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ABSTRACT: Respiratory failure is a major contributor to mortality
and morbidity in newborn infants. The lung assist device (LAD) is a
novel gas exchange device that supplements mechanical ventilation.
The objective is to test the effect of the LAD on pulmonary histopa-
thology in juvenile piglets with acute lung injury caused by saline
lung lavage (SLL) followed by intermittent mandatory ventilation
(IMV). Three- to 4-wk-old piglets were randomized to no interven-
tion (control group), SLL alone (SLL group), SLL � IMV (IMV
group), or SLL � IMV � LAD (LAD group) (n � 6 per group). The
carotid artery and jugular vein were cannulated and an arteriovenous
circuit completed, and the LAD was inserted into this circuit. Gas
exchange via the LAD was initiated by passage of 100% oxygen over
the blood-carrying hollow fibers of the LAD. Hemodynamic vari-
ables were recorded. Mechanical ventilation was systematically
weaned. Lung histology was scored by two observers masked to
treatment group. There were no differences in hemodynamic vari-
ables between the study groups. There was a significant increase in
the total lung injury score in the IMV group compared with the LAD
group. The novel pumpless low-resistance LAD has shown feasibility
and potential to decrease ventilator-induced lung injury in a juvenile
animal model. (Pediatr Res 66: 671–676, 2009)

Neonatal respiratory failure is a serious clinical problem
(1–3) associated with high morbidity, mortality, and

cost (4–6). The mainstay of management is supportive care
with mechanical ventilation, and important adjunctive thera-
pies include high-frequency ventilation, surfactant therapy,
inhaled nitric oxide, and extracorporeal membrane oxygenation
(ECMO). Many term and preterm infants die due to cardiorespi-
ratory failure despite maximal ventilatory support (3–10). It is
well known that ventilatory support by itself may inflict lung
injury (11,12). Animal and human studies indicate that vo-
lutrauma contributes to the development of lung injury (13–15).
ECMO, a treatment of last resort for term or near-term neonates
with profound cardiopulmonary disease, allows the lung to rest
and recover, attenuating the often damaging effects of aggressive
mechanical ventilation. However, ECMO is currently reserved
for newborn infants with reversible pulmonary disease in whom
conventional or high-frequency ventilation with inhaled nitric
oxide has failed. This is due to serious inherent risks of ECMO,
such as coagulopathy and the need for systemic anticoagulation,

which predisposes to systemic and intracranial hemorrhage. An
essential element in the ECMO circuit is a mechanical pump that
directly leads to shear stress-induced injury of blood cells (16).
The evolution of membrane and oxygenator technology has led
to low-resistance membrane gas exchange devices that permit
significant flow even when the circuit is not driven by a pump.
Several investigators have reported the ability of these devices to
partially support adult patients in respiratory failure. Gattinoni et
al. (17) proved the efficacy and safety of extracorporeal carbon
dioxide removal in combination with low-frequency ventilation.
Flörchinger et al. (18) reported their successful 10-y institutional
experience of using pumpless extracorporeal lung assist devices
(LAD) to support patients with deteriorating gas exchange for
prolonged periods. In a prospective, randomized, unblinded
study, the LAD decreased ventilator-induced lung injury (VILI)
and improved 5-d survival in a severe acute respiratory distress
syndrome(ARDS) model in adult sheep (19). We tested the
hypothesis that the LAD would reduce lung damage in a model
of acute lung injury in juvenile piglets.

MATERIALS AND METHODS

The Institutional Animal Care and Use Committee of the University of Alabama
at Birmingham approved the research protocol. All animal care and handling was in
accordance with the guidelines of the National Institutes of Health.

