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ABSTRACT: Epidermal innate immunity is a complex process
involving a balance of pro- and anti-inflammatory cytokines, struc-
tural proteins, and specific antigen presenting cells occurring against
a background of neuroendocrine modulators such as cortisol. In this
study, a multiplex array system was used to simultaneously deter-
mine multiple molecular factors critical for development of epider-
mal innate immune function from the skin surface of premature and
term infants, healthy adults, and vernix caseosa. Samples were analyzed
for Keratin 1,10,11, Keratin 6, involucrin, albumin, fibronectin and
cortisol, and cytokines IL-1, TNF�, IL-6, IL-8, MCP1, IP10, IFN�, and
IL-1 receptor antagonist. Keratin 1,10,11 was decreased and involucrin
was increased in infants versus adults. All infants had elevated IL1� and
reduced TNF� versus adults. IL-6, IL-8, and MCP1 were significantly
increased in premature versus term infants and adults. Skin surface
cortisol and albumin were significantly elevated in premature infants.
The biomarker profile in premature infants was unique with differences
in structural proteins, albumin, and cytokines IL-6, IL-1�, IL-8, and
MCP1. The higher infant IL1� may be associated with skin barrier
maturation. The significant elevations in skin surface cortisol for preterm
infants may reflect a neuroendocrine response to the stress of premature
birth. (Pediatr Res 67: 382–386, 2010)

Epidermal innate immunity is a complex process involving
a balance of pro- and anti-inflammatory cytokines, struc-

tural proteins, and specific antigen presenting cells. Orches-
tration of these factors occurs against a background of neu-
roendocrine modulators, e.g. cortisol. During the third
trimester of pregnancy, an extraordinary process of epidermal
differentiation culminates in formation of an intact environ-
mental and innate immune interface, the stratum corneum
(SC). The full-term infant relies on this protective interface
during transition to a cold, dry, microbe-rich extrauterine
environment at birth. In contrast, the premature infant is
poorly equipped to handle such environmental stressors. The
preterm epidermis is thinner, the immature SC has fewer
cornified layers, and the “wounded” skin surface is more
permeable. Poor SC integrity puts the premature infant at risk
for high water loss, electrolyte imbalance, thermal instability,
increased exposure to infectious agents, and environmental
irritants due to increased permeability. The barrier develops

rapidly, but 1 month later still has higher transepidermal water
loss (TEWL) than term infants (1). Estimates of the time to
complete barrier maturation vary from 2- to 9-wk postnatal
age (1,2).
In the classical stress response, the hypothalamus releases

CRH (corticotrophin releasing hormone), which binds to cor-
ticotropin releasing hormone receptor 1 (CRH-R1) to stimu-
late release of adrenocorticotropic hormone (ACTH). ACTH
stimulates the adrenal glands to produce cortisol, which acts to
inhibit production of CRH. Remarkably, the skin itself con-
tains all the elements of the hypothalamic-pituitary-adrenal
(HPA) axis (3,4). Understanding the function(s) of this pe-
ripheral system will require considerably more research but its
putative purpose is to respond in part to local stressors, e.g.
UV radiation, irritants, temperature, barrier disruption, and
faced by the premature infant.
In addition to cortisol, the skin produces corticotropin

releasing hormone (CRH) and receptors CRH-R1 and R2 (3).
Melanocytes express CRH, CRH-R1, and proopiomelanocor-
tin (POMC) and treatment with CRH activates CRH-R1 to
increase cAMP levels, expression of POMC genes, and ACTH
production. ACTH and CRH lead to increases in cortisol and
corticosterone (5). The epithelium of human hair follicles
appears particularly important and manifests a fully functional
peripheral equivalent of the HPA axis (6). Follicles in culture
produce cortisol and levels are up-regulated on exposure to
CRH and ACTH. CRH stimulates hair growth, keratinocyte
proliferation, and production of hair pigment (melanin). Thus,
hair follicles may serve as an extra-adrenal site of cortisol
synthesis using complex regulatory feedback loops, similar to
the classical HPA axis and, hypothetically, can operate locally
in the skin as coordinator and executor of peripheral stress
responses. Similarly, there is a CRH system in human sebo-
cytes that has been implicated in acne (7). Corticosteroids can
be produced from cholesterol in the skin (8). Collectively,
reports suggest that CRH from cutaneous sources may exert
both proinflammatory and anti-inflammatory effects (9,10).
Innate immunity is also conferred by the SC via anti-

