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ABSTRACT: Although brainstem serotonergic (5-HT) systems are
involved in the protective responses to hypoxia, abnormalities of
5-HT function are strongly implicated in SIDS, and the neurochem-
ical mechanisms by which 5-HT receptors influence brainstem car-
diorespiratory responses to hypoxia remains unclear. This study
focuses on the role of excitatory neurotransmission, including 5-HT3
signaling, to cardiac vagal neurons (CVNs) that dominate the control
of heart rate. Excitatory synaptic inputs to CVNs, located in the
nucleus ambiguus (NA), were recorded simultaneously with respira-
tory activity in in vitro brainstem slices. During control conditions
excitatory inputs to CVNs were blocked by application of NMDA
and AMPA/kainate glutamatergic receptor antagonists, whereas the
5-HT3 and purinergic receptor antagonists ondansetron and pyridoxal-
phosphate-6-azophenyl-2�,4�-disulfonic acid (PPADS), respectively,
had no effect. However, during hypoxia ondansetron inhibited exci-
tatory neurotransmission to CVNs. In recovery from hypoxia, spon-
taneous and respiratory-related excitatory events were blocked by
glutamatergic and purinergic receptor blockers, respectively, whereas
ondancetron had no effect. These results demonstrate that hypoxia
recruits a 5-HT pathway to CVNs that activates 5-HT3 receptors on
CVNs to maintain parasympathetic cardiac activity during hypoxia.
Exaggeration of this 5-HT neurotransmission could increase the
incidence of bradycardia and risk of sudden infant death during
hypoxia. (Pediatr Res 65: 625–630, 2009)

Episodes of apnea and bradycardia are common in infants
who succumb to SIDS (1,2). Although a specific cause in

a majority of SIDS death is unknown, developmental abnor-
malities of serotonin (5-HT) function in the ventral medulla
have recently been closely correlated with SIDS (3). These
abnormalities involve multiple elements of 5-HT function
including increased number of 5-HT neurons, reduction of
5-HT1A receptor binding, and relative reduction of 5-HT
transporter function (4). In agreement with these findings, the
study of cerebrospinal fluids of SIDS victims showed a sig-
nificant increase of the metabolites of 5-HT (5,6). Medullary
5-HT abnormalities and enhanced 5-HT activity may result in
exaggeration of responses to hypoxia including deleterious
bradyarrhythmias.

Respiratory responses to hypoxia include initial an increase,
followed by a decrease, in the respiratory frequency in most
mammals (7,8). Similarly, hypoxia evokes an initial increase
in heart rate followed by a parasympathetically mediated
bradycardia and ultimately, cessation of cardiac contractions
(9–11). This biphasic response to hypoxia is likely partly be-
cause of the biphasic increase followed by decrease in inhibitory
GABAergic and glycinergic inputs to cardiac vagal neurons
(CVNs) located within the nucleus ambiguus (NA) (12). How-
ever, the role of excitatory neurotransmission to CVNs in car-
diorespiratory responses to hypoxia remains unclear.
Hypoxia evokes neurotransmitter release in the brainstem

including 5-HT (13), ATP (14,15), and glutamate (13). 5-HT
neurons in the midline raphe (16,17) and glutamatergic neu-
rons in the retrotrapezoid nucleus (18) are postulated to be
central neuronal chemoreceptors. In addition, purinergic neu-
rons and receptors are likely involved in chemosensitivity of
the ventral medullary surface (14).
Within the NA premotor neurons receive a high number of

axosomatic 5-HT contacts, and the 5-HT contacts surrounding
neurons in the NA are among the most dense in the brainstem
(19). 5-HT fibers also specifically surround CVNs, which have
been described as “ensheathed in 5-HT immunoreactive ax-
onal boutons” (20). 5-HT may act on different receptor sub-
types including 5-HT3 receptors, which have been shown to
play an important role in cardiovascular regulation. i.v. ad-
ministration of 5-HT evokes a reflex bradycardia and hypo-
tension via 5-HT3 receptor activation (21–23). In the nucleus
tractus solitarii (NTS), activation of 5-HT3 receptors blocks
the chemoreflex bradycardia and inhibits both baroreflex and
Bezold-Jarisch reflex responses (24–27). In the dorsal vagal
motor nucleus, another brainstem site that contains CVNs,
activation of 5-HT3 receptors mediates excitation of CVNs
(28,29). Furthermore, 5-HT3 receptors are involved in phys-
iologic responses to hypoxia in the peripheral nerve system.
Hypoxia elicits 5-HT secretion from intact neuroepithelial
body cells, presumed airway chemoreceptors, via positive
feedback activation of 5-HT3 autoreceptors (30). In the brain-
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stem, 5-HT3 receptors mediate excitation of CVNs post hy-
poxia-hypercapnia (31). However, it remains unknown if
5-HT3 receptors are involved in the central cardiorespiratory
responses evoked by hypoxia alone.
Here, we studied the role of excitatory neurotransmission,

