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ABSTRACT: For nearly 100 y, pediatricians have regularly used
oxygen to treat neonatal and childhood diseases. During this time, it
has become clear that oxygen is toxic and that overzealous use can
lead to significant morbidity. As we have learned more about the
appropriate clinical indications for oxygen therapy, studies at the bench
have begun to elucidate the molecular mechanisms by which cells
respond to hyperoxia. In this review, we discuss transcription factors
whose activity is regulated by oxygen, including nuclear factor, ery-
throid 2-related factor 2 (Nrf2), activator protein 1 (AP-1), p53, nuclear
factor �B (NF-�B), signal transducers and activators of transcription
protein (STAT), and ccat/enhancer binding protein (CEBP). Special
attention is paid to the mechanisms by which hyperoxia affects these
transcription factors in the lung. Finally, we identify downstream targets
of these transcription factors, with a focus on heme oxygenase-1. A
better understanding of how oxygen affects various signaling pathways
could lead to interventions aimed at preventing hyperoxic injury.
(Pediatr Res 66: 3–10, 2009)

Oxygen therapy has a long and tortuous history in Neona-
tology. The pendulum has swung from a liberal use of

supplemental oxygen in the early 20th century, to limited
application in the 1950s based on the association with reti-
nopathy of prematurity. Today, clinical studies are focused on
addressing which neonatal pathologic states require treatment
with oxygen, and what level of oxygen administration is safe.
In concert with these clinical studies, much work has been

done at the bench to ascertain how oxygen affects gene
expression. This is of particular relevance in neonates because
changes in gene expression at critical times in development
can have long-lasting effects and subsequent consequences on
lung structure and function. This review will address lessons
learned and new insights as to the effects of hyperoxia on
pulmonary gene expression.

EVOLUTIONARY PERSPECTIVE

Responses to atmospheric oxygen have evolved in eu-
karyotes during the last 1.5 billion years (1). The ability of
organisms to reduce oxygen to water critically altered cellular
metabolism and energy production, but also resulted in the
formation of toxic reactive oxygen species (ROS) via the
mitochondrial respiratory chain. These radicals are electron
donors, which can damage DNA, RNA, protein, and lipids.
They can also propagate deleterious reactions throughout cells
and tissues resulting in death and apoptosis. In addition, these
ROS can alter gene expression by modulating transcription
factor activation, which then impact downstream targets. In
oxygen breathing animals, only three tissues—the cornea, the
skin, and the respiratory tract epithelium—are exposed to 21%
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oxygen, equivalent to a partial pressure of about 160 mm Hg
at sea level. The remaining tissues are exposed to much lower
oxygen tensions. The affinity of Hb for oxygen maintains the
PO2 in the mitochondria below 0.5 mm Hg, limiting the
production of ROS and effectively protecting the body from
oxygen toxicity (2). Before the advent of the medical use of
oxygen, humans were rarely exposed to oxygen tensions that
were greater than those in their ambient environment. Thus, it
stands to reason that evolution may not have dictated a well-
developed response to acute increases in oxygen tension. The
notable exception is the transition at birth from the womb to the
outside worldwherewewere rapidly shifted from a relative hypoxic
environment to relative hyperoxia. Additionally, the lung epithelium
is constantly exposed to “relative hyperoxia” compared with other
tissues and is further stressed by oxygen therapy.

HISTORICAL PERSPECTIVE

From the time of its discovery in the 1770s, oxygen has held
promise as an elixir for multiple human ailments. Within 10 y
of its discovery, Anton Lavoisier applied oxygen to newborn
infants requiring resuscitation (3). By the early 1900s, physi-
cians were administering oxygen to treat cyanosis in prema-
ture infants (4). Shortly thereafter, oxygen therapy became
widespread in neonatal units, with therapeutic indications
ranging from respiratory distress to periodic breathing. How-
ever, by the early 1950s, published reports linking oxygen to
the pathogenesis of retinopathy of prematurity began to ap-
pear, and the use of oxygen was quickly curtailed (5). Nev-
ertheless, physicians were reminded that oxygen was a pow-
erful and life-saving therapy when increased mortality from
hyaline membrane disease (6) and the resurgence of cerebral
palsy (7) were observed. This demonstrated that both too
much and too little oxygen were problematic. Vigorous de-
bates about the appropriate use of oxygen during newborn
resuscitation (8) and the proper pulse oximetry saturation
goals for premature infants (9) currently rage on. At this time,
six multicenter randomized controlled trials are attempting to
define optimal oxygen therapy goals for preterm babies (9).
Studies at the bench pair nicely with these clinical trials.