infective lipid components, antimicrobial host defense pro-
teins and a direct physical barrier (11). Sebum and sweat
contribute protective factors, e.g. alpha tocopherol, to the skin
surface. Epidermal keratinocytes secrete cytokines, such as
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IL1, in response to SC damage and coordinate the recovery
processes (12). In summary, the skin neuroendocrine system
can potentially mount a progressive, intensity-dependent,
highly coordinated stress response to a variety of noxious
stimuli. We conducted an initial elucidation of the ontogeny of
this skin system by evaluating premature infants �32-wk GA,
i.e. before the time of complete SC maturation, relative to full
term infants and adults.
Central to this approach is the application of a new nonin-

vasive sampling method (13), which simultaneously deter-
mines multiple factors critical for the development of epider-
mal innate immune function. The technique analyzes
biomarkers from the outermost SC eliminating the need for
invasive tissue biopsies. We evaluated a specific group of
biomarkers in cohorts of infants and adults. We determined
levels in vernix, a complex, topical, fetal-derived skin cream
with innate immune and protective functions (14) that is
generally sparse in very premature infants. We measured
Keratin 1,10,11, Keratin 6, and involucrin to assess differences
in SC maturation and quantified levels of albumin, fibronectin,
cortisol, and cytokines IL1�, IL1�, TNF�, IL6, MCP1, IL8,
IL1RA, INF�, and IP10.

MATERIALS AND METHODS

Subjects. Twenty full-term neonates (Christ Hospital, Cincinnati, OH)
were enrolled within 2 d of birth. Nineteen premature infants �32-wk GA
(University Hospital, Cincinnati, OH) were enrolled within 7 d of birth.
Twenty adults served as controls. The Institutional Review Board of Cincin-
nati Children’s Hospital Medical Center approved the research and subjects
provided written informed consent.

Skin surface sample collection. Duplicate samples were collected with
380 mm2 D-Squame tapes (CuDerm, Dallas, TX) applied to the forehead with
consistent pressure, removed after 2 min and stored at �80°C. The skin was
not pretreated before sampling at least 2 h after water exposure.

Vernix. Vernix was harvested at delivery from the skin surface of 11 (11)
healthy term newborns and stored at 4°C. Vernix was spread onto plastic
slides and samples collected with D-Squame tapes.

Biomarker analysis. Biomarkers were extracted in PBS buffer, 0.2% SDS,
and 0.5% propylene glycol and sonicated for 60 min at 4°C. Keratin 1,10,11
(as a mixture), keratin 6, involucrin, fibronectin, cortisol, and albumin were
quantified using Human Skin Panel Lincoplex Kit microsphere beads (Linco
Research, Inc., St. Charles, MO) (13). IL1�, IL1�, TNF�, IL6, MCP1, IL8,
IL1RA, INF�, and IP10 were determined using human cytokine bead-based
arrays (Linco Research) with a Bio-Plex multiplex suspension system (Bio-
Rad Laboratories, Hercules, CA). Total soluble protein was determined with
a modified Lowry assay (porcine gelatin standard). Biomarkers were normal-
ized to protein and reported as ng or pg/�g.

Statistical analysis. Data were analyzed with SigmaStat and SPSS (SPSS,
Inc., Chicago, IL) with a significance level of p � 0.05. Results are reported as
mean � SEM. Univariate general linear models with least significant differences
were used to compare the four groups. Covariates included GA, gender, race,
structural proteins, and interactions. Relationships among biomarkers and with
age were determined using Pearson or Spearman correlations.

RESULTS

Subjects. The full-term infants were of 38.6 � 1.2 wk mean
GA (Table 1). The premature infants were �32-wk GA (mean
28.1 � 2.5) with 10 from 24 to 27 wk and 9 from 28 to 32 wk
(Table 1).
Structural proteins. Keratin 1,10,11 was higher in adults

than in infants and vernix (GLM, F � 19.1, p � 0.001) (Fig.
1A). Keratin 6 was higher in preterms and adults than vernix
(data not shown). The K6 to K1,10,11 ratio was higher in both
infant groups versus adults (F � 7.1, p � 0.001) (Fig. 1B).