including 5-HT3 signaling, to CVNs in central cardiorespira-
tory responses to hypoxia. More specifically, the relative role
of 5-HT3, glutamate, and purinergic receptors were examined
before, during, and in recovery from hypoxia.

METHODS

To identify CVNs in vitro, a two-stage procedure was used. In an initial
surgery, Sprague-Dawley rats (postnatal days 2–6; Hilltop, Scottdale, PA)
were anesthetized with hypothermia and received a right thoracotomy. Rho-
damine (0.05 mL, 1 to 5%) (XRITC, Life Technologies Corporation, Carls-
bad, CA) was injected into the pericardial sac to retrogradely label CVNs. The
location and identification of these neurons, particularly in juxtaposition to
other cholinergic neurons in the NA, was previously described (32). Speci-
ficity of the cardiac vagal labeling was confirmed by the absence of any
labeled neurons in the brainstem when rhodamine is injected either outside the
pericardial sac or within the pericardial sac if the cardiac branch of the vagus
nerve is sectioned (n � 4). Recent work demonstrated that this method
identifies CVNs localized in the external formation of the NA (32). In other
control experiments (n � 10), i.v. injection of up to 10 mg of rhodamine failed
to label any neurons in the medulla except for rare labeling of neurons in the
area postrema, an area with a deficient blood-brain barrier. On the day of
experiment (2–4 d later), the animals were anesthetized with isoflurane and
killed by rapid cervical dislocation. The brain was submerged in cold (4°C)
buffer composed of 140 mM NaCl, 5 mM KCl, 2 mM CaCl2, 5 mM glucose,
and 10 mM HEPES and continually gassed with 100% O2. A single slice of
the medulla (800 �m thickness) that included CVNs, the rostral hypoglossal
nucleus and rootlets, and the preBotzinger complex was obtained and sub-
merged in a recording chamber, which allowed perfusion (5–10 mL/min) of
ACF at room temperature (24–25°C) containing 125 mM NaCl, 3 mM KCl,
2 mM CaCl2, 26 mM NaHCO3, 5 mM glucose, and 5 mM HEPES equili-
brated with carbogen (95% O2 and 5% CO2, pH 7.4). All animal procedures
were performed in compliance with the institutional guidelines at George
Washington University and are in accordance with the recommendations of
the Panel on Euthanasia of the American Veterinary Medical Association and
the National Institutes of Health publication Guide for the Care and Use of
Laboratory Animals. All efforts were made to minimize the number of
animals used and their suffering.

The thick medullary slice preparation generates rhythmic inspiratory-
related motor discharge in hypoglossal cranial nerves. Spontaneous inspira-
tory-related activity was recorded by monitoring motorneuron population
activity from hypoglossal nerve rootlets using a suction electrode. Hypoglos-
sal rootlet activity was amplified 50,000 times and filtered (10–300 HZ
bandpass; CWE, Ardmore, PA).

Individual CVNs in the NA were identified by the presence of the
fluorescent tracer using a Zeiss Axioskop upright microscope (Carl Zeiss Inc.,
Thornwood, NY) using a 40� water immersion objective. These identified
CVNs were then imaged with differential interference contrast optics, infrared
illumination, and infrared-sensitive video detection cameras to gain better
spatial resolution. Patch pipettes (2.5–3.5 M�) were filled with a solution
consisting of 135 mM K-gluconic acid, 10 mM HEPES, 10 mM EGTA, 1 mM
CaCl2, and 1 mM MgCl2, pH 7.35 and guided to the surface of individual
CVNs. Voltage clamp whole-cell recordings were made at a holding potential
of �80 mV with an Axopatch 200B and pClamp 8 software (Axon Instru-
ments, Union City, CA).

