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ABSTRACT: Preterm infants have smaller cerebral and cerebellar
volumes at term compared with term born infants. Perinatal factors
leading to the reduction in volumes are not well known. IL-6 -174
and -572 genotypes partly regulate individual immunologic re-
sponses and have also been connected with deviant neurologic
development in preterm infants. Our hypothesis was that IL-6 -174
and -572 genetic polymorphisms are associated with brain lesions
and regional brain volumes in very low birth weight or in very
preterm infants. DNA was genotyped for IL-6 -174 and -572 poly-
morphisms (GG/GC/CC). Study infants (n � 175) were categorized
into three groups according to the most pathologic brain finding in
ultrasound examinations until term. The brain MRI performed at term
was analyzed for regional brain volumes. Analyzed IL-6 genotypes
did not show statistically significant association with structural brain
lesions. However, IL-6 -174 CC and -572 GG genotypes associated
with reduced volume of one brain region, the combined volume of
basal ganglia and thalami, both in univariate and in multivariate
analyses (p � 0.009, 0.009, respectively). The association of IL-6
-174 and -572 genetic polymorphisms with smaller volumes in deep
gray matter provides us new ways to understand the processes
leading to neurologic impairments in preterm infants. (Pediatr Res
65: 90–96, 2009)

The role of cytokines in the process leading to brain lesions
of preterm infants has been under intensive research

lately. High interleukin (IL)-6 and IL-1� concentrations in
amniotic fluid have been found in preterm infants with white
matter (WM) lesions (1), and elevated IL-6, IL-8, and IL-1 �
levels in both umbilical and neonatal blood samples of pre-
term infants have been found to associate with intracerebral
hemorrhage (2,3). Furthermore, in term infants, higher blood
levels of IL-6, IL-8, and IL-1 � have been reported to asso-
ciate with abnormal neurodevelopmental outcome at 30 mo of
age (4). In contrast, there are studies showing no association
between the level of cord serum or neonatal blood proinflam-
matory cytokines and preterm infant’s brain damage (5,6) and
neurodevelopmental outcome of preterm infants at 2 y of
corrected age (5). Ellison et al. (6) have suggested that plasma
cytokine levels may reflect poorly the cerebral inflammatory
response in preterm infant, because they found a connection

between high levels of cerebrospinal fluid IL-6, IL-10, and tumor
necrosis factor alpha (TNF-�) and white matter damage (WMD),
but no association between plasma cytokines and WMD.
The inflammatory response to infectious stimuli, and thus

the clinical outcome of the inflammatory process, is partly
regulated by genetic factors. Genetic polymorphism (geno-
types GG/GC/CC) in IL-6 gene promoter -174 and -572
positions affects IL-6 expression. For example, C allele at the
position -572 has been associated with increased IL-6 synthe-
sis (7,8). The effects of IL-6–174 genotypes on the IL-6
response are more controversial. GG genotype at the position
-174 has been found to associate with elevated leukocyte (9)
and macrophage (10) IL-6 response. On the other hand, CC
genotype associated with higher IL-6 production when neonatal
monocytes were stimulated with lipopolysaccharide and higher
IL-6 production in newborns compared with adults (11).
IL-6 -174 CC genotype has been connected with severe

hemorrhagic brain lesions and WMD seen in brain ultrasound
(US) in preterm infants (12). In addition, IL-6 -174 CC
genotype was associated with disability at 2 or 5 1⁄2 y of age
(12). Quite contrary, Göpel et al. (13) did not find any
association between intraventricular hemorrhage (IVH) and
periventricular leukomalacia (PVL) and IL-6 -174 genotypes.
In addition, in the only available study of IL-6 -572 polymor-
phism, IL-6 -572 C genotype was reported to associate with
less optimal neurodevelopmental performance at 2 y of cor-
rected age and at 5 1⁄2 y of age in preterm infants (14).
However, there was no association between IL-6 -572 C
genotype and IVH or PVL.
Several studies have shown smaller regional cerebral and