Involucrin was higher in the preterms than all others and
higher in full terms than adults (F � 44.5, p � 0.001) (Fig.
1C). Involucrin was inversely correlated with GA among the
infants (correlation coefficient � �0.77, p � 0.001).
Human albumin was higher in preterms than all others and

higher in vernix than adults (F � 17.2, p � 0.001) (Fig. 2A).
SC albumin was inversely related to GA, i.e. higher in the
more premature infants (r � �0.72, p � 0.001). Fibronectin
was lower in preterms and vernix versus adults (F � 4.5, p �
0.007) (Fig. 2B). Skin surface cortisol was higher in preterms
than all others and vernix cortisol was lower than all others
(F � 7.8, p � 0.001). Cortisol was comparable for full terms
and adults (Fig. 2C).

Cytokines. The proinflammatory cytokine IL1� was higher
in both infant groups versus adults and vernix (F � 11.5, p �
0.001) (Fig. 3A). With GA as a covariate, IL1� was higher in
premature than term infants. In contrast, TNF� was signifi-
cantly lower in both infant groups and vernix versus adults
(F � 10.4, p � 0.001) (Fig. 3A). IL1� was higher in preterms
than all others and higher in adults than vernix (F � 10.1, p �
0.001) (Fig. 3B). MCP1 was higher in preterms than full terms
and vernix, whereas adult levels were higher than vernix (F �
6.2, p � 0.001) (Fig. 3B). INF� and IP10 were lower for
vernix than for all others (F � 8.3, p � 0.001; F � 3.3, p �
0.03, respectively). No differences were found for INF� or
IP10 (data not shown).
The proinflammatory cytokine IL8 was higher in preterms

than all others, which did not differ (F � 5.0, p � 0.003) (Fig.
3C). IL6 was higher in preterms than in full terms and vernix, but
not different from adult levels (F � 3.7, p � 0.02) (Fig. 3C). IL8
and IL6 were moderately correlated with GA (r � �0.44, p �
0.005 and �0.33, p � 0.04), with higher levels in younger
infants. IL-1 receptor antagonist was not detectable in 21% of the
preterm samples, 45% of full terms, 65% of adults, and 66% of
vernix. IL1RA was detected in fewer preterms than adults (z �
2.45, p � 0.01) and vernix samples (z � 2.13, p � 0.03).

DISCUSSION

The overall aim of this study was to evaluate the relevance
and utility of measuring selected biomarkers of innate immune
function from the skin surface of neonates and adults as a
method for distinguishing ontogenetic groups. The results
allow provisional discussion of the development of normal
innate epidermal immune function and other protective mech-

Table 1. Subject and sample demographics

Premature Full term Adult Vernix

Number 19 20 20 12
GA, wk (mean SD) N/A N/A
Range (24–32) (36–40)
Gender
Female 5 9 12 5
Male 14 11 8 7

Ethnicity
Caucasian 10 9 9 9
African American 8 9 3 1
Other 1 2 8 2

N/A, not applicable.
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anisms associated with environmental stress and postnatal
adaptation. Significant differences were observed in the levels
of biomarkers of epidermal innate immunity in premature
infants compared with full-term newborns, adults, and the
intrauterine (fetal) skin surface (vernix caseosa). Neonates �32-wk
GA had significantly higher levels of involucrin, albumin,
proinflammatory cytokines IL1�, IL6, MCP1, and IL8 than
full-term infants and adults (Figs. 1C, 2A, 2C, 3B, and 3C).
Both infant groups had significantly higher IL1� and Keratin
6/Keratin 1,10,11 than adults and significantly lower Keratin
1,10,11 and TNF� than adults (Figs. 1A, 1B, 3A). Involucrin
was higher in full terms than adults. Involucrin and albumin
levels were inversely related to GA, most likely indicative of
age effects on barrier maturation. Except for albumin, vernix
had the lowest biomarker levels. Premature infants had higher

levels of cortisol, putatively reflecting an increased stress
response.
Keratin 1,10,11 was significantly lower in both infant

groups than adults. Reduced keratin 1,10,11 has been associ-
ated with higher skin dryness (15) and chronic hyperprolif-
eration (16). Full-term infants exhibit low SC hydration at
birth followed by an increase during the first month (17). In
preterms, barrier formation is rapid and exhibits abnormal
desquamation indicative of SC hyperproliferation (18). In-
volucrin is an SC precursor that undergoes crosslinking to
become part of the cornified envelope (19). SC with involucrin
positive and fragile cornified envelopes has been associated
with barrier impairment and inflammation, e.g. psoriasis vul-
garis and atopic dermatitis (20). Early involucrin expression
was linked with barrier disruption (21).

