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ABSTRACT: Complications after cardiac surgery in neonates can
occur because of activation of the inflammatory system. This study
used lipopolysaccharide (LPS) endotoxin exposure to cause cytokine
activation in neonatal mice and examine left ventricular (LV) func-
tion and the effects of antioxidant treatment on cytokine levels.
Neonatal mice (6 d old) were injected with either 25 mg/kg LPS (n �
13) or PBS (n � 14), and LV function (echocardiography) was
measured at 4 h. Plasma levels of TNF-�, IL-4, IL-6, and IL-10 were
measured at 30 min, 1, 2, and 4 h after injection (n � 5 mice per
group). Effects of pretreatment with N-acetylcysteine (NAC, 50
mg/kg) on cytokine levels were examined at 2 and 4 h after PBS or
LPS (n � 5 mice per group). Four hours after LPS, heart rate was
increased (434 � 14 versus 405 � 14 bpm, p � 0.05). LV end-
diastolic dimension and ejection time were reduced with LPS (both
p � 0.05). LPS exposure increased plasma TNF-�, IL-6, and IL-10
levels. NAC pretreatment attenuated the increases in TNF-� and IL-6
levels, but augmented IL-10 levels at 2 h post-LPS. LPS exposure
altered cardiac performance and activated cytokines in neonatal mice,
which may be ameliorated using antioxidants. (Pediatr Res 68:
381–386, 2010)

Surgical repair of some of the most lethal and complex
forms of human congenital heart disease (e.g. hypoplas-

tic left heart syndrome, transposition of the great arteries) is
initiated in the perinatal period. The postoperative state of
these infants is characterized by reduced cardiac output and
extensive edema (1–3). One likely mechanism for these clin-
ical postoperative sequelae is activation of the innate inflam-
matory cytokine response and establishing conditions similar
to those described for the fetal inflammatory response syn-
drome (FIRS) (4). Lipopolysaccharide (LPS) is a potent acti-
vator for FIRS (4) and is increased after surgery to repair
congenital heart defects (5). Although past studies have re-
ported that rodent fetuses exposed to LPS during the late
gestational period exhibit symptoms similar to that of FIRS
(6), the effects of increased LPS with respect to left ventricular
(LV) pump function and the response of pro- and anti-
inflammatory cytokines in the neonatal period remain un-
known. Accordingly, the first objective of this study was to
examine the relationship of LPS exposure to indices of cardiac

performance and the time-dependent changes in cytokine
profiles induced by LPS in neonatal mice.
One likely pathway by which FIRS may adversely affect

cardiovascular performance and cytokine activation is through
oxidative stress (4). A common intervention that holds clinical
relevance with respect to oxidant scavenging is N-acetylcys-
teine (NAC) (7,8). Although past studies simulating LPS-
mediated FIRS in rodents have shown improved survival with
concomitant NAC treatment (7), the underlying mechanisms
with respect to changes in the levels of circulating cytokines
remained unknown. Accordingly, the second objective of this
study was to determine the effects of NAC treatment on
possible alterations in cytokine activation after LPS exposure
in neonatal mice.

METHODS

Animals were treated and cared for in accordance with the National
Institutes of Health Guide for the Care and Use of Laboratory Animals
(National Institutes of Health, 1996). The protocol (AR2300) was approved
by the Animal Care and Use Committee. Animals used in this study were
6-d-old mice (3.6 � 0.1 g, F1 generation) born to dams from the CD-1 strain
(Charles River). The rationale for choosing this age of neonatal mice was to
collect adequate amount of plasma to assay for levels of circulating cytokines.

