
Among these proteins are the tumor suppressors p53, (breast
cancer1, early onset) BRCA1, cyclin inhibitor kinase inhibitor 1B
(p27Kip1), and oncogenes epidermal growth factor receptor,
cyclin E, Von Hippel-Lindau, human papilloma virus protein
E6-associated protein (AP), and most recently the E3 ligase
casitas B-lineage lymphoma (c-Cbl) in myeloid leukemia (5,13).
Therefore, E3 ligases are potential targets for cancer therapy.

PROTACS TO TARGET CANCER-CAUSING
PROTEINS FOR DESTRUCTION

We developed an approach to treat human disease that
recruits a cancer-causing protein to an E3 ligase for subse-
quent ubiquitination and degradation. This technology is
known as Protac or proteolysis targeting chimeric molecule.
The concept was first described by Zhou et al. (14) in which
they used a gene therapy approach to target proteins for
ubiquitination and degradation. Zhou et al. made a fusion
protein between a subunit of the ubiquitin ligase known as
Skp1-Cullin-F-box protein (SCF) in yeast, cell division cycle
protein 4 (Cdc4), with the binding partner of the phosphory-
lated retinoblastoma (Rb) protein, known as E7N (N-terminus
of the human papilloma virus E7 protein). The fusion protein
recruited the pRb to the SCF ubiquitin ligase resulting in the
ubiquitination and degradation of Rb (14). Unfortunately, this
technology was limited by low efficiency of transduction and
use of potentially harmful lentiviruses, thereby making it
difficult to translate this to clinical application (14).

The goal of Protac technology is to create a chimeric
molecule that bridges any cancer-causing protein to an E3
ligase. In terms of its structure, Protacs consist of one moiety,
e.g. a peptide, which is recognized by the E3 ligase. This
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moiety is then chemically and covalently linked to a small
molecule or a protein that recognizes the target protein. In this
manner, the chimeric molecule would bring the target protein
to the E3 ligase in close enough proximity for the ligase to
attach ubiquitins onto the protein, thereby resulting in degra-
dation (Fig. 2). Other advantages of Protacs include the fact
that it is catalytic and can be used to recruit any protein that
exists in a multisubunit complex (15).

In addition to the use of Protacs for the treatment of human
disease, these molecules provide a chemical genetic approach to
“knock down” proteins to study their function (16). Furthermore,
Protacs are specific and do not require transfections or transduc-
tion. Protacs can be directly applied to cells or injected into
animals without the use of vectors. Given the increased number
of E3 ligases in the human genome, the possibilities for different
combinations of Protacs that target specific disease-causing pro-
teins to different ligases are unlimited. This review describes
general strategies of testing the efficacy of Protacs using two E3
ligases as examples: Skp1-Cullin-Fbox-Hrt1 (SCF�-TRCP) and
Von Hippel Lindau (VHL) (17,18). Three different targets will be
described: methionine aminopeptidase-2 (MetAP-2), estrogen
receptor (ER), and androgen receptor (AR).

PROTACS TARGET PROTEINS THAT BIND
COVALENTLY FOR UBIQUITINATION AND

DEGRADATION

As proof of principle, we first generated a Protac molecule
that binds to the protein MetAP-2 for ubiquitination and
degradation. MetAP-2 cleaves the N-terminal methionine
from nascent polypeptides and is one of the targets of angio-
genesis inhibitors fumagillin and ovalicin (19–21). Ovalicin
binds covalently to MetAP-2 at the His-231 active site. Inhi-
bition of MetAP-2 is thought to block endothelial cell prolif-

eration by causing G1 arrest (22). MetAP-2 is a stable protein
that is not known to be ubiquitinated or an endogenous
substrate of the E3 ligase SCF�-TRCP. For these reasons,
Met-AP2 was chosen to be the initial protein to test Protacs.

The multisubunit ubiquitin ligase, SCF�-TRCP, was selected
because the F-box protein �-TRCP/E3RS was previously
shown to bind to I�B� (inhibitor of NF�B�) through a
minimal phosphopeptide sequence, DRHDSGLDSM (23,24).
This 10 amino acid phosphopeptide was chemically linked to
ovalicin to form the Protac as previously described (25). Our
results demonstrated that in vitro not only was Protac able to
bind to MetAP-2, but it also induced its ubiquitination. Fur-
thermore, proteasomes in Xenopus extracts could degrade this
MetAP-2-Protac complex (25).