Figure 1. Structural proteins. A, Keratin 1,10,11 was higher in adults than preterms, full terms and vernix (p � 0.001). *Difference from all. B, Keratin 6 was
higher in preterm and adults than vernix, but the K6 to K1,10,11 ratio was higher in both infant groups vs adults (*) (p � 0.001). C, Involucrin was higher in
preterms than all (*) and higher in full terms than adults (**) (p � 0.001).

Figure 2. Albumin, fibronectin, and cortisol. A, Albumin was higher in preterms than all others (*) and higher in vernix than adults (**) (p � 0.001). B,
Fibronectin was lower in preterm and vernix vs adults (p � 0.007). C, Cortisol was higher in preterms than in all others (*) and lower in vernix than all others
(**) (p � 0.001). Cortisol was comparable in full terms and adults.

Figure 3. Cytokines. A, IL1� (f) was higher in both infant groups than in adults and vernix (**) (p � 0.001). TNF� (�) was lower in both infant groups and
vernix vs adults (*) (p � 0.001). B, IL1� (f) was higher in preterms than all others (*) and higher in adults than vernix (**) (p � 0.001). MCP1 (�) was higher
in preterms than full terms and vernix (¶) and adult levels were higher than vernix (§) (p � 0.001). C, IL8 (f) was higher in preterms vs all others, which did
not differ from each other (*) (p � 0.003). IL6 (�) was higher in preterms than full terms and vernix, but not different from adults (**) (p � 0.02).
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Whereas Rabilloud et al. (22) reported albumin in the
suprabasal epidermis and proposed diffusion through the base-
ment membrane, Hasse et al. (23) found albumin in epidermal
keratinocytes and suction blister roofs, confirming epidermal
synthesis versus transport from serum. Albumin was signifi-
cantly higher in lesional than uninvolved atopic skin and both
were higher than nonatopic controls (24). Albumin was pos-
itively correlated with TEWL (lesional skin) and negatively
correlated to skin hydration (uninvolved skin). This is consis-
tent with our finding of increased albumin in infants �32 wks
and with low hydration shortly after birth (17). Albumin binds
unsaturated fatty acids and calcium and may be involved in
their transport (23). Its protective effects against H2O2 oxida-
tion may occur in the epidermis (25). The presence of albumin
and keratin 1,10,11 in vernix is consistent with a proteomics
identification of innate immune components (14).
Fibronectin was lowest in vernix and premature skin. It is

normally found in the dermoepidermal layer and upper dermis
but may also be synthesized by keratinocytes and distributed
within the extracellular matrix (26). Fibronectin inhibited
terminal differentiation and reduced involucrin in keratinocyte
cell cultures (27). It is perhaps not surprising that fibronectin
was low in vernix, which lacks corneodesmosomes and a
tightly cross-linked SC structure.
All infants transition rapidly from high to low humidity at

birth. Transfer from high (�80%) to low (�10%) humidity
leads to decreased skin hydration in the hairless mouse (28).
Low humidity (�10%) increases epidermal DNA synthesis,
suggesting that reduced hydration triggers cell proliferation
(29). The mRNA levels for epidermal IL1� are reportedly
higher in neonatal animals at low humidity and IL1� is higher
in the upper SC (30). IL1� and IL1� increased markedly on d
19 and 20 (d 17, undetectable), decreased significantly at d 21,
and increased on d 22 (birth) in the rat (31). TNF� is evident
at d 17, decreases on d 21, and increases at birth. The barrier
maturation rate is increased in cytokine treated explants,
indicating their role in SC development. The higher levels of
IL1� and IL1� in infants versus adults in this study may
indicate a similar function for IL1 cytokines, especially when
coupled with the increase in IL1� at low humidity. In contrast
to the reports cited above in fetal animals, we observed lower
levels of TNF� in preterm and full term infants versus adults.
Associated cytokines such as IL6 are increased after SC
barrier damage and application of IL6 significantly increases
barrier repair in animals (32). IL1RA is increased in inflam-
matory skin diseases and irritant exposure (33). IL1RA was
present in 21% of our premature infant samples, which may
indicate a limited ability to respond to environmental insults.
No attempt was made in this study to investigate the

