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ABSTRACT: Primary immunodeficiencies (PIDs) have traditionally
been defined according to their immunologic phenotype. Far from
being concluded, the search for human genes that, when mutated,
cause PID is actively being pursued. During the last year, four novel
genetic defects that cause severe combined immunodeficiency and
severe congenital neutropenia have been identified. At the same time,
the immunologic definition of primary immunodeficiencies has been
expanded by the recognition that genetic defects affecting innate
immunity may result in selective predisposition to certain infections,
such as mycobacterial disease, herpes simplex encephalitis, and
invasive pneumococcal infections. Studies of genetically determined
susceptibility to infections have recently shown that immunologic
defects may also account for novel infectious phenotypes, such as
malaria or leprosy. Finally, a growing body of evidence indicates that
primary immunodeficiencies may present with a noninfectious clin-
ical phenotype that may be restricted to single organs, as in the case
of atypical hemolytic uremic syndrome or pulmonary alveolar pro-
teinosis. Overall, these achievements highlight the importance of
human models, which often differ from the corresponding animal
models. (Pediatr Res 65: 3R–12R, 2009)

For many years, “classical primary immunodeficiencies,” in
which broad susceptibility to infections is due to muta-

tions of a single gene, have represented a unique model to
identify gene products that play a key role in initiating,
maintaining, or regulating immune function. The study of
diseases such as severe combined immunodeficiency (SCID),
X-linked agammaglobulinemia (XLA), chronic granuloma-
tous disease (CGD), and many more has led to better under-
standing of the mechanisms that are involved in development
and function of T and B lymphocytes and of phagocytic cells.
Since 1952, when unique susceptibility to recurrent infections
was linked to lack of serum gammaglobulins (1), and for more
than 30 y, primary immunodeficiencies (PID) were mainly
defined in terms of clinical and immunologic phenotype. The
careful analysis of the pattern of inheritance of PIDs, and the
availability of more potent immunologic tools, such as MAb
and sophisticated assays to explore the phenotype and func-
tion of immune cells, have helped identify an unexpected
heterogeneity within clinically homogeneous forms of PID.
For example, both X-linked and autosomal recessive forms of

SCID have been identified; furthermore, it became clear
that—while retaining similar clinical features and the con-
sistent lack of circulating T cells—infants with SCID may
or may not present deficiencies also of B and/or NK
lymphocytes (2). Similarly, X-linked and autosomal reces-
sive forms of congenital agammaglobulinemia and of CGD
were disclosed.
The heterogeneity of PIDs was further illustrated when

advances in molecular genetics and the development of the
Human Genome Project made cloning of PID-causing
genes feasible. Yet, many forms of PID are still “orphan” as
to the genetic defects responsible for their phenotype. For
example, the genetic defect underlying common variable
immune deficiency (CVID) is known in only 5–10% of the
cases (3).
At the same time, the phenotypic paradigm of PIDs has

been challenged. In particular, rather than focusing on the
classical PIDs (in which patients are prone to multiple infec-
tions by various organisms), many groups have started to
focus on cohorts of patients with an increased sensitivity (or
resistance) to specific infectious pathogens. This was largely
contributed by phenomenal work of Casanova et al. (reviewed
in Refs. 4–7s). Furthermore, it has become apparent that
defects in immune-related genes may lead to clinical pheno-
types other than susceptibility to infections, thus broadening
the clinical paradigm of PIDs.
In this review, we will focus on recent advances in the

genetic characterization of classical PIDs and of novel forms
of PIDs associated with a restricted susceptibility to infections
or with a noninfectious clinical phenotype.
Identification of novel genetic defects underlying “classi-

cal” forms of PID. Since 1993, when the Bruton Tyrosine
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Kinase (BTK) gene, whose mutations account for XLA, was
cloned (8,9), more than 100 genes responsible for primary
immunodeficiency diseases have been identified (10). This
explosion of gene discoveries for many groups of PIDs might
have suggested the gene hunting was over (11). As a matter of
fact, identification of human genes that, when mutated, cause
PID has continued, as demonstrated by a series of recent
discoveries.
Novel genetic defects that cause combined immune

deficiency. During the last months, three novel genetic
defects that account for combined immunodeficiency in
humans have been identified.
Using genome-wide linkage analysis in three consanguine-