All drugs used in these experiments were applied using a pneumatic
picopump pressure system (WPI, Sarasota, FL). Drugs were focally released
using a picrospritzer and pressure ejected from a patch pipette positioned
within 30 �m of the patched CVN. The maximum range of drug application
was determined previously to be 100–120 �m downstream from the drug
pipette and was considerably less behind the drug pipette (33). Excitatory
postsynaptic currents (EPSCs) were isolated by continuous focal application
of strychnine (1 �M) and gabazine (25 �M) to block glycine and GABAergic
receptors, respectively. Other drugs used included ondansetron (100 �M) to
block 5-HT3 receptors, pyridoxal-phosphate-6-azophenyl-2�,4�-disulfonic
acid (PPADS, 100 �M) to block purinergic receptors; and finally d-2-amino-
5-phosphonovalerate (AP-5, 50 �M) and 6-cyano-7-nitroquinoxaline-2,3-
dione (CNQX, 50 �M) were used to block NMDA and AMPA/kainate

glutamatergic neurotransmission, respectively. All drugs were purchased
from Sigma-Aldrich Chemical Co. (St. Louis, MO).

Rhythmic inspiratory-related activity and EPSCs of CVNs were recorded
simultaneously for 10 min in control ACSF, equilibrated with 95% O2, and
5% CO2 (normoxia). Slices were then exposed for 10-min to hypoxia by
changing control ACSF to ACSF equilibrated with 5% CO2, 20% O2, and
75% N2, and then slices were reoxygenated by returning the perfusate to
initial control ACSF equilibrated with 95% O2, and 5% CO2 (posthypoxia).
Only one experiment was conducted per preparation.

Synaptic events were detected using MiniAnalysis (version 5.6.12; Syn-
aptosoft, Decatur, GA). Threshold was set at root-mean-square noise multi-
plied by five. The frequency of EPSCs that occurred in CVNs was grouped in
1-s bins and crosscorrelated with onset of inspiratory-related hypoglossal
activity. Data were analyzed from all bursts during the last 2 min of the
control period, during the last 2 min of the hypoxia period, during the last 2
min of the 10-min posthypoxia period, and from minutes 6–8 during each
8-min drug regimen application period. Results were presented as means �
SEM and were statistically compared using t test to examine spontaneous
activity before and after drug application within a condition. One-way
ANOVA with repeated measures and Dunnett posttest were used to examine
the differences between spontaneous and respiratory related EPSCs within a
condition. To examine time-dependent differences in response to various drug
application periods the results were analyzed by two-ways ANOVA test with
repeated measures, following by Bonferroni posttest. Significant differences
for all data were set at p � 0.05.

RESULTS

Central cardiorespiratory responses to hypoxia. In agree-
ment with previously published data (34), the frequency of
excitatory neurotransmission to CVNs was not altered by
respiratory activity under either normoxic or hypoxic condi-
tions (spontaneous 2.3 � 0.3 Hz, respiratoryrelated 2.2 � 0.2
Hz, n � 9; p � 0.05, and spontaneous 1.6 � 0.3 Hz,
respiratoryrelated 1.3 � 0.2 Hz, n � 9; p � 0.05, respectively,
Fig. 1). However, during recovery from hypoxia respiratory
activity elicited a significant increase in the frequency of

Figure 1. Central cardiorespiratory responses to hypoxia. Respiratory-
related bursting activity was recorded from the hypoglossal rootlet (XII;
	XII—the integrated activity of the nerve rootlet) simultaneously with activ-
ity of fluorescently identified and patch clamped CVNs within the NA (here
and in all subsequent figures). As shown in the left panel, under control
conditions there was no excitatory respiratory-related inputs to CVNs. Chang-
ing the perfusate from ACSF, equilibrated with 95% O2, and 5% CO2 to
ACSF equilibrated with 5% CO2, 20% O2, and 75% N2, did not alter
excitatory neurotransmission to CVNs (middle panel). However, on recovery
from hypoxia (right panel), the frequency of EPSCs was significantly in-
creased and correlated with the inspiratory burst activity as shown in a typical
experiment (A) and in the summary data (n � 9, B). **Denotes p � 0.01,
using one-way ANOVA with repeated measures.
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EPSCs from 2.1 � 0.2 Hz to 5.0 � 0.5 Hz that occurred at the
onset of respiratory activity (n � 9; p � 0.01, Fig. 1).
Glutamatergic receptors, but neither purinergic nor 5-HT3

