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Simvastatin Inhibits Candida albicans Biofilm In Vitro
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ABSTRACT: By inhibiting the conversion of 3-hydroxy-3-
methylglutaryl CoA (HMG-CoA) to mevalonate, statins impair cho-
lesterol metabolism in humans. We reasoned that statins might
similarly interfere with the biosynthesis of ergosterol, the major
sterol of the yeast cell membrane. As assessed by spectrophotometric
and microscopic analysis, significant inhibition of biofilm production
was noted after 16-h incubation with 1, 2.5, and 5 �M simvastatin,
concentrations that did not affect growth, adhesion, or hyphal forma-
tion by C. albicans in vitro. Higher concentrations (10, 20, and 25
�M simvastatin) inhibited biofilm by �90% but also impaired
growth. Addition of exogenous ergosterol (90 �M) overcame the
effects of 1 and 2.5 �M simvastatin, suggesting that at least one
mechanism of inhibition is interference with ergosterol biosynthesis.
Clinical isolates from blood, skin, and mucosal surfaces produced
biofilms; biofilms from bloodstream isolates were similarly inhibited
by simvastatin. In the absence of fungicidal activity, simvastatin’s
interruption of a critical step in an essential metabolic pathway, highly
conserved from yeast to man, has unexpected effects on biofilm produc-
tion by a eukaryotic pathogen. (Pediatr Res 66: 600–604, 2009)

Candidemia is the fourth most common cause of blood-
stream infection in hospitalized patients, with Candida

albicans predominating (1). Hosts at greatest risk include burn
patients, postpump cardiac surgery patients, neutropenic on-
cology patients, premature newborns, and patients recovering
from abdominal surgery. In these groups, the incidence of can-
didemia ranges from 0.7 to 1.6 cases per 1000 discharges (2).
Age also exerts a profound effect, with the incidence in

neonates (1.6 per 1000) about 8-fold greater than in adults (3).
Premature newborns have significant higher risk, with an
infection rate rising from 10 per 1000 in infants weighing
1001 to 1500 g to 75 per 1000 in infants �800 g (4). In all of
these high-risk groups, mortality exceeds 25% in many studies
(5–9). A common risk factor is the presence of central venous
catheters (4,10) that serve as a site for the development of
biofilm, composed of layers of yeast cells, hyphae, and a
profuse exopolysaccharide matrix that renders the biofilm
impenetrable to antibiotics and host defenses (11–13).

Clinical studies (14–17) and national guidelines (18,19)
have emphasized that treatment of candidemia in those pa-
tients with a central venous catheter in place requires removal
or replacement of the catheter, in addition to antifungal ther-
apy, although catheter removal may disrupt the delivery of
lifesaving chemotherapy, parenteral nutrition, antibiotics, or
blood products. Although prophylaxis with fluconazole has
proven effective in the prevention of Candida colonization in
premature newborns as well as pediatric and adult oncology
patients, the effect on mortality ascribable to candidemia has
been variable (20–22). Thus, additional strategies for the
prevention or impairment of biofilm production by C. albicans
could be helpful.
Recently, our laboratory characterized two mitochondrial

mutants in which the generation of acetyl CoA is impaired
(23,24). Deletion of both copies of the gene encoding either
complex I of the electron transport chain (NDH51) or pyruvate
dehydrogenase complex protein X (PDX1) blocks the gener-
ation of acetyl CoA. Although we originally reported that
these mutants displayed a wild-type phenotype with regard to
growth, replication or hyphal formation in rich medium
(23,24), we subsequently found that biofilm formation, as
indicated by safranin staining of exopolysaccharide matrix,
was significantly impaired in both mutants (Fig. 1) (25–27).
We therefore hypothesized that other inhibitors of acetyl CoA

metabolism, such as the statins, might impair biofilm formation
in C. albicans even without concomitant fungicidal effects. In
higher eukaryotes, statins reversibly and competitively inhibit
hepatic cholesterol synthesis from acetyl CoA by inhibiting
3-hydroxy-3-methylglutaryl CoA (HMG-CoA) reductase, which
converts HMG-CoA to mevalonate (28,29). In more primitive
eukaryotes such as Candida albicans, comparable steps in this
essential pathway are highly conserved, but the final product is
ergosterol, the major sterol of the yeast cell membrane (30).
Therefore, we designed experiments to determine whether tar-
geting an essential metabolic pathway in C. albicans could exert
an inhibitory effect on production of biofilm by C. albicans in
vitro in the absence of fungicidal activity.