cerebellar volumes in preterm infants imaged at term com-
pared with term born infants (15–19). For example, preterm
infants have been reported to have decreased volumes of the
cortical gray matter (17) and deep nuclear gray matter
(15,18,19). The risk for reduced brain volumes has been
associated with decreasing gestational age (15,16,19) and
brain pathology (16,20–22). In preterm infants, a decrease in
cerebral gray matter (22) and cortical volume (23) has been
associated with poor cognitive performance at school age. In
addition, reduction in caudate nuclei (24–26) and thalamusReceived February 4, 2008; accepted August 13, 2008.
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volume (27) has been suggested to cause developmental and
behavioral problems in preterm infants.
Perinatal factors leading to the reduction in brain volumes in

premature infants are not well known. Because proinflammatory
cytokines have been suggested to play a role in the development
of brain pathology in neonates, it is possible that cytokines also
affect the developing brain in more subtle ways causing changes
in regional brain growth and maturation potential.
The aim of this study was to test this novel hypothesis of

possible association between IL-6 -174 and -572 genotypes
and brain volumes. In addition, we evaluated their role on
structural brain lesions.

METHODS

Patient population. This study is a part of a larger multidisciplinary
project PIPARI (Development and Functioning of Very Low Birth Weight
Infants from Infancy to School Age). The inclusion criteria for the main study
were 1) the infant’s birth weight �1500 g or gestational age below 32 wk, 2)
the infant’s parents spoke and understood written Finnish or Swedish, and 3)
the families lived inside the hospital catchment area. Nine infants of eligible
infants (n � 283) were not included in this study because their parents
declined to participate. The exclusion criteria were 1) DNA sample was not
available and/or 2) brain imaging was not available. Ninety infants of the
remaining infants (n � 274) were excluded because of missing DNA sample
(n � 89) or brain imaging (n � 1). In multifetal pregnancies, the second
and/or third child were excluded from the analyses if the infants had the same
gender, had the same blood type, and the both IL-6 genotypes were similar.
Altogether nine infants were excluded for these reasons.

The final study population consisted of 175 infants born between January
2001 and December 2006 in the Turku University Central Hospital, Finland.
Parental consent was obtained after verbal and written information. This study
was approved by the Ethical Committee of the Hospital District of the
South–West Finland in June 2001.

The clinical data (Table 1) were collected prospectively as a part of the
PIPARI protocol. Gestational age was estimated according to the first- or
second-trimester ultrasonography performed routinely in Finland.

IL-6 genotyping. DNA was extracted from the ethylenediaminetetraacetic
acid blood samples using the nucleon BACC3-reagent kit (Amersham Bio-
sciences, USA). Analyzed IL-6 promoter regions were amplified using Poly-
merase Chain Reaction (PCR). The primers were chosen on the basis of
previous publications (7,28). PCR was performed in 25 �L using 100 ng
genomic DNA as a template, 0.4 �M of each primer, 80 �M dNTP, and �2
U DNA polymerase [DynaZyme II/DynaZyme EXT (Finnzymes, FIN) for
IL-6 -572 and FastStart Taq (Roche Diagnostics, GE) for IL-6 -174]. PCR
included 5-min denaturation at 95°C and 35 amplification cycles (40 s at
95°C, 30 s at 60°C and 40 s at 72°C for IL-6 -572 and 1 min at 95°C, 1 min
at 53°C, and 1 min at 72°C for IL-6 -174) and final elongation 5 min at 72°C.
Genotypes were resolved by using restriction fragment length polymorphism
(RFLP). The restriction endonucleases used were BsrBI (NEB, US) for IL-6
-572 and NIaIII (NEB, US) for IL-6 -174. Digestion was performed at 37°C
in 15 �L using 6–10 �L of PCR product and 3 U of restriction endonuclease
for 2 h. The size of the digestion products was determined by using agarose
gel electrophoresis.

Serial cranial US examinations. Cranial US examinations in the neonatal
intensive care unit were performed for all study infants at 3–5 d, at 7–10 d, at
1 mo of age and, thereafter, monthly until discharge from the hospital by a
pediatrician blinded to IL-6 genotypes. The US examinations were performed
using a 7 MHz vector transducer (Sonos 5500 Hewlett-Packard, Andover,
MA). The classification of IVH (grades I to IV) was performed according to
Papile et al. (29). Multiple cysts with typical location in posterior periven-
tricular white matter adjacent to the lateral ventricle and in the WM adjacent
to the foramina of Monro were classified as cystic PVL (30).