Determination of optimal LPS dose. A wide range of LPS dosages
ranging from 1 to 50 mg/kg (L2630, derived from Escherichia coli, strain
0111:B4, purified by phenol extraction; Sigma Chemical Co.-Aldrich, St.
Louis, MO) were tested with respect to survival and effects on LV fractional
shortening (Vevo 660, Visualsonics, Toronto, Canada) at 4 h after intraperi-
toneal injection of LPS. Anesthesia was maintained at 1.5–2.0% isoflurane to
obtain echocardiography images at baseline and after LPS exposure (mini-
mum of 4 mice per dose). At LPS dosages of 1, 2, or 5 mg/kg, there were no
discernible adverse effects with respect to survival, mobility, gastrointestinal
distress, or LV pump performance. All mice injected with 25 mg/kg of LPS
survived through 4 h, and the pups exhibited changes in LV mechanics in
terms of reduced ejection time. With 50 mg/kg of LPS, four of the six pups
had died by 4 h postinjection. Accordingly, the 25 mg/kg dosage of LPS was
chosen for subsequent studies. Hematocrit was measured after 4 h of either
LPS or PBS administration. The hematocrit of the LPS-treated mouse pups
(0.28 � 0.01, n � 16) was similar to those administered PBS (0.27 � 0.01,
n � 23, p � 0.80), suggesting that this dosage of LPS did not result in edema
formation.

Echocardiography. Parasternal short axis and pulse wave Doppler (four-
chamber view) images were recorded. Measurements from the short axis
views included LV dimensions at end diastole and end systole and fractional
shortening. The inflow and outflow velocity profiles recorded in the pulse
wave Doppler images were used to determine R-R intervals (heart rate),
isovolumic contraction time, ejection time, and isovolumic relaxation time.
These echocardiographic measurements were made at baseline (preinjection)
and at 4 h after injection of either PBS (n � 14) or LPS (n � 13).Received March 11, 2010; accepted June 24, 2010.
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Longitudinal measurement of cytokines/chemokines. For measurement
of plasma levels of cytokines, separate cohorts of mouse pups were injected
with either PBS or LPS. The volume of the injectate in each case was 0.1
mL/g body weight (10 mL/kg) to protect against dehydration. After injection,
the mouse pups remained fasted and were housed in a thermostatically
controlled chamber (37°C). Terminal studies were performed at 30 min, 1, 2,
or 4 h after injection (minimum of n � 5 mice at each time point). At the
designated time point, the mice were decapitated while anesthetized. Blood
samples (�500 �L) were collected in an EDTA coated tube, centrifuged, and
the plasma decanted. Blood samples from a separate cohort of 15 untreated
mouse pups were used as referent controls.

In separate cohorts of mouse pups, NAC (50 mg/kg) was injected an hour
before the administration of PBS or LPS. This dosage of NAC used was
chosen based on past findings, which demonstrated that 50 mg/kg of NAC
prevented LPS-induced cytokine induction in fetal mice (8). These pups were
terminally studied at either 2 h or 4 h after injection of PBS or LPS (n � 5
mice per time point for each treatment).

Multiplex assay for cytokine/chemokine levels. Plasma levels of cytokines
were determined by multiplex suspension array (BioRad and R&D Systems),
which allows for the simultaneous measurement of a large number of analytes
from volume-limited samples (9). Briefly, plasma (50 �L) from individual
mouse pups (no pooling of blood samples was performed) was added to wells
precoated with antibody-microbead complexes. Identification and quantifica-
tion of the analyte/bead complexes were determined by flow cytometry with
dual excitation lasers (Bio-Plex Suspension Array Workstation; BioRad) and
converted to pg/mL using precalibrated standards. Average sensitivities for
cytokines were 0.3 pg/mL. The cytokine multiplex assays have �0.5%
cross-reactivity and interference with the other measured analytes. Cytokines
and/or chemokines measured in the plasma samples included TNF-�, IL-4,
IL-6, IL-10, macrophage inflammatory protein-1� (MIP-1�, CCL3), and
RANTES (CCL5). In addition, plasma levels of VEGF, which has been
previously demonstrated to be a sensitive biomarker for hypoxia (10,11), were
measured using the same multiplex suspension array.

Data analysis. All of the data collected in this study were coded and the
code not broken until the conclusion of the study. Echocardiographic indices
of LV geometry and function were compared between the PBS and LPS
groups using the t test. For the cytokine measurements, a two-way ANOVA
model was used to differentiate between the effects of time and LPS exposure.
Post hoc mean separation was performed using Bonferroni-adjusted pairwise
comparisons. Similarly, the effects of concomitant NAC treatment on LPS
exposure were examined using two-way ANOVA (treatment effects: presence
or absence of LPS and presence or absence of NAC). Correlations between
cytokine levels and indices of LV geometry and function were examined
using least squares regression analysis. All statistical analyses were performed
using the STATA statistical software package (Stata Corp, College Station,
TX). Values of p � 0.05 were considered to be statistically significant.