Investigators have used multiple in vivo and in vitro models to
determine how oxygen affects gene expression and subsequent
lung structure and function. Hyperoxia results in alveolar and
endothelial cell destruction, fluid leak into the air space,
respiratory failure, and mortality (10). The lungs of animals
exposed to hyperoxia show increased mean linear intercepts,
influx of macrophages, extracellular matrix turnover, and
fibrin deposition (11). During hyperoxia, ROS are produced
both by the electron transport chain in the mitochondria and
by the membrane-bound NADPH oxidase (12–15). ROS cause
DNA strand breaks and other chromosomal aberrations (16,17),
which stimulate the expression of genes involved in inhibiting
cell cycle progression (18). There is clear evidence in animal
models that exposure to hyperoxia results in lung morphology
similar to that of bronchopulmonary dysplasia (BPD) (11,19).
These studies serve as important correlates to the ongoing trials
involving oxygen therapy for premature infants.

HYPEROXIC GENE REGULATION

Organs, tissues, and cells have evolved systems to rapidly
respond to changes in their microenvironment. A stimulus, which
causes a perturbation, must be detected and translated into a
response, which then facilitates a return to the steady state (Fig.
1). Receptors, signaling pathways, transcription factors, and
downstream changes in proteins and metabolic function have
evolved for this purpose. Only a few transcription factors that
specifically alter gene expression in response to increased oxygen
tension have been identified, as well as some direct downstream
targets (Table 1). These will be discussed later.

TRANSCRIPTION FACTORS RESPONSIVE
TO HYPEROXIA

Nrf2. The detoxification of ROS and electrophiles is im-
portant to prevent cellular injury (Fig. 2). The transcription
factor nuclear factor, erythroid 2-related factor 2 (Nrf2) reg-
ulates the inducible expression of a group of detoxification
enzymes, such as glutathione S-transferase and NAD(P)H:qui-
none oxidoreductase, via antioxidant response elements

Figure 1. How a stimulus is perceived and how cells respond to return to the
steady state. Cellular receptors or sensors detect stimuli such as hyperoxia. This
leads to the translation of this signal via signal transduction pathways, which
result in transcription factor activation. This then generates a response such as
gene regulation and subsequent protein synthesis and a return to the steady state.

Table 1. Summary of transcription factors regulated by hyperoxia

Transcription
factor Regulated gene products

Protective
effect
against

hyperoxia References

Nrf2 ARE-mediated phase
2 detoxifying and
antioxidant enzymes
(i.e., HO-1)

Yes (26–30)

AP-1 IL-8 Yes (34–40)
NF-�B IGFBP2 Yes/no (56,61–67,71,76,

78–87,94,103,106,
107,110,112–116,
118–125)

ICAM-1
IL-6
ENaC
p21

STAT IL-6 Yes (89,90)
CEBP CCSP Yes (38,92,93)
proteins
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(ARE). Under normal circumstances, Nrf2 is retained in the
cytoplasm by a repressor protein Kelch-like ECH-associated
protein 1 (Keap1). Exposure to xenobiotics and oxidants leads
to the dissociation of Nrf2 from Keap1, which allows the free
Nrf2 to translocate to the nucleus where it heterodimerizes
with c-Jun, an activator protein 1 (AP-1) family protein (20).
The consensus binding sequence of Nrf2 shows high similar-
ity to the ARE/electrophile-responsive element sequence pre-
viously identified (21–23). Nrf2 can also heterodimerize with
small Maf proteins to regulate ARE-mediated gene expression
(24). These Maf proteins are so named because of their
structural similarity to the founding member, the oncoprotein
v-Maf. They include a characteristic basic region linked to a
leucine zipper (b-Zip) domain, which mediate DNA binding
and subunit dimerization, respectively (25).
Lung Nrf2 responds to hyperoxia (26). Linkage analysis

identified Nrf2 as an important mediator of protection against
lung hyperoxic injury (27) and mice deficient in Nrf2 exhibit
aggravated lung injury and a lack of upregulation of ARE-
mediated phase 2 detoxifying and antioxidant enzymes (28).
Further gene array analysis of wild type vs. Nrf2-deficient
mice revealed discordance in multiple genes, thus identifying
potential downstream targets of this important transcription
factor (29). In fact, a single nucleotide polymorphism found in
the Nrf2 promoter increases the risk of acute lung injury in
human subjects (30). This evidence provides an important
translational correlate and may lead to the development of
therapeutic strategies.
AP-1. AP-1 was first identified as a transcriptional factor