The cranial US examination at term was performed with 7.5 MHz vector
transducer (Aloka SSD 2000, Aloka, Tokyo, Japan) during January 2001–
August 2002 and 8 MHz vector transducer (General Electric Logic 9)
thereafter by a pediatric radiologist blinded to IL-6 genotypes. Ventriculo-
megaly was defined according to the reference values for very low birth
weight infants at term (Virkola K. The lateral ventricle in early infancy.
Doctoral thesis, 1988, Helsinki, Finland).

The infants were categorized into three groups according to the most
pathologic finding on brain US examinations: 1) normal, 2) mildly abnormal,
and 3) severely abnormal. The division into these groups was performed as
described by Rademaker et al. (31).

Magnetic resonance imaging of the brain. A magnetic resonance imaging
(MRI) study of the brain was performed at term at the same day as the US
examination. The imaging took place during postprandial sleep without
pharmacological sedation or anesthesia. Ear protection was used (3M Dis-

Table 1. Characteristics of the study infants (n � 175) classified according to the IL-6 genotypes of the infants

Characteristics

Study infants

Total, n � 175

IL-6 -174, n � 174

GG, n � 163 GC, n � 11

Male n (%) 102 (58) 95 (58) 6 (55)
Singleton n (%) 129 (74) 122 (75) 6 (55)
Twin n (%) 40 (23) 35 (21) 5 (45)
Triplet n (%) 6 (3) 6 (4) 0 (0)
Gestational age (wk) 290/7 (25/7) �230/7, 361/7� 286/7 (26/7) �230/7, 361/7� 296/7 (16/7) �271/7, 340/7�
Birth weight (g) 1126 (343) �400, 2120� 1119 (343) �520, 2120� 1189 (353) �400, 1855�
Birth weight z score �1.36 (1.49) ��4.90, 3.40� �1.35 (1.47) ��4.70, 3.40� �1.57 (1.82) ��4.90, 0.60�
Birth weight z score ��2.0 n (%) 54 (31) 50 (31) 4 (36)
Apgar score at 5 min �5 31 (18) 29 (18) 2 (18)

Characteristics

Study infants

IL-6 -174, n � 174

GG, n � 38 GC, n � 91 CC, n � 45

Male n (%) 24 (63) 51 (56) 27 (60)
Singleton n (%) 33 (87) 61 (67) 34 (76)
Twin n (%) 5 (13) 24 (26) 11 (24)
Triplet n (%) 0 (0) 6 (7) 0 (0)
Gestational age (wk) 293/7 (26/7) �240/7, 361/7� 290/7 (25/7) �230/7, 346/7� 285/7 (26/7) �240/7, 343/7�
Birth weight (g) 1172 (311) �580, 1675� 1142 (363) �400, 2120� 1069 (320) �5080, 2070�
Birth weight z score �1.56 (1.36) ��4.7, 0.7� �1.29 (1.46) ��4.90, 2.20� �1.34 (1.68) ��4.40, 3.40�
Birth weight z score ��2.0 n (%) 10 (26) 29 (32) 15 (33)
Apgar score at 5 min �5 7 (18) 14 (15) 9 (20)

Means (SD) and �min, max� are presented for gestational age, birth weight, and birth weight z score.
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posable Ear Plugs 1100, 3M, Brazil; Würth Hearing protector, Art.-Nr. 899
300 232, Würth, Austria). The MRI equipment was either an open 0.23 tesla
Outlook GP (Philips Medical Vantaa, Finland) (81 infants studied), or 1.5
tesla Philips Intera (Philips Medical Systems, Best, The Netherlands) (91
infants studied). The information about brain lesions in MRI was not used for
further analysis as the upgrading of the equipment may result in noncompa-
rable findings between the first and the latter half of the sample.

For volume measurements, at 0.23 T we obtained T1-weighted field echo
(FE) sequence with time repetition (TR) of 30 ms, time echo (TE) of 10 ms,
flip angle of 45 degrees, slice thickness of 5 mm, field of view of 220 � 220
mm2, and matrix of 256 � 256 was obtained in coronal plane. At 1.5 T, we
obtained coronal T1-weighted inversion recovery (IR) sequence TR of 3500
ms, TE of 400 ms, time inversion (TI) of 15 ms, flip angle of 90 degrees, slice
thickness of 4.8 mm, field of view is 180 � 180 mm2, and matrix of 256 �
256. The sequences were optimized relative to the field strength of the
equipment used.