RESULTS

Echocardiography. Compared with baseline values (405 �
14 bpm), there was a significant increase in heart rate for the
mice in the LPS group (434 � 14 bpm, p � 0.05); the heart
rate for the PBS group (414 � 21 bpm) was similar to baseline
values (p � NS). LV end-diastolic dimensions were smaller in
LPS-exposed animals compared with baseline values and
compared with the group that was injected with PBS (Table
1). LV fractional shortening was similar in the PBS and LPS
groups at 4 h after exposure. LV ejection time was lower in the
LPS-treated animals than the PBS-treated controls (Table 1).
As a function of R-R interval, changes in ejection time were
similar to baseline values in the PBS group (Fig. 1). However,
in the LPS group, the slope of the relationship between
ejection time and the R-R interval was lower than baseline
values and the PBS group.
Temporal changes in cytokine levels. Temporal changes in

the plasma levels of the cytokines/chemokines after PBS or
LPS injection are summarized in Table 2. In the PBS group,
there was a small, but significant, increase in plasma TNF-�
levels and a reduction in plasma IL-10 levels at 4 h after
injection. With LPS exposure, there were time-dependent

increases in plasma levels of TNF-�, IL-6, and IL-10 after 1 h
after injection, and the increase in the levels of these cytokines
persisted through the 4-h study period. A significant increase
in the plasma levels of the chemokines, MIP-1�, and RAN-
TES (or CCL5) was detected starting at 2 h after LPS expo-
sure. There was an inverse relationship between MIP-1�
levels and the change in ejection time (Fig. 2). Furthermore,
plasma IL-6 level was inversely related to LV end-systolic
dimension (y � �1.05 � 10�5x � 1.06; r, �0.67; p � 0.05)
and change in ejection time (y � �7.58 � 10�4x � 7.08;
r, � 0.72; p � 0.05).
Effects of NAC on plasma levels of cytokines/chemokines.

At 2 h after injection, concomitant NAC administration atten-
uated the LPS-mediated increased plasma levels of TNF-�,
IL-6, MIP-�, and CCL-5 (Fig. 3). Conversely, plasma levels
of IL-10 were increased with NAC treatment compared with
LPS only values at 2 h after injection. At 4 h after LPS
injection, the differences in plasma cytokine/chemokine levels
with respect to NAC treatment did not attain statistical signif-
icance. Plasma levels of VEGF were lower with concomitant
NAC treatment 2 h after LPS administration (Fig. 4).

Table 1. Indices of LV geometry and function injection of PBS or
LPS in 6-d-old mice

Baseline PBS LPS

LV end-diastolic
dimension (mm)

1.84 � 0.04 1.81 � 0.05 1.51 � 0.07*†

LV end-systolic
dimension (mm)

1.16 � 0.03 1.13 � 0.05 0.91 � 0.06*†

Fractional shortening (%) 34 � 2 33 � 4 37 � 4
Isovolumic contraction
time (ms)

15.4 � 1.0 12.5 � 0.6 11.4 � 1.5*

Ejection time (ms) 53.2 � 3.0 53.2 � 4.5 45.6 � 2.5*†
Isovolumic relaxation
time (ms)

22.8 � 1.7 25.0 � 2.1 24.9 � 2.3

Sample size (n) 27 14 13

Values presented as mean � SEM. Sample size: n � 5 for all treatments.
* p�0.05 vs baseline.
† p�0.05 vs PBS group.