METHODS

Chemicals. Simvastatin (Sigma Chemical Co.-Aldrich), provided in the
form of a lactone prodrug, was activated by solubilization in 15% (vol/vol)
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ethanol and 0.25% (wt/vol) NaOH at 60°C for 1 h (31). Stock solutions of
hydrolyzed simvastatin were stored at �20°C at 20 mg/mL (48 mM).
Ergosterol (Fluka, Switzerland) was dissolved at 50 mg/mL (126 mM) in
Tween 80:ethanol (1:1) at 60°C for 10 min. Filipin (Polysciences Inc.) was
reconstituted in DMSO at 50 mg/mL, as described (32–34). Safranin (Acros
Organics) was solubilized in H2O at a working concentration of 0.1% (wt/vol)
(25,26).

Growth of C. albicans strains. Candida albicans laboratory strain
BWP17wt and the isogenic mutants deleted for both alleles of NDH51
(ndh51) and PDX1 (pdx1–29) have been previously described (23,24), as have
clinical isolates from blood, skin, and mucosal surfaces (35). All strains were
maintained at �80°C in 20% glycerol. Working cultures were plated on YPD
(yeast/peptone/dextrose) agar plates (1% yeast extract, 2% Bacto-peptone,
100 mM dextrose, 1.5% Bacto-agar) at 30°C for 48 h. A single colony of the
desired strain was inoculated into 2.5 mL YPD medium and incubated
overnight at 30°C with shaking.

Biofilm assays. The biofilm assay has been previously published (25–27).
Overnight cultures were diluted to a concentration of 2.5 � 105 colony-
forming units/mL in YPD (OD600). Yeast cells (100 �L) were inoculated into
each well of a 96-well flat-bottom polystyrene culture plate (Corning 3595)
and incubated at 37°C for 3, 6, or 16 h in a humidified chamber. Simvastatin
was added at concentrations ranging from 1 to 25 �M, ergosterol at 90 �M
and filipin at 50 �g/mL, as indicated. Cells not treated with simvastatin were
incubated with solvent (0.25% NaOH/15% ethanol) equivalently diluted in
YPD. Each reaction was performed in triplicate wells. For quantitation,
medium was removed at the indicated time point, and biofilms were washed
twice with PBS, stained with 100 �L safranin for 10 min at room temperature,
washed 3� with distilled H2O, and scanned at OD405 with a Spectra Max 190
plate reader (Molecular Devices, Sunnyvale, CA) using Soft max Pro 4.3.1
software. In certain experiments, filipin (50 �g/mL) was added to planktonic
cells after 16-h incubation with simvastatin (5 �M) � ergosterol (90 �M);
cells were observed immediately using a DAPI filter at 358 nm excitation and
461 nm emission wavelength. For all biofilms, microscopic analysis of
staining with safranin or filipin was performed with an Olympus IX70
fluorescent microscope using a 40� objective lens. Digital images were
captured with an Optronics Engineering Camera (DEI-750) and Image-Pro
Plus 5.0 software.

Statistical analysis. In the dose-response experiments, nine separate ex-
periments were done across the entire range of simvastatin concentrations
(0–25 �M). In a post hoc analysis, the Wilcoxon signed ranks test was used
for paired comparison (total comparisons � 6), and the critical p value was
adjusted with the Bonferroni correction (0.05/6 � 0.008).

For the experiments examining the effects of exogenous ergosterol in
reconstituting biofilm formation, the Wilcoxon signed ranks test was used to
test whether the addition of ergosterol resulted in the difference of the
observed production of biofilm as measured by spectrophotometry. Again, the
Bonferroni correction was applied to adjust for the three pair-wise compari-
sons (1, 2.5, and 5 �M simvastatin), which resulted in the critical p value of
0.017.

RESULTS

Assessment of biofilm production. Spectrophotometric
analysis of safranin staining was used to quantitate the effects
of simvastatin (1–25 �M) on mature biofilms produced by C.

albicans (Fig. 2). After 16-h incubation, a concentration of 1
�M simvastatin reduced biofilm formation by 19%. However,
concentrations of 2.5 to 25 �M simvastatin reduced biofilm
formation by �87%. These reductions were statistically sig-
nificant (p � 0.007). Quantitative cultures of organisms in
biofilms showed that simvastatin concentrations �5 �M were
not candidacidal; simvastatin concentrations �10 �M led to a
1-log kill.
To determine whether early changes in adhesion or hyphal

formation were responsible for simvastatin’s effects on mature
biofilm, biofilms were assessed microscopically after 0, 3, or
6 h treatment with solvent (control) or the indicated concen-
tration of simvastatin (Fig. 3). Concentrations between 1 and
5 �M were chosen for detailed analysis because of the results
in Figure 2 and because these concentrations are �20- to
100-fold less than those previously reported to be cidal for C.
albicans (36). At time 0 and after 3 h, similar numbers of cells
adhered in the presence of 0, 1, 2.5, or 5 �M simvastatin,
whereas at 6 h, both untreated and simvastatin-treated cells
produced hyphae. However, as assessed by safranin staining at
16 h, C. albicans cells treated with 2.5 or 5 �M simvastatin
showed marked impairment of biofilm production, compared
with cells treated with solvent alone.