ous families, two groups of investigators have established that
mutations in the adenylate kinase 2 (AK2) gene are responsi-
ble for reticular dysgenesis (RD), a rare autosomal recessive
form of SCID, associated with profound neutropenia and
sensorineural deafness (12,13). The AK2 gene defects identi-
fied in patients with RD resulted in absence or severe reduc-
tion of protein expression. AK2 is expressed in the mitochon-
drial intermembrane space in several tissues, and it regulates
the levels of adenosine diphosphate by catalyzing the revers-
ible transfer of a phosphoryl group from adenosine triphos-
phate to adenosine monophosphate. Although most cells in the
body express both AK2 and AK1, blood nucleated cells
express AK2, but have little if any AK1 protein (13). There-
fore, leukocytes may be particularly sensitive to AK2 defi-
ciency. It has been suggested that the normal AK2 protein may
play a critical role in providing the energy required for
proliferation of hematopoietic progenitors and/or in control-
ling cell apoptosis. In this regard, it is interesting to observe
that Kostmann disease (the prototype of severe congenital
neutropenia) is due to deficiency of HAX-1, another protein
located in the mitochondrial intermembrane space, which is
required to prevent apoptosis in myeloid, lymphoid, and neu-
ronal cells (14).
In keeping with the putative role played by AK2 in hema-

topoiesis, transduction of bone marrow CD34� cells from RD
patients with normal AK2 cDNA-encoding lentiviral vector
restored generation of mature myeloid cells of the neutrophil
lineage in vitro, whereas down-regulation of AK2 expression
in normal CD34� cells by lentiviral-mediated gene transfer of
AK2 short hairpin RNA resulted in a profound arrest in
myeloid differentiation (12). On the other hand, induction of
an aberrant ak2 splicing in zebrafish resulted in complete
absence of developing T lymphocytes (13).
Lagresle-Peyrou et al. have also offered important insights

into the pathophysiology of deafness associated with RD.
Using confocal microscopy, they have shown that in the inner
ear, AK2 is located within the lumen of the stria vascularis
capillaries (12), suggesting that here it could function as an
ectoenzyme. Because serum adenosine diphosphate has dele-
terious effects on endothelial integrity, it is possible that AK2
mutations may cause damage to the inner ear microvessels and
hence cause the sensorineural damage of RD.
In another seminal article, van der Burg et al. (15) have

identified the first case of SCID due to mutations of the
PRKDC gene, coding for DNA-protein kinase catalytic sub-

unit (DNA-PKcs). This is a critical factor for V(D)J recom-
bination, a process that is essential in generating T and B
lymphocytes and that involves both lymphoid-specific gene
products (RAG1, RAG2) and a series of ubiquitously ex-
pressed factors involved in DNA repair (Ku70/80, DNA-
PKcs, Artemis, Cernunnos/XLF, DNA ligase IV). A variety of
genetic defects (RAG1, RAG2, Artemis, Cernunnos/XLF,
DNA ligase IV) that impair this process and result in com-
bined immunodeficiency had been demonstrated in humans
(16). With the notable exception of Cernunnos/XLF defect
(that is associated with a leaky phenotype), and of DNA ligase
IV deficiency (whose phenotype may range from SCID to
minimal immunodeficiency), most of these defects, when
complete, are associated with the inability to generate both T
and B lymphocytes (and hence cause T�B� SCID). Impor-
tantly, defects of V(D)J recombination may associate with
normal (as in the case of RAG defects) or increased (Artemis,
Cernunnos/XLF, DNA ligase IV deficiency) cellular radiosen-
sitivity, the latter reflecting impaired DNA repair. Recently,
van der Burg et al. (15) have identified the first patient with
radiosensitive SCID with a mutation in the PRKDC gene,
encoding for DNA-PKcs. It is interesting to note that muta-
tions of DNA-PKcs in mice account for the naturally occur-
ring scid phenotype, which is known since many years (17).
Furthermore, mutations of the same gene are responsible for a
severe immunodeficiency phenotype also in other animal spe-
cies, such as Arabian foals and Jack Russell terriers (18). The
delay with which mutations in the same gene have been
identified in humans may at first sight seem surprising. How-
ever, it should be considered that the PRKDC gene includes 86
exons, making attempts to identify mutation by direct se-
quencing cumbersome. For this reason, several groups have
relied on other screening assays, in particular on protein
expression analysis, without success. Interestingly, the
PRKDC mutation identified by van der Burg et al. (15) is a
missense mutation that does not interfere with DNA-PKcs
protein expression, kinase activity, or DNA end-binding ca-
pacity, but affects the quality of coding joins (with long
stretches of P nucleotides) and overall end-joining activity.
This observation reinforces the importance of developing
functional assays that may help identify gene defects that
cause PID without interfering with protein expression.
Upon completion of differentiation into CD4� or CD8�

single positive thymocytes, newly generated naive T cells
egress the thymus and traffic to secondary lymphoid organs in
the periphery. A recent study has shown that coronin 1A, an
actin regulator of the coronin family that is predominantly
expressed in hematopoietic cells, plays a major role in this
process (19). This protein associates with and inhibits the
actin-nucleation promoting activity of the Arp2/3 complex.
Cyster and coworkers (19) have shown that mice with a
recessive peripheral T-cell deficiency (Ptcd) carry a homozy-
gous missense mutation in the Coronin 1A (Coro1a) gene,
which results in increased inhibition of the Arp2/3 complex
and impaired thymic egress. Furthermore, they showed that
both Coro1a-deficient mice and another strain of mice with a
hypomorphic Coro1a gene defect generated using N-ethyl-N-
nitrosourea-induced mutagenesis, share features of increased
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levels of F-actin in thymocytes, reduced number of thymo-
cytes due to increased apoptosis, and significant peripheral
T-cell lymphopenia. These observations prompted the authors
to search for possible defects of the CORO1A gene in patients
with atypical combined immunodeficiency. One such patient
with T�B�NK� combined immunodeficiency was identified,
who carried a deletion of the CORO1A gene on one allele and
a dinucleotide deletion resulting in frameshift and premature
termination, on the other allele. Western-blot analysis showed
absence of coronin 1A protein expression in Epstein-Barr-
virus-transformed B cells. The patient presented relatively late
(at 13 mo of age) with severe vaccine-related varicella and
was successfully treated by hematopoietic cell transplantation
(19). This study is important because it provides the first
example of SCID due to defects in the regulation of actin
polymerization in thymocytes and thus expands the mecha-
nisms of SCID pathophysiology in humans (Table 1). Inter-
estingly, reduced T cell numbers are also observed in patients
with the Wiskott-Aldrich syndrome (WAS), another disorder
of regulation of actin polymerization (20). Although it is not
clear why coronin 1A deficiency results in decreased cell
survival, this study has opened the interesting perspective that
other cases of severe T-cell deficiency may be due to muta-
tions in CORO1A or in other genes that regulate actin poly-
merization in the T-cell compartment.
A novel genetic defect links glucose metabolism to myeloid

development. Severe congenital neutropenia (SCN) represents
another example of genetically heterogeneous conditions for
which significant advances in the characterization of the mo-
lecular pathophysiology have been recently achieved (21,22).
In some forms of SCN, such as defects of ELA2 and HAX1
genes, neutropenia is associated with spontaneous apoptosis of

mature neutrophils (14,23,24). Increased genomic instability
has been reported also in myeloid precursors from patients
with SCN due to activating mutations in the WASP gene (25).
Finally, one subgroup of patients in whom SCN is associated
with a defect of glucose metabolism (glycogenosis 1b), carry
mutations in the SLC37A4 gene, encoding for the glucose-6
phosphate transporter into the endoplasmic reticulum (26,27).
Klein et al. (28) have recently identified a novel molecular
defect that accounts for SCN. Boztug et al. have studied two
consanguineous pedigrees of Arameic descent that included
five patients with a unique phenotype consisting of SCN
associated with congenital heart disease and abnormally vis-
ible s.c. veins and/or venous angiectasias. Using a whole
genome mapping approach, the authors have identified a
candidate region on the long arm of chromosome 17. Sequenc-
ing of candidate genes in the interval has shown that all five
affected patients carried a homozygous missense mutations in
the G6PC3 gene that encodes for the ubiquitously expressed
glucose-6 phosphatase catalytic subunit 3. They have demon-
strated that the mutation identified in the patients abrogates
enzymatic activity and results in decreased glucose levels in
the endoplasmic reticulum (ER). This biochemical abnormal-
ity promotes ER stress, induces dephosphorylation of glyco-
gen synthase kinase 3-� (GSK3�), and as a consequence of
this, causes phosphorylation and proteasome-mediated degra-
dation of the anti-apoptotic factor Mcl-1. In keeping with this,
patients’ neutrophils and bone marrow myeloid precursors
showed increased apoptosis that could be rescued upon retro-
virus-mediated transfer of the G6PC3 gene into patients’
hematopoietic progenitor cells. To investigate what proportion
of SCN patients with an undefined genetic defect may carry
mutations in the G6PC3 gene, the authors have screened 104
subjects, and identified biallelic mutations of G6PC3 in seven
of them. They have also confirmed that G6PC3 mutations
result in a complex phenotype, in which SCN is most often
associated with congenital heart disease, abnormal s.c. vein
visibility or angiectasias, and urogenital defects. This study is
important for several reasons. It has shed light on the mech-
anisms that link glucose metabolism to apoptosis in myeloid
cells and has thus provided an elegant explanation also for the
SCN phenotype of patients with glycogenosis 1b, because in
this disease defects of the glucose-6 phosphate transporter also
result in decreased levels of glucose in the ER. Furthermore,
it has reinforced the notion that careful analysis of human
patients (especially if from restricted ethnic groups) may
lead to identify novel clinical phenotypes that may prove
critical to unravel the molecular cause of genetically deter-
mined disorders.
Primary immunodeficiencies with a restricted susceptibil-