receptors, mediate excitation of CVNs under normoxic condi-
tions. In agreement with the previous studies (35), during control
conditions neither the 5-HT3 antagonist ondansetron (100
�M) nor the P2 receptor blocker PPADS (100 �M) signifi-
cantly altered the frequency of spontaneous EPSCs in CVNs
(2.0 � 0.1 Hz vs. 1.7 � 0.2 Hz, n � 7; p � 0.05, Fig. 2A, and
1.9 � 0.1 Hz vs. 2.1 � 0.2 Hz, n � 6; p � 0.05, Fig. 2B,
respectively). However, application of the NMDA and
AMPA/kainate glutamatergic antagonists AP-5 (50 �M) and
CNQX (50 �M), respectively, diminished the frequency of
spontaneous EPSCs in CVNs from 1.8 � 0.1 Hz to 1.0 � 0.1
Hz (n � 6; p � 0.01, Fig. 2C), suggesting that under normal
respiratory activity EPSCs in CVNs are primarily mediated by
glutamatergic neurotransmission.
During hypoxia, in addition to glutamatergic receptors,

5-HT3 receptors participate in excitation of CVNs. The
frequency of EPSCs was not significantly altered within the
last 2 min of a 10-min period of hypoxia (min 8–9: 1.4 � 0.3
Hz vs. min 9–10: 1.2 � 0.2 Hz, n � 8, p � 0.05), Fig. 3A.
Application of PPADS (100 �M) did not significantly alter the
frequency of spontaneous EPSCs in CVNs (1.6 � 0.1 Hz vs.

1.3 � 0.1 Hz, n � 11; p � 0.05, Fig. 2B), suggesting
purinergic neurotransmission is not involved in the excitation
of CVNs during hypoxia. However, AP-5 (50 �M) and
CNQX (50 �M) evoked a significant decrease in the EPSC
frequency from 1.5 � 0.2 Hz to 0.6 � 0.1 Hz (n � 10, p �
0.001, Fig. 3C). Similarly, application of the 5-HT3 antagonist
ondansetron (100 �M) during hypoxia significantly decreased
the EPSC frequency from 1.6 � 0.1 Hz to 1.0 � 0.1 Hz (n �
9, p � 0.01, Fig. 3D). This significant decrease in the EPSC
frequency persisted in the presence of AP-5 (50 �M) and
CNQX (50 �M), from 0.9 � 0.1 Hz to 0.6 � 0.1 Hz (n � 9,
p � 0.01, Fig. 3E).
In recovery from hypoxia both glutamatergic and puri-

nergic receptors mediate neurotransmission to CVN. Unlike
during hypoxia, in the recovery period application of ondan-
setron (100 �M) did not significantly alter the spontaneous
EPSC frequency (n � 7; p � 0.05, Fig. 4A). Similarly,
respiratory related excitatory neurotransmission to CVNs was

Figure 2. Under normoxic conditions glutamatergic receptors primarily me-
diate excitation of CVNs. As shown in A, B, and C, excitatory neurotrans-
mission to CVNs was not modulated by respiratory bursts. The frequency of
spontaneous EPSCs was not significantly altered with application of either the
5-HT3 antagonist ondansetron (n � 7, A) or the purinergic receptor blocker
PPADS (n � 6, B). However, application of the NMDA and nonNMDA
glutamatergic antagonists AP-5 and CNQX, respectively, diminished the
frequency of spontaneous EPSCs in CVNs (n � 6, C). Typical experiments
are shown in the left, whereas the summary data are illustrated in the bar
graphs on the right. **Denotes p � 0.01, using t test. In this and all
subsequent figures, unfilled bars indicate a statistically different response
compared with the corresponded period during control conditions.