Surgery. Three- to 4-wk-old piglets were endotracheally intubated and
mechanically ventilated using an Infant Star ventilator (Infant Star 950,
Nellcor Puritan Bennett, Pleasanton, CA) and maintained on general anesthe-
sia using 1.5–5% isoflurane titrated to keep animals deeply sedated. Animals
were placed on a table with a heating pad to maintain body temperature at
37–38°C. Five French catheters were inserted into the thoracic aorta via the
right femoral artery for measurement of systemic arterial pressure and into the
inferior vena cava via the right femoral vein for measurement of central
venous pressure. After a left third to fourth interspace thoracotomy, a 10- or
12-mm ultrasonic flow transducer (T101, Transonic systems, Ithaca, NY) was
affixed around the main pulmonary artery to measure cardiac output (20). The
left carotid artery and internal jugular vein were surgically exposed and
cannulated with low-resistance catheters (Medtronic, Minneapolis, MN) of 8F
and 10F diameters, respectively. The LADwas primed with 60mL of heparinized
normal saline, debubbled of air, and attached to the vascular cannulae. Another
ultrasonic flow transducer (HT110, Transonic systems, Ithaca, NY) was placed on
the outflow tubing to measure blood flow through the LAD. Animals were
anticoagulated with a bolus of 50 units/kg of heparin after cannulation and
maintained on a heparin infusion at a rate of 100 units/h. After surgery, study
animals were observed for 30 min to allow for stabilization (Fig. 1).

Experimental protocols. Twenty-four juvenile piglets were assigned to four
groups (n � 6 per group): 1) Controls (control group): piglets did not receive lung
lavage but were acutely instrumented and ventilated at very low settings during
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the surgical procedure. Animals were killed at the end of surgery. 2) Saline
lavage-alone [SLL group (saline lung lavage)]: piglets were acutely instrumented,
ventilated at very low settings during the surgical procedure, and received lung
lavage. Animals were killed immediately after lavage. 3) Lavage followed by
IMV (IMV group): piglets were instrumented and received lung lavage followed
by conventional intermittent mandatory ventilation (IMV). 4) Lavage followed by
IMV, combined with LAD (LAD group): piglets were instrumented and received
lung lavage followed by IMV and LAD support.

Acute lung injury was induced by repeated lung lavages at 5-min intervals
using 0.9% warm saline (30 mL/kg). Lavages were continued until partial
pressure of arterial oxygen (PaO2) values decreased to less than 60 torr at FiO2

1.0 and there was a minimum reduction of 30% in dynamic lung compliance.
Postlavage, initial ventilatory settings were positive inspiratory pressure (PIP) �
12 cm H2O, positive end-expiratory pressure (PEEP) � 4 cm H2O, respiratory
rate (RR) � 24 breaths/min, and FiO2 � 1.0. The PEEP was maintained at 4 cm
H2O throughout the experiments. In both the IMV and LAD groups, PIP was
adjusted by 20% increments to reach a tidal volume of 6 mL/kg. Once the
targeted tidal volume was achieved, respiratory rate was reduced to attempt to
maintain partial pressure of arterial carbon dioxide (PaCO2) in the 45–55 torr
range. Concurrently, FiO2 was reduced to keep PaO2 above 60 torr (Fig. 2). Sweep
gas flow through the LAD (100% O2) was controlled by a flow meter and set at
1.5–2 times blood flow through the device. The goal pH was 7.20–7.35. The
duration of the experiment was limited to 6 h.

Measurements. Throughout the experiment, heart rate (physiologic re-
corders; Gould-Brush 2400S, Oxnard, CA), systemic arterial pressure, pul-
monary arterial pressure (pressure transducers; Spectramed P23XL, Oxnard,
CA), oxygen saturation by pulse oximetry (N-100 C, Nellcor, Pleasanton,
CA), pulmonary artery flow, and blood flow through the LAD by flow
transducers were continuously recorded. Lung compliance and tidal volume
were measured and recorded using a Bicore pulmonary function apparatus

(Bicore, Pulmonary Monitor CP-100, Irvine, CA), which used a pneumota-
chograph attached to the endotracheal tube adapter.

Blood samples. Arterial as well as pre and postdevice blood gases were
monitored at baseline, 30 min after lung injury, and 15 min after changes in
ventilatory settings using a blood gas analyzer (ABL 700 series, Radiometer
America Inc., Westlake, OH).

Histologic assessment. After the animals were killed at the conclusion of the
experiment with an overdose of pentobarbital, the trachea was clamped at
end-expiration with a PEEP of 5 cm H2O, and the lungs were removed en bloc.
Lungs were fixed in 10% formalin for 24 h, transferred to 70% alcohol, and
paraffin-embedded. Five micrometer-thick lung sections were prepared from the
cranial dorsal (nondependent) and caudal ventral (dependent) regions. Hematox-
ylin and eosin stained sections were scored using a semiquantitative scoring
system by two independent observers blinded to the treatment group (21–24).
Variables scored were alveolar and interstitial inflammation, alveolar and inter-
stitial hemorrhage, edema, atelectasis, and necrosis. Severity of injury was graded
by the following scale: no injury � 0; injury to 25% of the field � 1; injury to 50%
of the field � 2; injury to 75% of the field � 3; and diffuse injury � 4. Ten random
fields from each section were examined at 40� magnification to minimize the effect
of regional variation. Injury scores were averaged for analysis.