ity to infections. In the last few years, mainly because of
seminal contributions by Casanova et al., several PIDs have
been reported that are characterized by susceptibility to a
restricted number of pathogens (Table 2) (29–41). Here, we
will review the pathophysiology of some of these novel forms
of PID.
Mendelian susceptibility to mycobacterial disease

(MSMD). Mendelian susceptibility to mycobacterial disease
(MSMD) was originally described in the early 1950s (42), but

Table 1. Pathophysiology mechanisms that account for severe
combined immune deficiency (SCID) (Refs. 20–27)

Disease mechanism Gene defects

Increased apoptosis
due to mitochondrial
energy failure

AK2

due to accumulation of
toxic metabolites

ADA

due to abnormal actin
polymerization

CORO1A

Impaired cytokine-mediated signaling
due to defects of the
common � chain

IL2RG (X-linked SCID)

due to defects of the
IL-7R � chain

IL7R

due to defects of JAK3 JAK3
Impaired signaling through

the pre-T cell receptor
due to defective V(D)J
recombination

RAG1, RAG2, DCLRE1C,
LIG4*, PRKDC

due to impaired
expression of CD3
subunits

CD3D, CD3E, CD3Z

Impaired signaling in the
periphery

ORAI1

Unknown mechanism RMRP*

*These gene defects are most often associated with a milder clinical
phenotype than SCID.

5RADVANCES IN PRIMARY IMMUNODEFICIENCIES



Table 2. Predisposition to specific infections in humans

Pathogen Presentation

Affected
gene/

Chromosomal
region Functional defect Notes Reference

Bacteria
S. pneumoniae Invasive disease IRAK-4, MyD88 Impaired

production of
inflammatory
cytokines
following TLR
stimulation

Also susceptible to other
pyogenic bacteria such
as S. aureus

29, 30

Neisseria Invasive disease MAC components
(C5, C6, C7,
C8A, C8B,
C8G, C9)

MAC deficiency 31, 32

Invasive disease,
poor prognosis

PFC Properdin
deficiency

Mycobacteria MSMD IL12B, IL12RB1,
IKBKG

Impaired IFN�
response to
IL-12/23

Also susceptible to
Salmonella typhi
infections

4, 33

IFNGR1,
IFNGR2,
STAT1

Impaired cellular
response to
IFN�

Mycobacterium
leprae

Leprosy PARK2 Unknown Possible E3-ubiquitin
ligase dysfunction

106

LTA Unknown 101
Viruses
Herpes simplex
(type 1)

Herpes Simplex
Encephalitis

UNC93B1, TLR3 Impaired
production of
type I IFNs

STAT-1 and NEMO
deficiency also
predispose to HSV
infections, amongst
other infections

34, 35

Epstein–Barr
virus

XLP SH2D1A SAP deficiency Fulminant infectious
mononucleosis,
Malignant and
non-malignant
lymphoproliferative
disorders,
dysgammaglubulinemia,
autoimmunity

36

XIAP/BIRC4 XIAP deficiency 37

Human
Papillomaviruses

Epidermodysplasia
Verruciformis

EVER1/TMC6
EVER2/TMC8

EVER1 deficiency
EVER2 deficiency

38, 39

WHIM CXCR4 Truncated CXCR4 Altered neutrophil
mobilization, T-cell
lymphopenia. recurrent
bacterial respiratory
infections chronic
cutaneous/genital
papilloma virus disease

40

Parasites
Plasmodium

falciparum
Malaria fever
episodes

10p15 Unknown Linkage studies 89, 91

Severe Malaria GNAS Unknown SNP Association studies 91
Severe Malaria IFNR1 Unknown SNP Association studies 90

Schistosoma
mansoni

Intensity of
infection

5q31-q33 Unknown 92

Hepatic fibrosis 6q22-q23, IFNR1 Unknown 93
Leishmania

donovani
Visceral
leishmaniasis
(Kala-Azar)