Figure 3. During hypoxia, both glutamatergic receptors and 5-HT3 recep-
tors mediate excitation of CVNs. As shown in A–E, excitatory neurotrans-
mission to CVNs was not modulated by respiratory bursts under hypoxic
respiration. The frequency of EPSCs was not significantly altered within the
last 2 min of the 10-min period of hypoxia (n � 8, A). Application of PPADS
did not significantly alter the frequency of spontaneous EPSCs (n � 11, B).
However, application of AP-5 and CNQX evoked a significant decrease in the
EPSC frequency (n � 10, C). Similarly, application of the 5-HT3 antagonist
ondansetron during hypoxia significantly decreased EPSC frequency (n � 9,
D). This significant decrease in the EPSC frequency persisted in the presence
of AP-5 and CNQX (n � 9, E). Typical experiments are shown in the left,
whereas the summary data are illustrated in the bar graphs on the right.
**Denotes p �0.01, and §denotes p �0.001 using t test.
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not significantly changed by application of ondansetron (100
�M, 3.9 � 0.2 Hz vs. 4.5 � 0.6 Hz, n � 7; p � 0.05, Fig. 4A).
However, in agreement with previous work, sequential addi-
tion of PPADS (100 �M) blocked the respiratory-related
increase in the EPSC frequency (from 3.9 � 0.2 Hz to 2.3 �
0.3 Hz, n � 7; p � 0.01, Fig. 4A), whereas spontaneous
EPSCs were unchanged by PPADS (100 �M, n � 7; p � 0.05,
Fig. 4A). Subsequent addition of AP-5 (50 �M) and CNQX
(50 �M) significantly diminished spontaneous excitatory neu-
rotransmission (n � 7; p � 0.01, Fig. 4A). The effects of all
drugs applied were reversible (Fig. 4A). In another set of
experiments, AP-5 (50 �M) and CNQX (50 �M) were applied
alone. AP-5 and CNQX reversibly blocked the frequency of
both spontaneous and respiratory related EPSCs (n � 7, p �
0.01, Fig. 4B).

DISCUSSION

The main findings of this study are 1) during normal respira-
tory activity excitation of CVNs is primarily mediated by gluta-
matergic neurotransmission, whereas 5-HT3 and purinergic re-
ceptors are not involved in control of CVNs under normoxic
conditions. 2) Hypoxia recruits a 5-HT pathway to CVNs that
maintains spontaneous excitation of CVNs via activation of
5-HT3 receptors in CVNs, in addition to glutamatergic neuro-
transmission. 3) In recovery from hypoxia, CVNs continue to
receive glutamatergic neurotransmission. In addition, purinergic
receptor mediated signaling is recruited to excite CVNs during
respiratory bursts, whereas 5-HT3 receptors are not involved in
control of CVNs during the posthypoxia period.
The results of this study suggest excitatory glutamatergic

signaling is involved in the control of CVNs under all condi-
tions studied: normoxia, hypoxia, and recovery. However,
hypoxia evokes a dramatic alteration in 5-HT system function
within the brainstem. Hypoxia induces Fos-like immunoreac-

tivity in 5-HT neurons in the nucleus raphe pallidus, the
nucleus raphe magnus, and along the ventral medullary sur-
face (36,37). Within the ventral respiratory group, an area
located close to CVNs, 5-HT levels significantly increased and
reached their maximum during 9-min of hypoxia and then
gradually declined posthypoxia (13). In agreement with these
findings, in this study, we demonstrate that during either
normal respiration, or in the recovery from hypoxia, excitation
of CVNs is not mediated by 5-HT3 receptors. However,
during the hypoxia challenge excitatory 5-HT neurotransmis-
sion to CVNs in the NA is recruited activating postsynaptic
5-HT3 receptors in CVNs. Other studies demonstrate an im-
portant recruitment of 5-HT pathways in response to hypoxia.
5-HT acting on 5-HT1A receptors in the nucleus raphe mag-
nus plays no role under normal conditions but modulates
breathing during hypoxia (38). In the anteroventral preoptic
region, both 5-HT1A and 5-HT7 receptors are involved in the
inhibitory modulation of the hypoxic ventilatory response
(39). Activation of central 5-HT2A receptors is required to
sustain hypoxic gasping and to restore respiratory activity
during posthypoxia (40,41). Central 5-HT2A receptors are
also critical for long-term facilitation in respiratory activity
followed by intermittent hypoxia (40,42,43).
Unlike during hypoxia, during recovery from hypoxia

