The median plateau time was also analysed and for phototherapy this corresponds to 72 hours for all three gestations. For exchange transfusion the median time of plateau was highest for the term babies and lowest for 32 weeks gestation.

Conclusion: Jaundice action charts reviewed in our study showed significant variation in the threshold for treatment of neonatal jaundice. Both the studied parameters (variation in threshold and the median time to plateau) point towards the fact that the charts being used in the neonatal unit are not evidence based and need modification.

PRO-INFLAMMATORY CYTOKINES IN CSF/BALF ARE SIMILAR AT COMPRESSION:VENTILATION RATIO 15:2 VERSUS 3:1 IN ASPHYXIATED NEWBORN PIGLETS WITH CARDIAC ARREST

A.L. Solevåg¹,2,3, I. Dannevig¹,2,3, M. Wyckoff⁴, O.D. Saugstad³, B. Nakstad¹,2

¹Dept. of Paediatrics, Akershus University Hospital, ²Institute for Clinical Medicine, Akershus University Hospital, University of Oslo, Lørenskog, ³Dept. of Paediatric Research, Oslo University Hospital, Rikshospitalet, Oslo, Norway, ⁴Dept. of Pediatrics, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA

Background and aim: The ideal ratio of chest compressions to ventilations (C:V ratio) during neonatal cardiopulmonary resuscitation (CPR) is unknown. The aim of the study was to investigate the C:V ratios of 15:2 and 3:1 in terms of time to return of spontaneous circulation (ROSC) and expression of pro-inflammatory cytokines in a piglet model of cardiac arrest following severe asphyxia.

Methods: Twenty two Noroc pigs (age 12-36 h) were anaesthetized and mechanically ventilated followed by progressive asphyxiation until asystole occurred. CPR was performed by positive pressure ventilation (21% O₂) and cardiac compressions at a C:V ratio of 3:1 (n=11) or 15:2 (n=11). Protein concentrations of interleukin-1β (IL-1β) were measured in cerebrospinal fluid (CSF) and bronchoalveolar lavage fluid (BALF); and interleukin-8 (IL-8) and tumor necrosis factor-α (TNFα) were measured in BALF only using commercially available ELISA kits for porcine samples.

Results: Two of the animals in each group did not achieve ROSC after 15 minutes of CPR, and were excluded from the analyses. Mean time (SD) to ROSC for the 3:1 group was 204 s (153) and 250 s (144) for the 15:2 group (p=0.52). There was no difference between the two groups in any of the cytokines measured, neither in CSF nor in BALF. (Table will be included in poster)

Conclusion: Time to ROSC and expression of pro-inflammatory cytokines in the brain (CSF) and lungs (BALF) were comparable between groups possibly indicating that the C:V ratio of 15:2 is as safe and effective as 3:1.

ASSESSMENT OF CHEST RISE DURING POSITIVE PRESSURE VENTILATION IN THE DELIVERY ROOM

D.A. Poulton¹, G.M. Schmölzer²,3,4,5, C.J. Morley²,4, P.G. Davis²,4,6

¹The University of Aberdeen Medical School, Aberdeen, UK, ²The Royal Women’s Hospital, ³Monash Institute of Medical Research, ⁴Murdoch Children Research Institute, Melbourne, VIC, Australia, ⁵Medical University Graz, Graz, Austria, ⁶Obstetrics & Gynaecology, The University of Melbourne, Melbourne, VIC, Australia

Background: Current guidelines suggest a role for clinical assessment of chest rise in determining adequacy of positive pressure ventilation (PPV). However, these guidelines do not state how chest rise should be assessed. We compared the clinical
assessment of chest rise from the infant’s head and infant’s side with measured tidal volume during PPV in the delivery room.

Methods: Airway pressures and expiratory tidal volume (V_{Te}) were measured during PPV using a respiratory function monitor. After 60 seconds of PPV, resuscitators at the infants’ head and infants’ side were asked to assess chest rise and estimate delivered V_{Te}. These estimates were compared with measurements taken during the previous 30 seconds.

Result: Twenty infants receiving PPV were included. A total of 433 inflations with a mean of (SD) of 23 (4) inflations per infant during the 30 seconds baseline. Six resuscitators were unable to assess tidal volume from their position at the infant’s head versus three from the infant’s side. Figure 1 (Tidal volume assessment at the infant’s head) and Figure 2 (Tidal volume assessment at the infant’s side) illustrate the poor agreement between estimated and delivered V_{Te}. Assessment from the infants side was somewhat better than from the head.

Conclusion: During mask ventilation most resuscitators were unable to accurately assess chest wall movement in either of two positions.

341 USING CENTILE CHARTS DERIVED FROM PULSE OXIMETRY MEASUREMENTS TO INFORM OXYGEN TREATMENT IN THE DELIVERY ROOM

J.A. Dawson1,2,3, C.O.F. Kamlin1,2,3, M. Vento4, C. Wong1, T.J. Cole5, S.M. Donath2,3, P.G. Davis1,2,3, C.J. Morley1,2,3

1Neonatal Services, The Royal Women’s Hospital, 2Obstetrics & Gynaecology, The University of Melbourne, 3Murdoch Childrens Research Institute, Melbourne, VIC, Australia, 4Neonatal Research Unit, Division of Neonatology, Hospital La Fe, Valencia, Spain, 5MRC Centre of Epidemiology for Child Health, UCL Institute of Child Health, London, UK

Background: Titration of supplemental O_2 using oxygen saturation (SpO$_2$) measured by pulse oximetry (PO) is becoming common in the delivery room. However there is little consensus to define “normoxia”. Even brief hyperoxia is toxic for neonates.

Methods: In a prospective, observational study, we recorded preductal SpO$_2$ every two seconds for ten minutes after birth. A Masimo Radical PO was placed on the infant’s right hand/wrist immediately after birth. PO data (SpO$_2$ and signal quality) were downloaded and analysed only when there were