that binds to an essential cis-element of the human metallo-
thionein II gene (31). It is composed of fos and jun protein
dimers that bind via hydrophobic interactions of their leucine-
zipper regions (32). The jun/jun and jun/fos dimers form the
AP-1 complex. This transcription factor controls genes in-
volved in cellular proliferation and death in response to var-
ious stimuli including hyperoxia. The consensus AP-1-binding
site is embedded in the ARE where fos and jun proteins may
heterodimerize to Nrf2 in the presence of electrophiles and
oxidants as discussed earlier (33). Blocking AP-1 activation

enhances hyperoxia-induced cell death in murine lung epithe-
lial cells (34,35). One specific target of hyperoxia-induced
JNK1/AP-1 activation in A549 cells is the IL-8 promoter (36).
This could modulate inflammatory responses with hyperoxic
exposure. It is interesting to note that neonatal mice exposed
to hyperoxia show no increase in lung AP-1 consensus se-
quence binding (37) in contrast to their adult counterparts
(37,38). However, in the brain, increased AP-1 consensus
sequence binding occurs in the forebrain and hippocampus of
both adult and younger rats exposed to hyperoxia (39,40).
These data suggest both maturational differences and tissue
specificity of AP-1 activation.
p53. The transcription factor p53 regulates the expression of

a large number of target genes including those related to cell
cycle arrest, cell death, and DNA repair (41). Since its dis-
covery in 1979, p53 has been identified as a tumor suppressor
and its role in human cancer has become clearer (42). Under
basal conditions, p53 resides in the cytoplasm and is subjected
to ubiquitin-mediated proteolysis. However, in response to
stimuli such as DNA damage, p53 is phosphorylated, stabi-
lized, and enters the nucleus (41). Under conditions of cellular
stress, activated p53 initiates growth arrest and induces pro-
apoptotic gene expression (42). Hyperoxia increases p53 gene
transcription, protein levels, and activity (16,43–45). In pre-
term baboons, exposure to hyperoxia results in increased p53
protein levels in airway epithelium (46,47). However, in
p53�/� mice exposed to hyperoxia, lung injury and lethality
did not differ from similarly exposed wild-type animals
(16,48). These data indicate that the exact role of p53 in
modulating the cellular response to hyperoxia remains to be
elucidated.
NF-�B. The nuclear factor kappa B (NF-�B) family is

composed of highly conserved dimeric proteins, which acti-
vate genes that regulate apoptosis, inflammation, and oxida-
tive stress (49–51) (Fig. 3). This factor regulates gene expres-
sion and was first described by Baltimore and Sen (52). In
quiescent cells, NF-�B dimers remain sequestered in the

Figure 2. Nrf-2-mediated gene expression. The transcription factor Nrf-2 is
sequestered in the cytoplasm bound to Keap1. Upon hyperoxic exposure, it
dissociates from Keap1 and can migrate to the nucleus where it forms a
complex with Jun or Maf proteins and results in gene activation.

Figure 3. NF-�B-mediated gene expression. With hyperoxia, there is phos-
phorylation (p) of the inhibitory protein I�B� on tyrosine 42. This results in
the ubiquination (u) and subsequent degradation of I�B�. This allows for
dissociation and nuclear translocation of the active NF-�B complex (p65 and
p50 are represented here), binding to consensus sequences on various genes
and transcriptional activation or repression of gene expression.
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cytoplasm bound to a member of the �B (I�B) family of
inhibitory proteins (50). I�B� is the prototypical member of
this family and the most well studied. With inflammatory or
oxidant stress, I�B� is phosphorylated, resulting in dissocia-
tion and unmasking of the nuclear localization sequence of
NF-�B (51). After inflammatory stimuli, such as TNF-� ac-
tivation, I�B� is phosphorylated on serine 32/36 and degraded
through the proteosomal pathway (51). In addition to this
canonical pathway, an atypical pathway of NF-�B activation
results from specific phosphorylation of I�B� on tyrosine 42
(53). This occurs after stimulation with pervanadate, nerve
growth factor (NGF), hydrogen peroxide, and ischemia-
reperfusion (53–55) and, as most recently demonstrated, with
hyperoxia (56). This latter pathway represents an intriguing
molecular target for modulating the pulmonary response to
hyperoxia.
It is important to note that NF-�B nuclear translocation and