The postacquisition volume measurements were performed on GE work-
station (GE AW1.0, GE Medical Systems, Milwaukee, USA) by one neuro-
radiologist blinded to IL-6 genotypes. The coronal T1-weighted images were
loaded in the Functool 1.0.postprocessing software (GE Medical Systems,
Milwaukee, USA). The volume measurement was manually performed sep-
arating cerebrospinal fluid and skull from brain tissue image by image.
Anatomical differentiation of the brain areas was based both on the anatomic
landmarks and on signal intensity differences of the brain structures. The
regional brain volumes measured were cerebral volume, cerebellar volume,
frontal lobe volume, the combined volume of the medulla oblongata and the
pons, and the combined volume of basal ganglia and thalami. The basal
ganglia and thalami were measured as a block and the anatomic border
between these basal gray matter nuclei and unmyelinated deep WM on both
field strength images was easily delineated by visual inspection. The medial
border of the basal ganglia and thalami was formed by the third ventricle, the
lateral border was formed by external capsule, and inferior border was formed
by the upper border of the mesencephalon.

Statistical analyses. Univariate analysis was performed to determine the
relationship between IL-6 -174 and -572 genotypes (GG/GC/CC) and ordinal
outcome variable (brain US findings) using cumulative logit models (32). After
that, analysis was redone controlling for possible confounding effects of gender,
gestational age, and z score of birth weight using cumulative logit models with
confounders and genotypes as predictors of severity of US finding.

Diagnostic plots were produced to ensure that assumptions of the analyses
were reasonably satisfied. As a result of these checks, inverse transformation
was performed to right-skewed distribution of the combined volume of
medulla oblongata and pons before data analysis. One-way analysis of
variance was conducted to evaluate the effect of IL-6 -174 and -572 genotypes
on brain volumes. Analysis of covariance was used to further study the effects
of IL-6 -174 and -572 genotypes on brain volumes controlling for possible
confounding effects of gender, gestational age, and z score of birth weight.

Statistical analyses were performed using SAS (version 9.1; SAS Institute,
Cary, NC). Results are presented with 95% confidence intervals. Two-sided
p values were used with p � 0.05 being considered statistically significant.

RESULTS

Of the 175 DNA samples, IL-6 -174 and -572 genotyping
was performed successfully to all but one sample in both
groups. The prevalence of IL-6 -174 and -572 genotypes
(GG/GC/CC) is shown in Table 2. The prevalence of different
genotypes did not differ significantly from the Finnish refer-
ence population (33,34). The allele frequency follows Hardy-
Weinberg equilibrium. This was tested by using a simulator
program http://krunch.med.yale.edu/hwsim/.
The cranial US examinations were performed according to

the protocol in intensive care unit to all 175 study infants. At

term age, all but one infant were examined by the US. The
findings in brain US examinations were normal in 55%, mildly
abnormal in 38%, and severely abnormal in 7% of the study
infants. IL-6 -174 and -572 genotypes were not associated
with the incidence of mildly or severely abnormal brain
lesions in univariate (-174 p � 0.259, CC versus GC: OR �
1.80, CI � 0.88 to 3.66; CC versus GG: OR � 1.33, CI � 0.58
to 3.04; GG versus GC: OR � 1.36, CI � 0.65 to 2.81; -572
GG versus GC p � 0.870, OR � 1.10, CI � 0.34 to 3.57) nor
in multivariate analyses (Table 3). Only gestational age asso-
ciated significantly with structural brain lesions in US examinations.
Of the 175 study patients, 172 had brain MRI performed at

term age. Of these, 153 had regional brain volumes measured
and the remaining 19 had qualitatively inadequate images
preventing reliable volume measurements. Mean values of the
regional brain volumes related to the IL-6 -174 and -572
genotypes are shown in Table 4. IL-6 -174 CC genotype was
significantly associated with smaller volume of basal ganglia
and thalami both in univariate (p � 0.008, CC versus GC:
estimated difference between means � �1.77, CI � �3.82 to
0.27; CC versus GG: estimated difference between means �
�3.19, CI � �5.61 to �0.78; GC versus GG: estimated
difference between means � �1.42, CI � �3.47 to 0.63) and
in multivariate analyses (Table 5). IL-6 -572 GG genotype
was also significantly associated with smaller volume of basal
ganglia and thalami both in univariate (GG versus GC: p �
0.008, estimated difference between means � �3.86, CI �
�6.72 to �1.00) and in multivariate analyses (Table 5). In
addition, smaller gestational age and smaller z score of birth
weight were significantly associated with reduction in basal
ganglia and thalami volume. IL-6–174 and -572 genotypes
had no significant associations with the other regional brain
volumes measured.