Statistical analysis. Data were expressed as mean � SEM and were
displayed and analyzed by SigmaStat v. 3.5 (Jandel Scientific, San Rafael,
CA). Lung injury scores were considered as the primary outcome and were
analyzed using ANOVA followed by Tukey’s test.

Hemodynamic variables, arterial blood gases, and pH were compared over
time by repeated measures ANOVA. If significant differences were found by
repeated measures ANOVA, multiple comparisons by Dunnett’s test (for
hemodynamic variables) or Tukey’s test (for blood gases) were performed. A
p value of �0.05 was considered statistically significant.

RESULTS

One animal in each of the LAD and the IMV groups died
shortly before the completion of the study. Data from these
animals were included in analysis.
Hemodynamics. Both the groups had similar baseline char-

acteristics for body weight, hematocrit (Hct), heart rate (HR),
mean arterial pressure (MAP), and cardiac output (CO). These
variables remained statistically comparable among the groups
at the end of the study. Cardiac output decreased in both the
groups because of the natural course of the lung injury model
(Fig. 3A and B). Blood flow through the LAD was constant

Figure 1. Photograph showing blood flowing from the carotid artery into the
LAD and then back to the jugular vein, while O2 flows in a counter-current
manner through the LAD.

Figure 2. Algorithm for ventilator management of experimental groups. TV,
Tidal volume.

Figure 3. Changes in heart rate (A) and cardiac output (B) of the LAD group
compared with the IMV group during 6-h postlung lavage. Pre, baseline
values before lung lavage; 0.5 h, 30-min postlavage and after LAD connection
to the animal. All the values are mean � SEM (p � 0.05). Filled circles
represent the LAD group and open circles represent the IMV group.
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and ranged from 14 to 32 mL/kg/min and averaged 26 mL/
kg/min or 25% of cardiac output. Despite the arteriovenous
shunt, the heart rate and MAP remained relatively constant
and were not different from baseline.
Lung function. Baseline PaO2/FiO2 ratio and pulmonary

compliance (Cdyn) were similar in both the groups. Saline
lavage caused profound pulmonary dysfunction as evidenced by
a significant and similar decrease in PaO2/FiO2 ratio and decrease
in Cdyn in all the animals.
PIP needed to be increased to maintain PaO2 and PaCO2 in

the IMV group. The LAD allowed significant reduction in
PIP, tidal volume (VT), and FiO2 compared with the settings
after lavage (Table 1 and Fig. 4). Target VT could be achieved
in LAD group compared with IMV group. PaCO2 remained
higher than our target of 45–55 torr in both the groups and hence
ventilatory rate was not reduced. Both the LAD and IMV groups
developed mild respiratory acidosis compared with the control
and SLL group, and the IMV group also developed metabolic
acidosis (Table 1).
Histology. Lung lavage induced injury in the SLL group

compared with the control group. Lungs of the IMV group
demonstrated gross damage including edema with distinct
emphysematous and hemorrhagic changes on the pleural sur-
faces. Lung injury scores were increased in the IMV group
compared with the control, SLL, and LAD groups (Fig. 5; p �
0.05). Lungs from the IMV group demonstrated significantly
thickened and congested alveolar walls, marked alveolar in-
flammation, and airway injury compared with the other three
groups (Fig. 6). The LAD group had significantly less total
lung injury scores, inflammatory response, and airway injury

compared with the IMV group and was not statistically dif-
ferent compared with the control group (Figs. 5 and 6).

DISCUSSION

To our knowledge, this is the first study to examine the
effects of a pumpless extracorporeal LAD on lung histopa-
thology in a juvenile animal model of acute lung injury. It was
designed to evaluate the combined effect of the LAD and a
lung-protective ventilation strategy in an animal model of

Figure 4. Changes in peak inspiratory pressure (A), tidal volume (B), and PaO2/FiO2 ratio (C) of the LAD group compared with the IMV group during 6 h. Pre,
baseline values before lung lavage; 0.5 h, 30-min postlavage and after LAD connection to the animal. All the values are mean � SEM (*p � 0.05). Filled circles
represent the LAD group and open circles represent the IMV group.