Figure 2. Assessment of mature biofilms at 16 h in the absence or presence
of the indicated concentrations of simvastatin. Spectrophotometric quantita-
tion of safranin staining was performed at OD405. Bars represent mean � SD
for n � 9 experiments with the indicated concentration of simvastatin. *p �
0.0007 for 1.0 to 25 �M simvastatin compared with the wild-type strain �
solvent.

Figure 3. Time- and dose-dependent microscopy of biofilm formation in the
absence or presence of the indicated concentrations of simvastatin.

Figure 1. Photos in top row illustrate hyphal formation in rich radium for
wild-type (WT) strain and isogenic mutants deleted in the 51 kDa subunit of
nicotinamide adenine dinucleotide dehydrogenase complex I (ndh51) or in
pyruvate dehydrogenase complex protein X (pdx1-29); photos in bottom row
show safranin staining of corresponding mature biofilm at 16 h.
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Mechanism of inhibition. Because concentrations of sim-
vastatin that inhibited biofilm production (�1�M) did not
seem to affect growth, adherence, or hyphal formation of C.
albicans (Fig. 2), we used microscopy to assess the ability of
exogenous ergosterol to overcome the inhibitory effects of
simvastatin (Fig. 4A). Ergosterol did not augment safranin
staining of 16 h biofilms formed by control organisms treated
with solvent (NaOH/ethanol). In the presence of 1 or 2.5 �M
simvastatin, production of C. albicans biofilm was visually
impaired; however, addition of ergosterol restored safranin
staining. In the presence of 5 �M simvastatin, the addition of
ergosterol was not sufficient to restore safranin staining, sug-
gesting that other statin-dependent or -independent processes
may be compromised under these conditions.
These results were substantiated in a spectrophotometric

assay (Fig. 4B). In the absence of simvastatin, addition of
ergosterol did not increase safranin staining of mature (16 h)
biofilms. Incubation with 1 �M simvastatin led to a decrease
in staining, which improved with the addition of ergosterol
(p � 0.018). The same result was true for 2.5 �M simvastatin:
the addition of ergosterol restored safranin staining (p � 0.018).
However, in the presence of 5 �M simvastatin, ergosterol proved
ineffective, again indicating that simvastatin’s inhibitory effects
may not be confined to ergosterol biosynthesis.
The effects of simvastatin on ergosterol production were

corroborated by staining with filipin, a dye that is specifically
taken up by ergosterol (33,34). Detection of ergosterol in the
cell wall and hyphae of C. albicans cells was quite distinct in
the absence of simvastatin, but in the presence of simvastatin,
ergosterol was spotty and disordered (Fig. 5). The addition of
ergosterol to the simvastatin incubation mixture restored fili-

pin staining in planktonic cells, even though biofilms treated
with 5 �M simvastatin were not rescued by ergosterol (Fig. 4A
and B). These results provide additional confirmation that at
least one mechanism by which simvastatin inhibits C. albicans
relates to interference with ergosterol synthesis, which may be
more susceptible to simvastatin in organisms composing a
biofilm, as opposed to planktonic cells.
Corroboration with clinical isolates. Biofilm production by

clinical isolates from blood (n � 5), skin (n � 2), and mucosal
surfaces (n � 2) was assessed by safranin staining in the
absence or presence of 5 �M simvastatin (Fig. 6). Laboratory
strain BWP17wt proved to be the most vigorous biofilm
producer in vitro, whereas the biofilm produced by mutant
pdx1–29 was markedly decreased as previously observed. All
clinical isolates produced biofilms, but safranin staining was
less intense than with the laboratory strain. By spectrophoto-
metric assay, biofilm formation by four blood isolates from
patients with catheter-associated candidemia was inhibited by
5 �M simvastatin, with decreases in OD405 ranging from 53 to
59%. The effects of simvastatin on biofilms formed by skin
and mucosal isolates were not tested.