PROTACS TARGET PROTEINS FOR
UBIQUITINATION AND DEGRADATION THROUGH

NONCOVALENT INTERACTIONS

The next challenge was to demonstrate that Protacs could
associate cancer-causing proteins through noncovalent interac-
tions. Steroid hormone receptors and their ligands associate
through high affinity interactions. Both the ER and AR are
members of the steroid hormone receptor superfamily whose
ligands (estradiol and testosterone, respectively) have been well
defined and implicated in tumorigenesis. The ER has been im-
plicated in the progression of breast cancer (26–28). Similarly,
hormone-dependent prostate cancer cells grow in response to
androgens (29,30). Therefore, both ER and AR are excellent
targets for Protac technology. To target ER for ubiquitination and
degradation, we synthesized a version of Protac containing the
I�B� phosphopeptide linked to estradiol (the ligand for ER) (31).
Not only was Protac able to ubiquitinate purified ER efficiently in
vitro, but the ubiquitinated ER was effectively degraded by a
purified preparation of the yeast proteasome (31).

DEVELOPMENT OF PROTACS TO TARGET
PROTEINS IN CELLS

Clinical application of Protacs is dependent on successful
ubiquitination and degradation of the protein target by endog-
enous ubiquitin ligases and proteasomes within cells. Because
the first generation of Protacs contained a phosphopeptide
from I�B�, the molecule was found to be very polar and did
not penetrate into cells. Microinjection of this version of
Protac was successful (31); however, this approach would not
be viable in clinical practice.

To this end, a HIF1�-DHT Protac was synthesized to
increase permeability. Given the lack of small molecules that
bind to E3 ligase, the seven amino acid sequence ALAPYIP of
HIF1, a natural substrate of VHL, was chosen for the E3
recognition domain of this HIF1-Protac (16). The HIF1 se-
quence has been demonstrated to be the minimum recognition
domain for the von Hippel-Lindau tumor suppressor protein
(VHL) (17,18). VHL is part of the VBC-Cul2 E3 ubiquitin
ligase complex. Under normoxic conditions, a proline hydrox-
ylase catalyzes the hydroxylation of hypoxia inducible factor
1� (HIF1�) at P564 (32). P564 is the central proline in the
ALAPYIP sequence, resulting in recognition and polyubiq-

Figure 1. Ubiquitin-proteasome system. Adapted from Heuze ML et al. 2008
Blood Cells Mol Dis 40:200–210. Copyright 2007 Elsevier Inc, with permission (40).

Figure 2. Protac can theoretically target any protein for ubiquitination and
degradation. In this case, the protein is recruited to the SCF�-TRCP E3
ubiquitin ligase, resulting in destruction of the protein target.
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uitination by VHL. HIF1� is constitutively ubiquitinated and
degraded under normoxic conditions (17,18). In addition, a
poly-D-arginine tag derived from HIV tat was added to the
carboxyl terminus of the peptide sequence to confer cell
permeability and prevent nonspecific proteolysis (Fig. 3)
(33,34). This Protac should then enter the cell, be recognized
and hydroxylated by a prolyl hydroxylase, and subsequently
be bound by both the VHL E3 ligase and the target, AR.

To test this version of HIF1-Protac, we bath applied 293
cells stably expressing the androgen receptor-green fluores-
cent protein (AR-GFP) fusion protein with Protac, resulting in
complete disappearance of AR-GFP signal within hours after
treatment (Fig. 4) (31). This effect was completely inhibited
by pretreatment of cells with the proteasome inhibitor ep-
oxomicin (31). Our results suggested that Protacs could in fact
degrade specific cancer-promoting targets within cells, pro-
vided that the chimeric molecules could permeate into cells.