Figure 1. Effects of PBS and LPS on the relationship between R-R interval
and LV ejection time. There was a significant relationship between R-R
interval and ejection time at baseline (y � 0.37x � 0.31; r2, 0.81; p � 0.01).
In the PBS group, the relationship between R-R interval to ejection time (y �
0.48x � 15.11; r2, 0.86; p � 0.01) was similar to baseline values (p � 0.62).
With LPS, the relationship between R-R interval and ejection time (y �
0.22x � 16.05; r2, 0.28; p � 0.05) was different from baseline and the PBS
group (p � 0.01 and p � 0.03, respectively). E, baseline; F, PBS; Œ, LPS.
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DISCUSSION

Circulating levels of a number of cytokines, particularly
those of the proinflammatory cytokines, are increased after
exposure to LPS (12,13). However, a majority of these past
studies were performed in age groups that represent adults, or
a mature phenotype, and in animal fetuses obtained late in the
gestational period (8,14–17). Although there are a few studies
that have examined the effects of LPS on plasma cytokine
levels in neonates (18–26), the effects of LPS-induced
changes in cardiac function and the effects of antioxidant
treatment on circulating levels of cytokines in neonates re-
mained unknown. Accordingly, the objectives of this study
were to determine the effects of LPS exposure to indices of
cardiac performance and the time-dependent changes in cyto-
kine profiles induced by LPS in neonatal mice. Moreover, this
study examined whether treatment with the antioxidant, NAC,
would alter LPS-induced changes in cytokine levels in neo-
natal mice. The main findings of this study were that LPS
caused time-dependent increase in the levels of proinflamma-
tory cytokines such as TNF-� and IL-6 as well as in the levels
of the anti-inflammatory cytokine, IL-10 in neonatal mice.
Moreover, LPS exposure resulted in a reduction in LV dimen-
sions, and a reduction in LV ejection time, and the increase in
circulating cytokine levels was correlated with adverse
changes in cardiac performance. Concomitant treatment with

NAC attenuated the LPS-induced increases in TNF-� and
IL-6 at 2 h. Conversely, NAC treatment augmented the LPS-
induced increase in IL-10 levels at 2 h after injection. These
findings suggest that LPS exposure is associated with alter-
ations of indices of cardiac performance and that antioxidants
may be used to ameliorate the proinflammatory effects of LPS
exposure in neonates.
LPS exposure is generally associated with a reduction in

cardiac pump function in adult animal models (16). However,
it must be recognized that in this study, LV fractional short-
ening, an index of LV pump performance, was similar be-
tween the LPS- and PBS-treated groups. There are at least two
reasons for these seemingly disparate findings with respect to
LV pump function between past reports and the present study:
First, age-dependent differences in response to LPS exposure
with respect to cardiac function cannot be ruled out. Second,
it is possible that changes in cardiac function in response to
LPS exposure may be time-dependent (16,27). For example,
in adult dogs injected with LPS, Guntheroth et al. (16) have
reported that the velocity of contraction transiently increased
immediately after LPS injection and then gradually declined
to baseline values at 4 h after LPS administration. Therefore,
the finding that LV pump function was not altered with LPS
exposure may have been a function of the time at which the
measurement was made. Future studies that examine LV
pump performance at differing postinjection durations would
be required to determine whether and to what degree LPS
exposure alters cardiac function in neonatal mice.
In this study, LPS administration resulted in a reduction of

LV dimensions and ejection time. Moreover, the slope of the
relationship between LV ejection time and the R-R interval
was reduced with LPS exposure. In light of the fact that the
circulating volume was similar in animals treated with either
PBS or LPS (hematocrit values were similar between groups),
the relative reduction in LV ejection time was likely because
of a reduction in systemic vascular resistance and/or increased
systemic capacitance. Additional considerations for the reduc-
tion in LV dimensions with LPS include reduced LV filling
time, because of the increase in heart rate, and a potential
increase in venous dilation. Regardless of which of these
above mechanisms were operative, the findings of this study

Figure 2. There was a significant inverse relationship between MIP-1�
levels and the change in ejection time (y � �1.01 � 10�2x � 4.90; r, �0.64;
p � 0.05) after administration of either PBS or LPS.