Figure 5. Comparison of lung injury scores among all the four groups
revealing the raw data as a vertical dot plot superimposed on the box plot of
the median of the total lung injury score with the 5th and 95th percentile of
six animals in each group. TLIS, total lung injury score; Control, Control
group; SLL, lavage-alone group; IMV, lavage followed by mechanical venti-
lation group; LAD, LAD group. *p � 0.05 for IMV group compared with the
other three groups.

Table 1. Changes of peak inspiratory pressure, pulmonary compliance, and arterial blood gases of LAD group compared with IMV group
as postlavage and at the end of the study

PIP (cm H2O) VT (mL/kg) pH PaCO2 (mm Hg) PaO2/FiO2 (cm H2O) HCO�
3

IMV
Post 25 � 3 9 � 1 7.38 � 0.02 57 � 7 97 � 48 29 � 1
End 27 � 3 8 � 1 7.21 � 0.04† 64 � 7 121 � 66 22 � 3†

LAD
Post 21 � 3 8 � 1 7.40 � 0.03 54 � 10 94 � 29 30 � 1
End 13 � 1*† 6 � 1 7.25 � 0.02† 60 � 8 410 � 127 26 � 1

All values are mean � SEM.
* p � 0.05, difference between the groups at end of experiment.
† p � 0.05, difference between the postlavage and end of experiment within the same group.
Post, measurements 30 minutes after bronchoalveolar lavage; End, end of experiment. HCO�

3, bicarbonate.
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induced surfactant deficiency. This strategy depended on us-
ing a smaller tidal volume of 6 mL/kg and alveolar mainte-
nance of lung volume by sufficient levels of PEEP. We aimed
at maintaining a fixed PEEP that was enough to maintain lung
expansion while decreasing tidal volume to prevent overinfla-
tion. Previous studies have shown that PEEP reduced severity
of VILI and reduced damage produced by repeated opening
and closing of lung units in surfactant deficient lungs; how-
ever, PEEP might favor hyperinflation if tidal volume was not
reduced (25–27). The LAD coupled with low-frequency me-
chanical ventilation allowed for significant reductions in peak
inspiratory pressures and tidal volumes, which were associ-
ated with reduced acute lung injury while achieving adequate
gas exchange.
Recent technological advances have led to a new generation

of low-resistance pumpless extracorporeal lung assist (pE-
CLA) devices. These devices were developed to limit blood
interaction with extracorporeal foreign surfaces and consump-
tion of blood components secondary to shear stress, which are
seen in ECMO (28–32). The LAD, a pECLA device, has
sufficient membrane surface area for partial gas exchange. The
LAD was shown to improve gas exchange and survival in
adult animal models (33,34), and our study demonstrates that
the LAD shows also preliminary feasibility and efficacy in a
juvenile animal model.
The lung histology after lavage revealed diffuse involve-

ment with alveolar hemorrhage, septal thickening, formation
of hyaline membranes, increase in numbers of inflammatory
cells within the intracellular space, and airway denudation.
These findings are consistent with those described in acute
lung injury models (35,36). Compared with the LAD and
control groups, the IMV group demonstrated marked denuda-
tion of the airway epithelium either focally or diffusely, and a
significant increase in the number of alveolar inflammatory
cells. These differences are probably attributable to the signif-
icantly higher peak inspiratory pressures and tidal volumes
that were necessary in the IMV group to achieve adequate gas

exchange. This is consistent with literature that indicates that
mechanical ventilation in animal models with high PIP (37)
and large tidal volumes (36) leads to acute lung injury and
ultimately to respiratory failure. These findings were sup-
ported by the large clinical, randomized trial conducted by the
National Institutes of Health/National Heart, Lung, and Blood
Institute ARDS Clinical Network on Ventilator Management
that revealed a 25% improvement in the outcome of patients
managed with lower tidal volumes (38).
In our study, hemodynamic changes were similar in both