22q12 2q35
(NRAMP1)

Unknown 95–97

Yeast
Candida APECED, Chronic

candidiasis
Aire Unknown APS-1-chronic

candidiasis, chronic
hypoparathyroidism,
Addison’s disease

41

TLR, Toll-like receptor; MAC, membrane attack complex; MSMD, Mendelian susceptibility to mycobacterial disease; IFN, Interferon; XLP, X-linked
lymphoproliferative disease; WHIM, warts, hypogammaglobulinemia, infections, and myelokathexis syndrome; APECED, autoimmune, polyendocrinopathy,
candidiasis, ectodermal dystrophy.
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its cellular and molecular pathophysiology has remained
largely undefined until recently. In the past 12 y, six genes that
encode for proteins involved in the IL-12/IL-23-dependent
IFN�-mediated immunity were shown to be associated with
MSMD, including IFNGR1, IFNGR2, STAT1, IL12B,
IL12RB1, and IKBKG (33,43). Interestingly, apart from being
susceptible to marginally virulent mycobacterial strains, such
as environmental mycobacteria or BCG vaccine strains, and to
Salmonella infections, patients with MSMD are otherwise
healthy and are not susceptible to other infectious pathogens.
This group of MSMD-causing genes can be grouped into
genes that elicit IFN-� responses through IL-12/IL-23 (IL12B,
IL12RB1, and IKBKG) and genes that determine the cellular
responsiveness to IFN-� (IFNGR1, IFNGR2, and STAT1).
The first genetic etiology of MSMD to be discovered was

represented by mutations of IFNGR1, encoding the ligand-
binding chain of the IFN-� receptor (44,45). Later, mutations
in the IFNGR2 gene, encoding for the second chain of the
IFN-� receptor, and mutations of STAT1, which encodes for a
transcription factor activated by IFN-� receptor engagement,
were also described in patients with MSMD (46,47). Impor-
tantly, mutations in these genes result in a different severity of
the clinical phenotype, depending on the residual cellular
ability to respond to IFN-�. In particular, complete IFN-�R1
deficiency, inherited as an autosomal recessive (AR) trait,
typically results in death during early childhood, whereas
autosomal dominant partial IFN-�R1 deficiency most often
presents later in life (44,45,48–51).
A similar phenotypic variability has been described for

IFNGR2 deficiency (3). Patients with loss-of-expression mu-
tations (46), or with mutations resulting in surface-expressed,
nonfunctional IFNGR2 molecules (52,53) have a worse clin-
ical phenotype than patients with hypomorphic IFNGR2 mu-
tations resulting in residual responsiveness to IFN-� (54).

STAT1 mutations are even more interesting because differ-
ent mutations lead to significantly different clinical pheno-
types. Although patients with homozygous STAT1 mutations
that abrogate protein expression are susceptible to both my-
cobacterial and severe viral infections that result in death in
the first years of life (33,55,56), patients with STAT1 muta-
tions that affect the DNA-binding domain (57) or impair
STAT1 phosphorylation (47), show selective susceptibility
to mycobacterial, but not to viral, infections. This hetero-
geneity of clinical phenotype results from the fact that
complete STAT1 deficiency leads to cellular unresponsive-
ness to both type I (IFN-� and IFN-�) and type II (IFN-�)
IFN, whereas mutations that affect STAT1 function result
in an impaired response to IFN-� but spare cellular respon-
siveness to IFN-�/�.
The clinical phenotype of MSMD patients with defects in

the IL-12/IL-23 pathway differs from the phenotype observed
in patients with defects of the IFN-� receptor pathway because
the former manifest susceptibility not only to mycobacterial,
but also to Salmonella infections that occur in up to 50% of
patients (58,59). Defects in the IL-12/IL-23 pathway, and
specifically IL12RB1 gene defects, are the most prevalent
cause of MSMD. The IL12RB1 gene encodes IL-12R�1, a
receptor subunit that is shared by IL-12 and IL-23 receptors.