Table 2. Time-dependent changes in plasma cytokine levels after exposure to PBS or endotoxin (LPS) in 6-d-old mice

Baseline 30 min 1 h 2 h 4 h

TNF-� (pg/mL) 6 � 5 PBS 1 � 1 1 � 1 8 � 5 40 � 9*
LPS 5 � 1 506 � 69*† 2782 � 597*† 9062 � 2168*†

IL-4 (pg/mL) 71 � 13 PBS 82 � 7 78 � 3 44 � 12 77 � 3
LPS 60 � 14 59 � 3 68 � 5 75 � 6

IL-6 (pg/mL) 1 � 1 PBS ND 2 � 1 5 � 5 1 � 1
LPS 1 � 1 698 � 137*† 32040 � 8362*† 27621 � 2620*†

IL-10 (pg/mL) 16 � 3 PBS 11 � 2 16 � 1 13 � 3 5 � 1†
LPS 14 � 3 105 � 24*† 432 � 18*† 700 � 99*†

MIP-1� (pg/mL) 124 � 53 PBS 165 � 47 30 � 18† 53 � 30 73 � 24
LPS 72 � 45 24 � 14† 3798 � 1133*† 3382 � 928*†

RANTES (CCL5, pg/mL) 13 � 3 PBS 10 � 1 7 � 1 7 � 1 7 � 1
LPS 10 � 1 10 � 2 1030 � 294*† 10082 � 1343*†

Values presented as mean � SEM. Sample size: n � 5 for all treatments.
* p � 0.05 vs baseline.
† p � 0.05 vs time-matched PBS group.
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provide evidence that the increase in circulating cytokines
after LPS exposure was associated with adverse changes in
LV geometry and pump function.
LPS has been reported to be one of the most potent stim-

ulators of the synthesis and release of proinflammatory cyto-
kines such as TNF-�, IL-1�, and IL-6 (13). In vitro studies
have demonstrated that LPS can trigger the production TNF-�
and IL-1� from isolated blood monocytes (28). Excessive
activation of the proinflammatory cytokines can be harmful,
leading to tissue damage, sepsis, and increased mortality. For
example, using a panel of cytokines, Ng et al. (23) demon-
strated that increased levels of IL-6 and RANTES could be
prognostic of sepsis-induced complications. Moreover, Casey
et al. (29) reported that increased levels of circulating cyto-
kines TNF-�, IL-1, and IL-6 correlated with higher mortality
in patients with sepsis. Importantly, the response of the im-
mune system, including that of cytokine induction, varies as a
function of age (18,19,22,24). Zhao et al. (18) have recently
reported that elevations in plasma TNF-� and IL-6 levels are
quantitatively higher in neonatal mice compared with adult

mice. Furthermore, Cusumano et al. (22) report that neonatal
mice were more susceptible to LPS-induced mortality than
older mice. This study builds on these past findings by dem-
onstrating that LPS exposure caused time-dependent increases
in the plasma levels of not only the proinflammatory cytokines
but also that of the anti-inflammatory cytokine, IL-10.
Changes in IL-10 levels are believed to be an endogenous
reaction aimed to suppress effects of proinflammatory cyto-
kines (30). Therefore, the increase in plasma IL-10 levels
observed in this study may have been, at least in part, a
response to counteract the strong induction of the proinflam-
matory cytokines after LPS exposure.
Infusion of antioxidants can ameliorate the LPS-mediated

increase in the levels of proinflammatory cytokines (14,15).
Whether and to what degree infusion of an antioxidant would
alter cytokine induction in neonatal animals remained un-
known. In this study, the antioxidant NAC was chosen for two
reasons. First, NAC is a clinically relevant pharmacological
agent, which is used as a mucolytic agent and to modulate
inflammation in patients with cystic fibrosis (31,32). Second,
NAC can inhibit the induction of proinflammatory cytokines
(14,15). For example, Hsu et al. (14) report that in adult rats,
prolonged concomitant NAC infusion attenuated the LPS-
mediated increase in serum levels of TNF-� and IL-6. Con-
sistent with these past findings, this study demonstrated that a
single bolus infusion of NAC reduced circulating levels of the
proinflammatory cytokines TNF-� and IL-6 at 2 h after LPS
exposure in neonatal mice. Concomitantly, levels of the anti-
inflammatory cytokine IL-10 were increased with NAC treat-
ment. IL-10 is a pleiotropic cytokine with important immu-
noregulatory functions and can repress the expression of
inflammatory cytokines such as TNF-� and IL-6 (30). There-
fore, the increase in plasma IL-10 levels with NAC treatment
may have further potentiated a putative protective effect from
LPS exposure. It is likely that these salutary effects of NAC
with respect to LPS-induced cytokine induction were because

Figure 3. Effects of NAC treatment on LPS-induced changes in plasma levels of cytokines/chemokines at 2 and 4 h after injection. *p � 0.05 vs LPS only group.
f, LPS only; �, LPS � NAC.