PROTACS TO TARGET ENDOGENOUS PROTEINS
IN CANCER CELLS

Despite the encouraging results of the HIF1-testosterone
Protacs in GFP-AR expressing 293 human embryonic kidney
cells, this does not represent the endogenous AR expressed in
prostate cancer cells. Therefore, we next tested whether Pro-
tacs were effective in AR positive prostate cancer cells and ER
positive breast cancer cells. When androgen-dependent LnCaP
prostate cancer cells were treated with HIF1-testosterone Pro-
tac, we observed a significant decrease in the levels of endog-
enous AR and inhibition of proliferation (35). In androgen-

independent cells, there was no effect of Protac on AR levels
or cell proliferation. Similarly, when estrogen-dependent
MCF7 cells were treated with HIF1-estrogen Protac, cells
stopped growing and ER levels decreased (35). These results
demonstrated that when hormone-dependent cells are treated
with Protac, not only are the receptors down-regulated, but
they are also functionally inhibited. Interestingly, the imme-
diate effects of Protacs on prostate and breast cancer cells
appear to be growth arrest in G1. With prolonged exposure,
the cells entered apoptosis, similar to what is observed under
conditions of androgen or estrogen-deprivation. This further
supports the efficacy of Protacs through its ability to “starve”
cells of their hormone dependency, resulting in cell death.

Despite these encouraging results, the IC50 for Protacs
remained high for a possible drug for clinical application. The
lowest IC50 with derivatization was 3.8 �M for prostate and
breast cancer cells, which is still quite high. Other groups have
since confirmed the effectiveness of Protacs in prostate cancer
cells using a testosterone-based Protac (36). Clearly, further
development of Protacs is clearly needed to bring this tech-
nology to clinical trials in humans.

Other applications of Protacs have been recently reported
(20,37). Protacs were used to block the aryl hydrocarbon receptor
(AHR) pathway. Activation of AHR by agonists and environ-
mental pollutants, such as dioxin, leads to carcinogenesis. To
down-regulate this pathway, Protacs were design with the ligand
for AHR covalently linked to HIF1 peptide to target AHR to the

Figure 3. Synthesis and chemical structure of a cell permeable Protac with
HIF1 peptide and testosterone.

Figure 4. Treatment of 293 human embryonic kidney cells expressing
GFP-AR with HIF1-testosterone Protac resulted in degradation of AR.

Figure 5. Potential versatility of Protacs. Any number of ligands or binding
partners could be chemically linked to any peptide or small molecule that
associates with any E3 ubiquitin ligase to promote the ubiquitination and
degradation of a cancer-causing protein. Reprinted from Sakamoto KM et al.
2001 Proc Natl Acad Sci USA 98:8554–8559. Copyright 2001, The National
Academy of Sciences, with permission.
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VHL E3 ubiquitin ligase. This chimeric molecule was shown to
induce degradation of AHR in epithelial cells and inhibit its
function at a concentration of 10 �M (20,37). Therefore, as seen
with our own data, although Protacs are effective, the concentra-
tions necessary for their effects are quite high.

To overcome the problem with permeability and penetration
into tumor cells, one approach is to replace the peptide with a
small molecule that binds either the protein target or the E3
ligase. This may result in more efficient Protacs and provide
enough reagent to test these molecules in vivo using mouse
models of prostate and breast cancer. Another hurdle is the
expense and labor of producing peptides as drugs for cancer
therapy. The chemistry involved is time consuming and expen-
sive, therefore not practical. To this end, Schneekloth et al. (38)
designed a Protac that consisted of a nonsteroidal AR ligand and
the mouse double minute (MDM2) ligand known as nutlin (39).
In this version of Protac, a polyethylene glycol (PEG)-based
linker was used to promote stability. The selective androgen
receptor modulator (SARM)-nutlin Protac was able to recruit the
AR to the E3 ubiquitin ligase MDM2, resulting in ubiquitination
and degradation of the AR at a concentration of 10 �M. The
model system used was a HeLa cell line expressing the AR. The
degradation was inhibited by the proteasome inhibitor epoxomi-
cin, suggesting that the Protac induced AR degradation through
the UPS (38). The benefit of Protac technology is that it is
versatile and can theoretically recruit any cancer or disease-
promoting protein to an E3 ubiquitin ligase for degradation
(Fig. 5). Despite the advances in Protac technology, the molecule
will require further derivation and chemical modifications before
use in animal models and humans.

CONCLUSIONS AND SUMMARY

Protacs provide an entirely new nanotechnology-based ap-
proach to target cancer-causing proteins for ubiquitination and
degradation. Experiments over the past decade have demon-
strated that Protacs are specific, versatile, and biologically
active to induce degradation of proteins that promote tumor-
igenesis and inhibit the growth of cancer cells. Future direc-
tions will focus on further development of Protacs to convert
them into more practical drugs for clinical application.
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