Similarly, the IL12B gene, whose mutations account for a
minority of cases of MSMD (58,60), encodes for the p40
subunit that is shared by IL-12 and IL-23 cytokines.
Another component of the cellular response that leads to

IFN-� production is represented by the NF-kB essential mod-
ulator (NEMO), a regulatory component of the NF-kB signal-
ing pathway, that is activated in response to various stimuli,
including signaling through CD40, Toll-like receptors (TLRs),
IL-1R, and tumor necrosis factor-� receptor. NEMO is en-
coded by the X-linked IKBKG gene. Heterozygous null mu-
tations in this gene are associated with incontinentia pigmenti
in females, whereas hypomorphic mutations in males lead to
X-linked recessive anhidrotic ectodermal dysplasia with im-
munodeficiency (XR-EDA-ID) (61–63). Almost all patients
with IKBKG mutations described to date present variable
levels of impaired host defenses, with severe susceptibility not
only to mycobacterial disease, but also to Gram-positive and
Gram-negative pyogenic bacteria. This reflects both defects of
specific antibody production (with or without hypogamma-
globulinemia) and impairment of activation of CD40- and
TLR-dependent pathways in dendritic cells and macrophages
(62,64). In particular, impairment of CD40-mediated IL-12/
IL-23 production in patients with IKBKG mutations is respon-
sible for the X-linked form of MSMD (65).
Predisposition to herpes simplex encephalitis (HSE). Her-

pes simplex infections affect most individuals. It has been
estimated that 60–95% of the entire population become HSV-
seropositive by adulthood (66,67). HSV infection may be
asymptomatic or may present with a spectrum of clinical
manifestation ranging from skin infection to severe, poten-
tially fatal, systemic disease. Herpes simplex encephalitis
(HSE) is typically caused by HSV type 1 (HSV-1) and follows
a bimodal distribution, with one third of cases occurring in
childhood and one half in individuals aged 50 y or more (68).
This distribution probably reflects primary HSV infection in
the younger age group and reactivation of latent HSV infec-
tion in the elderly. The mortality rate of HSE is as high as 70%
if untreated (69–71), and although it has significantly dropped
after introduction of acyclovir therapy, many patients develop
neurologic sequelae (70).
Although it had been recognized that patients with signifi-

cant primary or secondary cellular immunodeficiencies are
susceptible to HSE, only a minority of patients with HSE had
demonstrable immunodeficiency, when evaluated by conven-
tional assays.
As mentioned above, patients with complete STAT-1 defi-

ciency have impaired cellular responsiveness to both IFN-�
and to IFN-�/�. Therefore, they show increased susceptibility
not only to mycobacterial disease but also to viral infections,
including HSE (56). Similarly, a case of severe HSE was
reported in a patient with NEMO deficiency, which also inter-
feres with IFN responses (72). However, both in STAT1-
deficient and in the NEMO-deficient patients, increased suscep-
tibility to HSV infections (including HSE) was not the only
infectious clinical phenotype. Overall, the reason why only
some individuals—even within the same family—show
unique susceptibility to severe and recurrent HSE has re-
mained unclear until recently, when Casanova et al. have
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established that this phenotype may be due to defects of the
UNC93B1 and the TLR3 genes.
Casrouge et al. (34) have described two patients with HSE,

who were homozygous for UNC93B1 mutations that resulted
in impaired cellular IFN-�/� and IFN-� antiviral responses.
UNC-93B is a transmembrane protein that is predominantly
retained in the ER, where it may bind to both Toll-like
receptor (TLR)-3 and TLR9 (73). More recently, Casanova et
al. have shown that HSE may occur in TLR3 deficiency (35).
TLR3 is located in the endosomal compartment and recog-
nizes double-stranded RNA that is produced by many viruses
during replication (64,74). Fibroblasts from TLR3- or
UNC93B1-deficient patients show impaired production of
type I IFN and increased apoptosis after stimulation with
poly(I:C) (a TLR3 ligand) or HSV-1 (35). Overall, UNC93B1
and TLR3 deficiencies are two clinical “experiments” of
nature that demonstrate the critical role that signaling through
TLR3-UNC-93B plays in the response to primary HSV-1
infection by inducing production of type I IFNs. Yet, even
after identification of these patients, only a minute proportion
of patients with increased susceptibility to HSE have a defined
genetic defect, suggesting that mutations of other genes, along
the same or in different cellular pathways, remain to be
identified.
Susceptibility to pyogenic bacteria and specifically to

pneumococcal infections. Until the introduction of the pneu-
mococcal vaccine, Streptococcus pneumoniae was considered
the most common bacterial pathogen that caused a variety of
infections in childhood, including pneumonia, otitis media,
meningitis, osteomyelitis, and sepsis (75). Susceptibility to
invasive pneumococcal disease may be contributed by several
conditions, such as secondary immunodeficiency (HIV infec-
tion, chemotherapy), physical disruption of the upper respira-
tory tract epithelium (as observed after viral respiratory tract
infections), anatomical or functional asplenia, as well as sev-
eral classical PID, including antibody deficiencies (as in
XLA), WAS, and some complement deficiencies (5,7,75,76).
However, all of these situations contribute to susceptibility to
other pathogens as well. In contrast, recent studies have
demonstrated that specific gene abnormalities may lead to a
restricted susceptibility to pyogenic bacterial infections and
pneumococcal infections in particular.
The IL-1 receptor-associated kinase-4 (IRAK-4), a serine