DISCUSSION

Results of these in vitro studies show that noncandidacidal
concentrations of simvastatin (1, 2.5, or 5 �M) inhibit biofilm
production in vitro by laboratory and clinical isolates of C.
albicans in both microscopic and spectrophotometric assays.
Although microscopic and spectrophotometric assays showed
a modest inhibitory effect of 1 �M simvastatin, repeated
analysis in a spectrophotometric assay showed statistically
significant inhibition �87% at concentrations of 2.5 �M and
above. At concentrations �5 �M, simvastatin does not inhibit

Figure 4. A. Microscopic analysis of reconstitution of simvastatin-inhibited
biofilm formation by ergosterol. Panels i, iii, v, and vii are biofilms treated
with NaOH/ethanol solvent (i) or 1 �M (iii), 2.5 �M (v), or 5 �M (vii)
simvastatin, respectively. Panels ii, iv, vi, and viii received 90 �M ergosterol
in addition to solvent and simvastatin. B. Spectrophotometric analysis of
reconstitution of simvastatin-inhibited biofilm formation by ergosterol. f:
mean � SD for n � 7 experiments with the indicated concentration of
simvastatin. �: mean � SD for n � 7 experiments with the indicated
concentration of simvastatin plus 90 �M ergosterol. *p � 0.018 for the
indicated pairs, **not significant.

Figure 5. Filipin staining of planktonic Candida albicans cells in the ab-
sence (A), and presence of 5 �M simvastatin (B), or 5 �M simvastatin � 90
�M ergosterol (C).

Figure 6. Biofilm production by the wild-type strain BWP17wt, the mutant
pdx1–29, and eight clinical isolates. Results are the mean � SD for n � 3
experiments. *p � 0.01.
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growth of C. albicans, and neither adhesion at 3 h nor hyphal
production at 6 h is impaired in organisms incubated with 1,
2.5, or 5 �M simvastatin (Fig. 3).
The ability of exogenous ergosterol to restore biofilm for-

mation after treatment with 1 or 2.5 �M simvastatin (Fig. 4A
and B) indicates that at least one inhibitory mechanism is
interference with ergosterol synthesis. Although genes in-
volved in the ergosterol pathway are known to contribute to
biofilm formation (37,38), the failure of ergosterol to restore
biofilms treated with 5 �M simvastatin suggests that concen-
trations �5 �Mmay impair other metabolic processes as well,
such as statin-dependent geranylgeranylation, farnesylation,
or production of exopolysaccharide. Interestingly, as the sim-
vastatin concentration exceeded 5 �M, quantitative cultures of
biofilms yielded increasing numbers of petite mutants, which
represent organisms that have lost mitochondrial DNA. Petite
mutants have been reported in Candida glabrata with simva-
statin concentrations of 60 �M (39).
Although enzyme conformation and location of the active

site lysine differ between Class II (bacterial) and Class I
(eukaryotic) HMG CoA reductases, the isoprenoid pathway is
essential for many microbes (40–42). Although Class II en-
zymes are much less sensitive to inhibition by statins, inhibi-
tion of bacterial or fungal growth by interference with the
isoprenoid pathway is well described. An inhibitor of squalene
synthetase, an intermediate step in the cholesterol pathway,
blocked staphyloxanthin production and attendant virulence in
Staphylococcus aureus (43). Lovastatin-mediated growth in-
hibition has been reported for several pathogenic and non-
pathogenic yeasts and one mold (31,39,44). For example, 100
�M simvastatin or atorvastatin inhibited growth of four Can-
dida species (C. albicans, tropicalis, glabrata, and parapsilo-
sis) as well as Aspergillus fumigatus (36).
Our studies are the first to examine the effect of statins on

C. albicans biofilm. The lowest concentration of simvastatin
that impaired biofilm formation in our studies (1 �M) is
10-fold less than the concentration that inhibited growth of C.
albicans in our experiments and �60 to 100-fold less than the
candidacidal concentration reported in previous work (36).
Nevertheless, 1 �M simvastatin is still �30-fold higher than
the plasma level achieved after standard oral dosing in humans
(28). Although pharmacoepidemiologic studies have found no
increased risk for fetal anomalies in pregnant women taking
statins (45), reformulating simvastatin as a coating for catheter
lumens may be a more feasible approach, as has been done
with other substances such as EDTA or amphotericin, where
oral dosage is impractical (46,47).
Although these studies report an inhibitory effect of statins

on biofilm production by C. albicans laboratory and clinical
isolates in vitro, in vivo studies in an animal model of catheter-
associated bloodstream infection will be required to confirm
clinical relevance. It is certainly possible that other statins or
pharmacologic analogs will prove even more effective than
simvastatin, either in vitro or in vivo. Indeed, a small molecule
screen to identify potentially effective compounds is underway
with our collaborators. The studies reported here represent a
first step in demonstrating that interference with an essential
pathway of lipid synthesis in C. albicans may have unex-

pected and potentially clinically relevant effects on biofilm
formation.
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