etiology of preterm birth and, in general, the factors causing
premature labor are poorly understood. However, preterm
labor is strongly associated with chorioamnionitis (34). Al-
though infection may be present at birth, the resulting inflam-
mation may be subclinical (35), prompting the identification
of other indicators and precursors. The proinflammatory cy-
tokine TNF� is higher in decidual tissue in the face of
premature labor and intra-amniotic infection (36). Increases in
IL1�, IL-8, IL-6, and TNF� are associated with term labor

(37). In this study, the higher levels of IL6 and IL8 in
premature versus full-term infants are consistent with similar
results in dried infant blood samples (38). Higher IL6, IL8,
and MCP1 were found in cord blood from lower GA infants
compared with full-term neonates (39). IL6 and IL8 were
higher in the amniotic fluid of patients with premature labor or
preterm premature rupture of membrane (40). The significance
of the increased cytokine levels in this study and previous
reports is unknown, although specific cytokine profiles may
indicate genetic influences (41) and/or clinical conditions
associated with a systemic inflammatory response, e.g. bron-
chopulmonary dysplasia (42). Our results indicate significant
correlations among cytokines and important clinical variables
which may be important in guiding future research.
The presence of skin surface cortisol in all samples is

intriguing. Cortisol exerts various systemic effects, i.e. it
stimulates protein metabolism, increases water retention, reg-
ulates blood pressure, reduces inflammation, resists stress
from infectious agents, physical trauma, and temperature, and
reduces the immune response. Cortisol increases are consid-
ered to be adaptive, whereas no change indicates a maladap-
tive reaction (43). The skin contains components of the HPA
system and functions as a “decentralized” stress-response
system to various environmental stimuli, referred to as the
skin stress response system (SSRS) (6,44). The stressors cause
release of interleukins, TNF�, etc., which trigger CRH and
POMC. Cortisol is released by hair follicles (6,44). Hair
cortisol levels were significantly associated with the number
of days on a ventilator in a group of neonatal intensive care
patients (45). The identification of surface cortisol in this
study is significant and may be a result of the response to
various environmental stressors, particularly in the premature
infant. Stress due to environmental overcrowding was associ-
ated with a delay in skin barrier recovery in mice, an effect
attributed to increased production of glucocorticoids (46).
Psychological stress decreased epidermal cell proliferation,
adversely effected differentiation and decreased the size and
density of corneodesmosomes, all of which negatively impact
barrier function (47). Stress decreased antimicrobial peptides
in the epidermis (animal model), an effect which resulted in
more severe skin infections (48).
This study is preliminary and limited to providing a snap-

shot of biomarker levels within the first week of life. Never-
theless, the results provide insight into the ontogeny of the
skin neuroimmune system and this is the first study to measure
biomarkers of innate immunity from the outermost epidermal
surface (SC) of premature and full-term neonates.
The collective findings suggest that SC barrier maturation is

incomplete in both infant groups but to a greater extent in
premature infants. The presence of albumin, the inverse cor-
relation of albumin with GA, and the known poorer SC barrier
integrity of preterm infants suggest that the elevated levels of
albumin and/or cytokines may be due to increased permeabil-
ity, greater response to environmental, and physiologic stress
and/or ease of access to the collection tape. Alternatively, the
observed associations of the cytokines and cortisol may be a
reflection of a localized stress response; e.g. chorioamnionitis,
with local synthesis in the epidermis and/or hair follicles. The
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inflammatory cascade is a dynamic process and temporal
profiles in neonates categorized by specific disease processes
(42) need to be evaluated. The noninvasive sampling method
reported here, coupled with the capability for simultaneous
detection and analysis of biomarkers at physiologic levels,
offers a promising approach for investigating clinical re-
sponses to environmental stressors.
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