DISCUSSION

To our knowledge, this is the first study to examine the
association between IL-6 -174 and -572 genotypes and re-

Table 2. The prevalence of IL-6 -174 and -572 genotypes
(GG/GC/CC) in the study population

GG
genotype,
n (%)

GC
genotype,
n (%)

CC
genotype,
n (%)

-174 (n � 174) 38 (22%) 91 (52%) 45 (26%)
-572 (n � 174) 163 (94%) 11 (6%) 0 (0%)

Table 3. The multivariate analyses of the associations between
IL-6 -174 and -572 genotypes (GG/GC/CC) and the brain lesions
in the ultrasound examinations adjusted for gender, gestational

age, and z score of birth weight (n � 175)

OR (95% confidence intervals) p

IL-6 -174 0.359
CC vs. GC 1.68 (0.80 to 3.53) 0.171
CC vs. GG 1.20 (0.51 to 2.87) 0.675
GG vs. GC 1.40 (0.65 to 2.99) 0.392
Male gender 1.38 (0.72 to 2.58) 0.318
Gestational age (per 1 d
decrease)

1.04 (1.02 to 1.06) �0.0001

z Score of birth weight (per
one unit decrease)

1.26 (1.00 to 1.60) 0.054

IL-6 -572
GG vs. GC 0.82 (0.24 to 2.82) 0.750
Male gender 1.42 (0.76 to 2.65) 0.274
Gestational age (per 1 d
decrease)

1.04 (1.02 to 1.06) �0.0001

z Score of birth weight (per
one unit decrease)

1.27 (1.00 to 1.61) 0.047
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gional brain volumes. In our study, both IL-6 -174 CC and
-572 GG genotypes associated with smaller combined volume
of basal ganglia and thalami, but there was no association to
structural brain lesions of preterm infants.
Several factors can affect the cytokine concentrations in

blood and in amniotic fluid, delivery being one of them (11),
which makes it difficult to interpret the associations reported
between cytokine levels and brain lesions (1–3). In addition, it
has been suggested that plasma cytokine levels may reflect
poorly the cerebral inflammatory response in preterm infants
(6). Genetic polymorphism of cytokine promoter regions mod-
ulates cytokine production, and therefore analysis of known
functionally relevant genotypes eliminates the effects of ex-
ternal confounding factors.
IL-6 -174 and -572 genotypes have been connected with

deviant neurologic development (12,14). These findings sug-
gest that genetically determined individual capacity to regu-
late inflammatory responses does effect the developing brain
in preterm infants. It has recently been reported that IL-6-type
cytokines also act as factors influencing the development of
neurons and glial cells in the central nervous system in
addition to their role in inflammatory processes (35–37).
These reports provide us a potential theoretical background to
our study results. Because different genotypes of IL-6 pro-
moter region affect inflammatory cytokine production, it is
plausible that polymorphisms also act functionally in neural
development.
Basal ganglia and thalamus are particularly vulnerable to

e.g. hypoxic-ischemic insults during development (38). A fetal
insult during thalamic neurogenesis in the nonhuman primates
has also been shown to produce thalamic volume loss and
shape deformation in adulthood (39). Injury to this particular
area may present itself as a problem in a wide range of
functions, including control of movement, cognition, emotion,
and behavior. It is known that basal ganglia injury can lead to
cerebral palsy (CP) both in preterm (40,41) and in term infants
(40,42). In addition, hyperechogenity in basal ganglia and
thalamus has been associated with neurodevelopmental delay,
particularly cognitive and behavioral problems, in preterm
infants (43).
Three recent reports have shown that preterm infants at

term age have reduced deep gray matter volumes (15,18,19).
Inder et al. (15) used an automated tissue segmentation
method to define cerebral tissue types, and demonstrated
marked reduction in cortical and deep nuclear gray matter
volume. The main predictors of volume reduction were ges-