Figure 4. Effects of NAC treatment on LPS-induced changes in plasma
levels of VEGF at 2 and 4 h after injection. *p � 0.05 vs LPS only group. f,
LPS only; �, LPS � NAC.
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of the antioxidant effects of NAC, evidenced by lower levels
of VEGF, a sensitive and stable marker for hypoxic injury
(10). However, these salutary effects of NAC treatment on
circulating cytokine levels were not evident with 4 h of LPS
exposure. A potential explanation is that plasma levels of
NAC, which has a half-life of �2 h (33), may have been
reduced to below therapeutic levels at 4 h after the single
bolus infusion. Whether continuous infusion of NAC would
provide a longer attenuation of the induction of proinflamma-
tory cytokines in this neonatal animal model remains to be
determined. Moreover, whether and to what degree the NAC-
mediated attenuation of the levels of the proinflammatory
cytokines after LPS exposure was beneficial with respect to
indices of LV pump function were not determined in this
study. Future studies that determine the effects of NAC with
respect to the relationship between changes in plasma cyto-
kine levels and LV pump performance are warranted. More-
over, the effects of varying NAC dosage and optimal length of
NAC therapy with respect to effects on cytokine levels in
neonates remain to be determined.
It must be recognized that the concentration of LPS used in

this study was likely higher than that is measured clinically,
even in pediatric patients who are considered to be “endotox-
emic” (5). Therefore, it remains unclear whether the effects of
LPS exposure on LV geometry and function that were ob-
served in this study would be manifest with lower LPS
concentrations. Accordingly, extrapolation of the results of
this study to the clinical scenario must be undertaken with
caution.

CONCLUSIONS

Cardiac surgery, especially those procedures that require
extracorporeal circulatory support, can engender a significant
inflammatory response in the immediate postoperative period
(5). The use of cardiopulmonary bypass (CPB) during cardio-
thoracic surgery procedures, and the systemic exposure to
nonbiologic surfaces, has been shown to promote edema
secondary to changes in oncotic pressure and reduced lym-
phatic drainage and to provoke an oxidative stress response,
which in turn can activate inflammatory processes (2,3,5). The
increased proinflammatory state has been associated with the
development of a number of postprocedural complications,
including myocardial injury and the low cardiac output syn-
drome (LCOS) (1,34). Clinical appreciation of the invocation
of the inflammatory response after cardiac surgery in neonates
has resulted in a number of interventions directed at its
reduction. For example, modification of pump circuit surfaces,
ultrafiltration strategies, leukocyte trapping filters, and glu-
cocorticoid administration have all been described to reduce
or eliminate clinical or biochemical features of the inflamma-
tory response after CPB (35–37). A survey of 36 centers that
perform pediatric CPB demonstrated that none of these inter-
ventions has achieved a level of standard practice in the
pediatric or neonatal population (35). Therefore, there is a
need for a safer and more effective anti-inflammatory strategy
in pediatric patients undergoing cardiac surgery. Accordingly,
the data from this study represent a step in establishing a

model system for mimicking the neonatal inflammatory re-
sponse LPS administration and testing the effects of NAC as
a potential anti-inflammatory therapy with a benign side effect
profile that has established neuroprotective effects in a peri-
natal model of brain injury (8,38). A role for oxidative stress
for complications after cardiac surgery has been demonstrated
through the use of NAC (39). Specifically, in dogs subjected
to CPB, addition of NAC in the perioperative period was
associated with a reduction of myocardial edema and a pres-
ervation of LV systolic function (40). In this study, pretreat-
ment with NAC attenuated the LPS-mediated increase in the
levels of the proinflammatory cytokines in neonatal mice.
Thus, the use of NAC may represent a novel means of
attenuating these adverse post-CPB sequelae.
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