the groups, with heart rate increasing and cardiac output and
systemic arterial pressure decreasing during the course of the
6 h of the study. Mandava et al. (37) described systemic
hypotension and decreased cardiac output in a similar RDS
model. They attributed these changes to systemic capillary
leak syndrome (SCLS) that manifests as intravascular volume
depletion, hemoconcentration, and shock. They reported that
SCLS developed as early as 2 h after starting IMV and
evolved into a lethal form with cardiovascular collapse and
death despite all supportive measures (37). Hypoxia was not
the immediate cause of death. There was adequate response to
epinephrine or to volume loading. These observations were
very similar to ours. One animal died from each group of the
study between the third and fourth hour after the induction of
acute lung injury secondary to deterioration in cardiorespira-
tory status. This death rate was lower than the 50% rate
described by Kaisers et al. (39) in juvenile pigs with lavage-
induced respiratory distress syndrome.
The hemodynamic changes noted are unlikely to be sec-

ondary to the extracorporeal shunt, as they were comparable
between the groups. Zwischenberger et al. (40) noted that
despite a shunt of up to 25% of cardiac shunt through the LAD
circuit for 7 d, there was no instability in the hemodynamic
profile. Brunston et al. (41) showed that perfusion of vital
organs was maintained within 80% of baseline in animals with
an arteriovenous shunt of up to 25% of the cardiac output. In
our study, the low-resistance LAD circuit allowed a blood
flow of up to 32% of the cardiac output at a mean arterial
blood pressure of around 70 mm Hg. Oxygen delivery and
tissue perfusion were maintained as indicated by a normal
oxygen saturation and lack of metabolic acidosis. Both arterial
oxygen tension and mixed venous saturation were signifi-
cantly higher in the LAD group than in the IMV group. The
PaO2/FiO2 ratio, a reliable predictor of survival in ARDS (42),
was higher in the LAD group at the end of the 6-h study. At
the end of the experiment, the higher PaCO2 than our target in
both the LAD and IMV groups was probably related to the
significant lung damage in addition to fluid retention in the
airways caused by lavage. Allowing for permissive hypercap-
nia, we could achieve target VT of 6 mL/kg with less PIP,
therefore reducing VILI.
One of the limitations of our study is that lung lavage does

not accurately simulate RDS. However, the goal of this study
was to test the effect of the LAD on VILI in a surfactant-
deficient juvenile animal model, as many newborn pulmonary
diseases are associated with surfactant deficiency being sec-
ondary to prematurity, pneumonia, or meconium aspiration.
Repeated lavage with depletion of surfactant decreases lung

Figure 6. Photomicrographs of hematoxylin and eosin stained lung sections
from Control piglets (A), piglets in lavage group receiving lung lavage only
(B), piglets in IMV group receiving lung lavage and mechanical ventilation
during 6 h (C), and piglets in LAD group receiving lung lavage, mechanical
ventilation and supported by the LAD for 6 h (D).
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compliance, impairs gas exchange, facilitates alveolar col-
lapse, and increases the likelihood of mechanical injury to
alveolar walls during repeated cycles of opening and closing
during mechanical ventilation. Therefore, the surfactant-
depletion model is useful for evaluation of VILI. Other animal
models of ALI that have been reported in the literature include
oleic acid, LPS, acid aspiration, hyperoxia, bleomycin, pul-
monary ischemia-reperfusion, nonpulmonary ischemia reper-
fusion, i.v. bacteria, intrapulmonary bacteria, peritonitis, cecal
ligation, and puncture. However, the advantage of the surfac-
tant-depletion model is that it provides a useful way to test the
effect of different ventilatory strategies on development of
tissue injury because injury would result more from the ven-
tilatory strategies than from the saline lavage. In contrast, the
other methods such as acid aspiration lead to significant lung
injury and the additional injury of larger tidal volumes may be
harder to assess. The LAD is also dependent on cardiac output
and hence cannot be expected to support gas exchange in
cardiogenic shock or other conditions with poor cardiac out-
put. Another limitation is that this study evaluated only the
short-term effects of lung lavage and mechanical ventilation.
Although it may not be optimal, this acute model of lung
injury is supported by a good body of literature (43–49), and
the promising short-term results demonstrate the feasibility for
longer-term studies.
In conclusion, the LAD improved gas exchange and re-

duced VILI in juvenile piglets after lung lavage while main-
taining normal hemodynamics. Future studies are required to
improve the biocompatibility of the LAD, test long-term
efficacy in chronically instrumented animals, and evaluate less
invasive methods of using the LAD, such as connection to the
umbilical vessels, which would increase the clinical relevance
of the device.
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