Posters

childhood, originating from a skeletal or dental malrelationship. Children with this malocclusion exibit diskinetic reverse chewing patterns which are characterized by a completely altered neuromuscular activation and coordination.

Aim: The aim of this study was to characterize the mandibular kinematics and the neuromuscular of children with unilateral posterior crossbite.

Material and methods: Eighty-two children (8.6 +/-1.3 yr of age) with unilateral posterior crossbite and 12 children (8.9 +/- 0.6 yr of age) with normal occlusion were selected for the study. Electromyography (EMG) and kinematics were concurrently recorded during mastication.

Results: The percentage of reverse chewing in the group of patients was 59.0 +/- 33.1% (soft bolus) and 69.7 +/- 29.7% (hard bolus) when chewing on the crossbite side. When chewing on the non-affected side, the number of reverse cycles was 16.7 +/- 24.5% (soft bolus) and 16.7 +/- 22.3% (hard bolus). The reverse cycles on the crossbite side were significantly narrower with respect to the cycles on the non-affected side and resulted in lower EMG activity of the masseter of the crossbite side; the activity of the contralateral masseter was larger for reverse than non-reverse chewing cycles.

Conclusions: The clinical significance of these results is that, in children with unilateral posterior crossbite, the neuromuscular coordination is completely altered establishing a severe functional and muscular asymmetry which should be corrected as early as possible to let the children a balanced growth.

574

NEAR-INFRARED-SPECTROSCOPY TO DETERMINE CEREBRAL OXYGENATION IN NEONATES: DO ABSORPTION AND SCATTERING COEFFICIENTS CORRELATE WITH SKIN, BONE, AND CEREBROSPINALFLUID THICKNESS?

A. Demel¹, M. Wolf², C.F. Poets¹, A.R. Franz¹

¹University of Tübingen, Tuebingen, Germany, ²University Hospital Zürich, Zurich, Switzerland

Background: Taking into account both the attenuation of light and the phase-shift, frequency domain near-infrared-spectroscopy (FD-) NIRS enables to measure the absolute scattering (μ s') and absorption (μ a) coefficients of tissue.

Aim: To evaluate the effect of skin, bone, and cerebrospinalfluid thickness on μa and $\mu s'$.

Methods: The Oxiplex TS (ISS Inc., Champaign, IL, USA) FD-NIRS and proprietary data analysis software were used in clinically stable neonates: gestational age 34 (30 4/7-39 6/7) [weeks], postnatal age 11 (1-45) [days], weight 2,810 (2,650-3,860) [g]. The optode was placed over the right temporoparietal-region and four measurements of at least 2 minutes each were performed per subject at 1Hz sampling rate. To determine the thickness of the tissues, cranial ultrasound was performed (Toshiba Aplio, applying a 7-14MHz longitudinal transducer). All data are median (min.-max.).

Results: For all patients μ s' and μ a at 692nm were 7.92(4.55-8.92)cm⁻¹ and 0.086(0.076-0.1345) cm⁻¹, and at 834nm were 6.20(3.67-7.51)cm⁻¹ and 0.102(0.090-0.135)cm⁻¹. Skin thickness was 1,5(1.1-1,7)mm, bone thickness was 2,9(2,6-2,3) mm and cerebrospinalfluid thickness was 3,1(2,4-3,7)mm. In univariate linear regression analysis μ a correlated negatively with skin thickness (692nm: r²=0.91; 834nm: r²=0.74), and to a lesser extend with cerebrospinalfluid thickness. μ s' correlated positively with bone thickness (692nm: r²=0.49; 834nm: r²=0.79).

Conclusion: Skin, bone, and cerebrospinalfluid thickness were correlated with μ s' and μ a. It is unclear whether this correlation is causal or confounding and if it affects the accuracy of NIRS measurements.

575

INTENSIVE CARE MANAGEMENT AND FOLLOW-UP OF SEVERE TRAUMATIC BRAIN INJURY IN CHILDREN

H. Vieira, A. Francisco, M. Vieira, F. Abecasis, C. Camilo, J. Miguéns, M. Correia

Hospital de Santa Maria, Lisbon, Portugal

Introduction: Traumatic brain injury (TBI) is the leading cause of paediatric morbidity and mortality in developed countries. Acquired disability can be evaluated by King's Outcome Scale for Childhood Head Injury (KOSCHI).

Objectives: Evaluate care and outcome in children with severe TBI.

Methods: Analysis of clinical and demographic data of children admitted between January 2008