DNA binding can either enhance or suppress target gene
expression. The subunit composition of the NF-�B dimer
likely confers specificity to the expression of target genes after
activation (57). The most abundant NF-�B protein is the
p65-p50 dimer (58). The p65 subunit contains a transactiva-
tion domain that interacts with other transcription proteins to
increase gene expression (59). The p50 subunit lacks this
transactivation domain, and can repress transcription when
bound to DNA as a p50-p50 homodimer (59,60). Furthermore,
the ability of NF-�B to alter gene expression is affected by
posttranslational modifications including phosphorylation and
acetylation (59).
Hyperoxia-induced NF-�B activation appears to be stimu-

lus and cell type specific. Nuclear translocation of NF-�B was
shown in A549 lung adenocarcinoma cells exposed to hyper-
oxia-induced but this activation did not protect against cell
death (61). Also, in adult mice exposed to hyperoxia, NF-�B
activated proinflammatory markers in pulmonary lymphocytes
(62). Furthermore, in fetal mouse lung explants, hyperoxia-
induced NF-�B activation was associated with increased ap-
optosis which was reversed by blocking NF-�B activation
(63). In contrast, inhibition of hyperoxia-induced NF-�B ac-
tivation accelerated nonapoptotic cell death in primary and
transformed lung epithelial cells, resulting in decreased levels
of MnSOD (64). Additionally, A549 cells pretreated with
hyperoxia showed less apoptosis after exposure to hydrogen
peroxide, an effect reversed by inhibiting NF-�B activation
(65). In other examples, NF-�B was not activated in response
to hyperoxic exposure (66,67), suggesting that this signaling
pathway is cell specific. The lung contains over 40 different
cell types (68), and the response to hyperoxia is cell type
specific. Endothelial cells are very sensitive to oxygen toxic-
ity, whereas type II epithelial cells are resistant and proliferate
in the recovery phase (69). Furthermore, in the developing
lung, exposure to hyperoxia prevents the normal differentia-
tion of type II cells to type I cells in the developing lung (70).
Further studies are necessary to fully dissect the specificity
and complexity of hyperoxia-induced NF-�B activation. Nev-
ertheless, these findings suggest that interventions to either
inhibit or enhance NF-�B activation in hyperoxia could be of
therapeutic benefit.

Various clinical interventions, such as glucocorticoids, can
inhibit NF-�B activation (71–74). Adrenalectomized adult
mice exposed to hyperoxia had less lung injury and had
improved survival due to increased NF-�B activation (75).
Thus, hyperoxia-induced NF-�B activation, when not limited
by endogenous glucocorticoids, protects the adult lung from
oxygen toxicity (71). Interestingly, after glucocorticoid
therapy for BPD, cells obtained from tracheobronchial
lavage fluid of premature neonates showed inhibition of
NF-�B activation (76). Nitric oxide, which may prevent
BPD in some infants (77), also inhibits NF-�B activity
(78). The clinical implications of these findings remain to
be explored in humans.
Of particular interest to pediatricians are the maturational

differences found in NF-�B activation. Multiple models have
shown increased NF-�B activation in neonates compared with
adults after exposure to inflammatory and oxidant stimuli
(79–81). In rat fetal alveolar type II cells, NF-�B translocates
to the nucleus and binds DNA after hyperoxic exposure (82).
This binding peaks soon after birth and gradually decreases
postnatally, suggesting that NF-�B regulates genes involved
in the transition from the relative hypoxic environment seen in
utero (82). This activation may have important downstream
effects as shown in hyperoxia exposed fetal lung fibroblasts
where NF-�B activation prevented apoptosis through the sup-
pression of proapoptotic genes (56). In contrast, this hyperoxic
activation of NF-�B was not seen in adult lung fibroblasts
(57). In the only published study evaluating hyperoxia-
induced NF-�B activation in a neonatal in vivo model, Yang
et al. showed that hyperoxia-induced NF-�B occurred in the
lungs of neonatal but not in adult mice (81). This activation
was associated with the relative tolerance to hyperoxic injury
in the neonatal animals when compared with adults, and this
tolerance was reversed when hyperoxia-induced NF-�B acti-
vation was inhibited (81). In contrast, clinical studies show
that enhanced NF-�B activation is linked to respiratory dis-
tress syndrome and an increased risk of developing BPD in
preterm infants (83–85). Thus, it is not yet clear whether
inhibition of lung NF-�B is beneficial or harmful in human
neonates.
The hyperoxic activation of NF-�B has also been investi-

gated in tissues other than the lung. Using a bioluminescent
NF-�B reporter mouse line, Dohlen et al. showed increased
NF-�B activity in the brain after resuscitation with 100% O2