threonine kinase that acts downstream to TLRs and IL-1
receptor, was shown to be deficient in patients with selective
susceptibility to S. pneumoniae and S. aureus infections
(76,77). More than 30 IRAK4-deficient patients have been
described to date (29,76–91). IRAK4 deficiency results in
impaired production of inflammatory cytokines after TLR
stimulation. This phenomenon explains the mild inflammatory
response elicited in vivo in these patients.
IRAK-4 is selectively recruited to TLRs and IL-1R by the

adaptor protein MyD88. Recently, MyD88 was found to be
deficient in a group of nine children that suffered from life-
threatening, recurrent pyogenic bacterial infections, including
invasive pneumococcal disease (30). Patients with IRAK4 or
MyD88 deficiency are not susceptible to severe viral infec-
tions, because IFN-�/� and IFN-� production in response to

TLR3 and TLR4 stimulation does not require IRAK-4 (91).
Importantly, although IRAK-4 and MyD88 deficiency may
lead to invasive and potentially life-threatening infections in
childhood, their clinical phenotype tends to improve with age,
even without antibiotic prophylaxis, possibly reflecting devel-
opment of adaptive immunity (86). Thus, IRAK4 and MyD88
deficiencies represent challenges to the paradigm of classical
PIDs. In fact, the fact that their clinical phenotype spontane-
ously improves with age contrasts with the observation that in
the absence of appropriate treatment, classical forms of PIDs
are typically characterized by progressive worsening of the
clinical phenotype.
Extending the paradigm of PID with predisposition to

selected pathogens: Searching for susceptibility genes in
targeted regional areas. The history of PIDs has been largely
based on studies performed in Western countries that have a
defined—although variable—microbial ecosystem. However,
after the recognition that PIDs may be also characterized by
selective predisposition to certain pathogens (mycobacteria,
herpes simplex, pyogenic bacteria, etc.), it is logical to assume
that similar unique predisposition to other pathogens that are
largely confined to certain geographical areas may exist.
Recent evidence supports this notion.
Predisposition to parasitic infections (malaria, schistosoma,

and leishmania). Observations regarding susceptibility and re-
sistance to malaria have been studied for many years. Red blood
cell disorders such as sickle cell anemia and the carrier status for
thalassemia have been shown to provide an evolutionary selec-
tive advantage by protecting from malaria (92). Classical genetic
studies such as twin studies and linkage analysis proved the
major role of host genetic factors, especially in children (93–95).
The major histocompatibility complex as well as a cytokine-gene
cluster on chromosome 5q31-q33 were also shown to associate
with susceptibility/resistance to malaria (96,97). Recently, with
the advance in genome-wide scanning and association, analysis a
genome-wide linkage analysis was performed on 241 malaria
susceptible siblings from 68 selected families from Ghana, West
Africa, who were exposed to hyperendemic malaria transmission
and were homozygous wild type for the established malaria
resistance factors of Hb (Hb)S, HbC, alpha� thalassemia, and
glucose-6-phosphate-dehydrogenase deficiency (98). Several re-
gions showed significant linkage to certain parasitological and
clinical phenotypes such as a linkage of a region on chromosome
10p15 with malaria fever episodes.
Within the chromosome 21q22.11 region previously asso-

ciated with severe malaria, Khor et al. (99) identified a
single-nucleotide polymorphism (IFNAR1 272354c-g) at po-
sition �576 of the interferon alpha receptor 1 (IFNAR1) gene,
which was found to be strongly associated with susceptibility
to severe malaria.
Another recent study demonstrated an association between

severe malaria and certain single nucleotide polymorphisms
(SNPs) in the gene for the G-protein alpha subunit that was
previously shown to interact with the malaria parasite in a
cellular level (100).
A genome-wide scan preformed on a large cohort in Brazil

localized a locus controlling the intensity of infection by
Schistosoma mansoni on chromosome 5q31-q33 (101). A
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region containing IFNGR1 was linked to pathology due to S.
mansoni and especially Schistosomal hepatic fibrosis (102).
Association studies have also provided evidence for major
histocompatibility complex control of pathology in schistoso-
miasis (103).
Similar studies have shown linkage of other loci to other

parasites and to severe infection, such as the reports regarding
visceral Leishmniasis (104–107).
Overall, these studies support the hypothesis that mutations

or polymorphisms in several genes can lead to susceptability
to various parasitic infections, hence forming a new group of
previously unrecognized PIDs.
Predisposition to leprosy. According to the World Health