tational age at birth and the presence of WM injury. Boardman
et al. (19), using deformation-based morphometry, identified
deep gray matter growth failure associated with diffuse WM
injury (defined as increased apparent diffusion coefficient,
ADC, values). They suggested that growth failure is not an
isolated phenomenon, but might be associated with discon-
nection of the thalamus from the developing cortex. The
connection of WM injury and reduced deep gray matter
volumes was confirmed by Srinivasan et al. (18). They
showed, using manual volumetry and a 3-tesla MRI system,
that volume reduction was most marked among infants with
such supratentorial lesions as IVH, PVL, and hemorrhagic
parenchymal infarction, but was also evident in infants with
mild and moderate WM abnormalities. Even though the re-
sults of these studies (15,18,19) support each other, different
MRI-analysis techniques make their comparison difficult.
Boardman et al. (19) suggested that either injury to the
preoligodendrocyte or axon might cause disconnection be-
tween cortex and thalamus, and thus abnormal neuronal dif-
ferentiation and organization (44). As an alternative mecha-
nism, both Boardman et al. (19) and Srinivasan et al. (18)
proposed that damage to the transient cortical subplate might
also lead to thalamocortical decoupling, as subplate is required
to control early thalamocortical tract development (45). In the
light of our results with the decreased volume of deep gray
matter, and the recent reports of IL-6-type cytokines influenc-
ing the development of neurons and glial cells (35–37), one
can speculate that IL-6 may have a role in the complex process
of guiding and sustaining neural tract development.
A potential limitation to our study is the upgrading of the

MRI equipment during the data collection period. This might
affect the image contrast, and thus the ability to differentiate
adjacent anatomic structures. To avoid this, we selected easily
definable anatomic landmarks, which are not affected by
contrast changes in MRI. According to the recent reports
(15,18,19,46), it is likely that also in our study the reductions
in deep gray matter are at least partly caused by WM injuries.
Because our aim was to explore the association between
genetic polymorphism and overt brain pathology, our research
methodology did not allow us to analyze reliably the associ-
ation between detailed WM abnormalities and deep gray
matter volume. Another limitation is a relatively small study
population: only 11 (6%) infants had IL-6–572 GC and none
had CC genotype as consistent with Finnish population. The
low prevalence of IL-6–572 GC genotype reduces the power
of the study to detect other associations. Adjustments for

Table 4. Mean values (mL) and �SD� of the regional brain volumes related to the IL-6 -174 and -572 genotypes (GG/GC/CC) in the study
population (n � 153)

Cerebrum Cerebellum Frontal lobe
Medulla oblongata and

pons together
Basal ganglia and
thalami together

IL-6 -174
CC, n � 36 361.6 �46.4� 23.4 �3.3� 123.2 �21.6� 5.6 �2.0� 23.5 �3.9�
GC, n � 81 372.2 �48.5� 24.0 �5.9� 126.6 �25.5� 6.0 �2.4� 25.2 �4.0�
GG, n � 36 375.1 �46.0� 25.8 �4.9� 130.5 �25.5� 6.5 �2.4� 26.7 �5.3�

IL-6 -572
GG, n � 143 368.4 �46.8� 24.0 �5.3� 125.4 �24.4� 5.9 �2.1� 24.8 �4.1�
GC, n � 10 380.8 �62.8� 26.2 �5.0� 140.2 �29.2� 7.6 �4.5� 28.7 �7.5�
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multiple comparisons would increase the probability of a type
1 error (error of rejecting a null hypothesis when it is actually
true) at the expense of a type 2 error (failure to reject a false
hypothesis). Therefore, no adjustments for multiple compari-
sons were made, but we acknowledge that this could lead to
incidental findings.
In conclusion, our study shows that IL-6 -174 CC and -572

GG genotypes may be associated with reduced volumes in
deep gray matter in very low birth weight or very preterm infants.
The finding provides us new ways to understand the processes
leading to neurologic impairments in preterm infants.
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41. Krägeloh-Mann I, Petersen D, Hagberg G, Vollmer B, Hagberg B, Michaelis R 1995
Bilateral spastic cerebral palsy - MRI pathology and origin. Analysis from a
representative series of 56 cases. Dev Med Child Neurol 37:379–397
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