(86). In other studies, hyperoxia without preceding ischemia
decreased NF-�B activation in the basal forebrain, with a
more pronounced effect in aged vs. young mice (87).
It is clear that the NF-�B–mediated response to oxygen is

influenced by maturation. Whether these changes are benefi-
cial or detrimental remain to be seen. Understanding the
maturational differences in hyperoxia-induced NF-�B activa-
tion could help guide interventions aimed to modulate this
response in neonates.
STAT. Another important transcription factor involved in

hyperoxic gene regulation is the signal transducers and acti-
vators of transcription protein (STAT). This family of proteins
is activated by various cell surface receptors in response to
ligands, including cytokines, growth factors, and peptides
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(88). Hyperoxic lung injury is attenuated in mice constitu-
tively expressing Stat3 in respiratory epithelial cells (89).
Conversely, mice with disruption of Stat3 in respiratory epi-
thelial cells demonstrate exaggerated hyperoxic lung injury
and increased expression of proinflammatory cytokines in-
cluding IL-6 (90).
CEBP. The ccat/enhancer binding protein (C/EBP) family

of proteins are basic leucine zipper transcription factors that
respond to extracellular signals to regulate cell proliferation,
differentiation, and tissue development (91). C/EBP� and
C/EBP� consensus sequence binding was increased in the
lungs of young and aged mice exposed to hyperoxia (38). In
the mouse exposed to hyperoxia, there is downregulation of
the protective Clara cell secretory protein (CCSP) due to
enhanced C/EBP� nuclear translocation and binding to the
CCSP promoter (92). These studies are particularly relevant
because C/EBP� is required for lung maturation (93).
Other transcription factors regulated by hyperoxia. Acute

and chronic exposure to hyperoxia may result in activation of
a variety of other transcription factors including cmyc, fos-
related antigen (Fra)-1, junB, c-fos as well as NGF1-A and -B
(94). Furthermore, in the neonatal lung, hyperoxia can cause
downregulation of sox-7 and sox-18 (94). The relevance of
these signaling events is not fully clear.

SPECIFIC DOWNSTREAM GENE TARGETS
OF HYPEROXIA

Because transcription factors that are regulated in hyperoxia
control a multitude of genes, it would be difficult to list all of
these genes (Table 1). For example, the activation of NF-�B
can regulate the expression of over 100 genes. Nevertheless,
only a small fraction of NF-�B responsive genes are activated
in hyperoxia. Some of the genes regulated by Nrf-2 and
NF-�B will be highlighted below.
Nrf-2-regulated genes. Nrf2 binds to the ARE, driving the

expression of genes including antioxidants such as glutathione
peroxidase, catalase, superoxide dismutase, thiol metabolism-
associated detoxifying enzymes such as glutathione-s-
transferase and stress-response genes such as heme oxygen-
ase-1 (HO-1), among others (25–28). These genes are all
highly responsive to hyperoxia. We will focus on HO-1 as an
example of an Nrf-2 regulated gene regulated in hyperoxia.
The HO-1 gene encodes for the rate-limiting enzyme in the

degradation of heme and the formation of biliverdin, which is
subsequently reduced to bilirubin by biliverdin reductase. In
recent years, many roles have been identified for this protein
and it has been clearly demonstrated that HO-1 is a general-
ized response to oxidative stress (95). The mouse HO-1 gene
is 6.8 kb in length and organized into four introns and five
exons. A promoter sequence is located 28 base pairs (bps)
upstream of the transcription initiation site. There is a proxi-
mal enhancer (PE) directly upstream of the promoter and there
are two more distal enhancers located at 4 kb (DE1) and 10 kb
(DE2) upstream of the transcription initiation site. Each en-
hancer region contains multiple transcription factor binding
sites including composite AP-1 and NF-E2 or CREB/ATF
sites (Fig. 4) (96–98). Induction of HO-1 in oxidative stress is