5-HT3 receptors do not mediate excitation of CVNs, but rather
excitation of CVNs during posthypoxia is mediated by puri-
nergic and glutamatergic receptors. In agreement with this
conclusion, within the ventral respiratory group adenosine
5�-triphosphate is released at low levels during hypoxia and
adenosine 5�-triphosphate levels peak and remain elevated
after termination of hypoxia (13). Thus, purinergic receptor
activation is recruited to maintain excitation of CVNs during
respiratory bursts posthypoxia. It is likely spontaneous EPSCs
are mediated by glutamatergic receptors whereas purinergic

Figure 4. During the recovery from hypoxia both glutamatergic and purinergic receptors mediate neurotransmission to CVN. During posthypoxia CVNs
received inspiratory-related modulation of EPSCs (n � 7, **denotes p � 0.01, using one-way ANOVA with repeated measures). Application of ondansetron
did not significantly alter either spontaneous or respiratory-related EPSC frequency (n � 7, A). However, sequential addition of PPADS blocked the
respiratory-related increase in the EPSC frequency, whereas spontaneous neurotransmission remained unchanged by PPADS (n � 7, A). Subsequent addition of
AP-5 and CNQX significantly diminished spontaneous excitatory neurotransmission (n � 7, A). The effects of all drugs applied were reversible (n � 7, A). AP-5
and CNQX applied alone reversibly diminished the frequency of both spontaneous and respiratory related EPSCs (n � 7, B). †Denotes p � 0.001, using two-ways
ANOVA with repeated measures.
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receptors presynaptically facilitate glutamatergic receptor me-
diated respiratory-related excitation of CVNs posthypoxia.
Although some results obtained in this study are similar, other

results are different from those obtained in previous work that
tested the role of excitatory neurotransmission in central cardio-
respiratory responses to hypoxia-hypercapnia (31). In both this
and the previous study, there are no respiratory-related increases
in EPSC frequency during the periods of either hypoxia or
hypoxia-hypercapnia. Glutamatergic receptor mediated signaling
is the major contributor to spontaneous EPSCs in CVNs during
both hypoxia and hypoxia-hypercapnia. During recovery from
both hypoxia and hypoxia-hypercapnia, respiratory-related puri-
nergic receptor-mediated excitatory neurotransmission is re-
cruited. However, there are some differences in the responses to
hypoxia compared with those from hypoxia-hypercapnia. During
hypoxia, 5-HT pathways are recruited to CVNs, but 5-HT path-
ways are not active posthypoxia. In contrast, 5-HT pathways do
not mediate excitatory neurotransmission to CVNs during hy-
poxia-hypercapnia, but 5-HT3 receptors are involved in control
of excitation of CVNs during recovery from hypoxia-
hypercapnia.
Previous work (12) has demonstrated hypoxia-induced brady-

cardia likely also partly results from disinhibition of CVNs due to
the decrease in inhibitory GABAergic and glycinergic inputs to
CVNs. The results from this study suggest another central neu-
rochemical mechanismmay be involved in bradycardia induction
during hypoxia. Here, we demonstrated that hypoxia recruits
excitatory 5-HT3 receptor mediated neurotransmission to main-
tain an excitation of CVNs during hypoxia. Therefore, a combi-
nation of two mechanisms: disinhibition of CVNs viawithdrawal
of GABAergic and glycinergic neurotransmission, and excitation
of CVNs via activation of 5-HT3 receptors is likely important in
the bradycardia evoked during hypoxia. The inhibition of
GABAergic neurotransmission to CVNs during hypoxia may
also be mediated by activation of 5-HT pathways and stimulation
of presynaptic 5-HT receptors. In support of this hypothesis
previous work has demonstrated 5-HT2B receptors exert an
inhibitory action on GABAergic inputs to CVNs (44). In con-
clusion, this study demonstrated an essential role of 5-HT3
mediated excitation of CVNs during hypoxia. Exaggeration of
5-HT pathways may lead to altered cardiorespiratory responses to
hypoxia including an exaggerated 5-HT3 receptor mediated ex-
citatory neurotransmission or/and decreased inhibitory GABAer-
gic neurotransmission to CVNs that may be responsible for the
exaggerated bradycardia that occurs in infants that succumb to
sudden infant death.
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