via Nrf2 and small Maf proteins binding to the ARE (99).
Competitive binding between Nrf2 and BTB and CNC homol-
ogy 1, basic leucine zipper transcription factor 1 (Bach1), at
the ARE is important in heme-mediated regulation of HO-1
(100). Several investigators have documented hyperoxic in-
duction of HO-1 in adult mice. However, in the neonatal
rodent HO-1 induction is limited. In the neonatal mouse and
rat, hyperoxic exposure did not result in a significant increase
in HO-1 mRNA as it did in similarly exposed adult (101,102).
In another study, lung HO-1 mRNA only increased after 10 d
of hyperoxic exposure in neonatal mice (94) whereas this
occurred within 24 h in adult mice (103). There may be some
teleological wisdom in not further elevating the levels of
HO-1 when they are already quite high at birth and in the
neonatal period, especially if this could lead to deleteriously
high levels thus aggravating hyperoxic injury (104). We have
also observed increased protein levels and DNA binding for
Bach1, an inhibitor of HO-1 transcriptional activation, in
neonates at baseline and after exposure to hyperoxia compared
with adults (102). Typically, Bach1 is degraded in the pres-
ence of ROS (105). Enhanced Bach1 expression could ensure
that there are sufficient levels for HO-1 gene inhibition in the
neonate.
NF-�B regulated genes. The IGF-binding protein (IGFBP)2

promoter has NF-�B consensus sequence binding sites, and
both NF-�B consensus sequence binding and IGFBP2-
promoter reporter activity increase in response to hyperoxia
(106). This binding protein inhibits DNA synthesis and cel-
lular entry into the S-phase, indicating a role for hyperoxia-
induced NF-�B activation in modulating oxygen toxicity in
the lung. Methylprednisolone treatment inhibits hyperoxia-
induced NF-�B activation and down-regulates ICAM-1 ex-
pression in human pulmonary artery endothelial cells (107),
resulting in less neutrophil adhesion to the endothelium. As
discussed earlier, adrenalectomized mice show attenuation of
hyperoxic lung injury, and this is associated with preservation
of NF-�B activation and induction of IL-6 (71). This cytokine
is under the exclusive regulation of NF-�B with inflammation
(108,109). Whether IL-6 is exclusively regulated by NF-�B in
response to hyperoxia is not known. Nevertheless, IL-6 is
enhanced in the lungs of neonatal and adult mice in response
to hyperoxia (110), although this phenomenon is not consis-
tently observed in adult mice (62,103). The amiloride-

Figure 4. Diagram of the HO-1 gene. Numbers indicate base pairs. There are
two DE. These contain a multiple antioxidant response element/stress re-
sponse element (MARE/StRE), which has consensus sequence for a cadmium
response element as well as an AP-1 binding site. The gene also contains a PE
and a promoter (P).
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sensitive sodium channel, epithelium sodium channel (ENac),
responsible for sodium and fluid absorption from the alveolar
space (111), has an NF-�B binding site (112), and both NF-�B
activation and ENaC gene expression increase with relative
hyperoxia (113,114). Furthermore, hyperoxia-induced ENaC
expression is prevented with NF-�B blockade (114) in some
reports but not others (115,116).
Cell cycle genes. Another important effect of hyperoxia is

the modulation of genes involved in cell cycle regulation.
Both acute and chronic exposures to hyperoxia result in
upregulation of p21 (94). Of note, NF-�B is known to regulate
the expression of p21 in some cells (117). This key inhibitor
of cell cycle regulation and cellular proliferation is increased
in both the neonatal (118) and adult (119) lung after exposure
to hyperoxia. Expression of this protein in response to hyper-
oxia relies on either TGF-� signaling (120) or p53 activation
(121,122). Upregulation of p21 is protective against hyperoxic
injury in both neonatal (123) and adult (124) mice. It is
hypothesized that inhibition of cellular proliferation during
periods of oxidative stress allows for additional time to repair
damaged DNA (125) thus providing cytoprotection.

CONCLUSION

Hyperoxia regulates multiple transcription factors in the
lung. These, in turn, regulate a variety of downstream targets
including ARE-regulated genes such as HO-1, antioxidant
enzymes that are important in the detoxification of electro-
philes, as well as genes involved in cell cycle regulation and
the inflammatory response. The overall effect of hyperoxia
in the lung depends on the maturational stage of the organ-
ism. The net effect of hyperoxic lung gene regulation may be
both enhanced cytoprotection and worsened lung function. In
the neonate where postnatal lung development is crucial to
proper alveolar formation, hyperoxic gene regulation may
have long-lasting effect on lung structure and function. A
further understanding of how hyperoxia affects specific sig-
naling pathways and subsequent gene expression could lead to
interventions aimed at preventing hyperoxic injury.
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