Organization, the global registered prevalence of leprosy at
the beginning of 2008 stood at 212,802 cases (108). Leprosy
is an infectious disease caused by Mycobacterium leprae; yet,
certain genetic factors may predispose to infection and/or
influence the clinical course (43,109,110). Twin studies, stud-
ies of familial clusters and segregation analysis, suggested a
polygenic inheritance with major susceptibility genes (re-
viewed in Ref. 110).
Several linkage studies have suggested target loci in chro-

mosome regions 6q25-q26, 6p21, 10p13, and 20p12-p13 to
play a role in the susceptibility to leprosy or its manifestations
(111–114). The chromosome 6q25 locus that was mapped in
Vietnamese patients for susceptibility to leprosy was further
analyzed using multiple SNP studies to point out the putative
PARK2 promoter overlapping the 5�-region of the adjacent
PACRG gene (115). PARK2 was discovered and characterized
as culprit for early onset Parkinson’s disease (116). It encodes
an E3-ubiquitin ligase that plays an important role in control-
ling proteolysis and possibly in the regulation of immune
responses (117).
Using a similar positional cloning approach, a second lep-

rosy susceptibility gene, Lymphotoxin alpha (LTA) coded on
chromosome 6p21, was identified. LTA interacts with Lym-
photoxin beta (LTB) to create the agonist for the LTB recep-
tor. This interaction is critical for secondary lymphoid organ
development and for host defense against intracellular patho-
gens (110).
These interesting findings, the first of which was the first

successful study to use positional cloning to localize a major
gene in a common infectious disease (117) suggest that lep-
rosy is actually a PID in which certain gene defects predispose
their carriers to both susceptibility to infection by M. leprae
and to the development of the clinical picture (7,110).
Primary immunodeficiencies: Not only infections. Tradi-

tionally, PIDs have been defined on the basis of increased
susceptibility to infections. This paradigm has been chal-
lenged by a growing series of observations that defects of
immune genes may lead to clinical phenotypes unrelated to
susceptibility to infections. One example of PIDs without an
infectious phenotype is represented by endothelial damage
due to altered regulation and/or function of the complement
system.
Hemolytic uremic syndrome (HUS) is characterized by

severe damage of the glomerular endothelium and is most
often preceded by diarrhea caused by verocytotoxin-

producing bacteria, usually Escherichia coli O157:H7. How-
ever, in a minority of cases, HUS is unrelated to preceding
infections and may occur as a familial trait. It has been shown
that these cases of atypical HUS (aHUS) are due to comple-
ment dysregulation, specifically a gain of function of the
alternative pathway, due to mutations in complement regula-
tory proteins factor H, MCP and factor I, the activator factor
B, or the C3 factor (118,119). Mutations that alter the function
of the alternative pathway of complement have been also
associated with dense deposits glomerulonephritis and age-
related macular degeneration (120,121).
Another example of a PID with an organ-limited, infection-

independent clinical phenotype is represented by pulmonary
alveolar proteinosis (PAP), in which impairment of surfactant
homeostasis causes respiratory distress and may lead to respi-
ratory failure. Surfactant is produced by alveolar type II cells.
Surfactant aggregates that are released into the alveolar spaces
are then uptaken and catabolyzed by alveolar macrophages,
in a granulocyte macrophage-colony stimulating factor
(GM-CSF)-dependent manner (122). Most often, PAP is
due to anti-GM-CSF neutralizing autoantibodies (123).
However, two groups have recently established that PAP may
also be due to mutations of the CSF2RA gene, which is located
on the pseudoautosomal region of the X-chromosome and
encodes for the � subunit of the GM-CSF receptor (124,125).
In patients with CSF2RA mutations, surfactant is uptaken by
alveolar macrophages, but it is not catabolyzed and hence
accumulates intracellularly, resulting in production of the
typical foamy alveolar macrophages. These studies establish
PAP as a novel PID clinical phenotype and thus broaden the
spectrum of the clinical definition of PIDs.

Conclusions

Taken together, the studies of patients with either classical
or “atypical” forms of PIDs discussed above illustrate the
importance of the human model. Far from being concluded,
search for human genes that, when mutated, cause PID is still
very active. In fact, several reasons suggest that we have yet
to discover many disease-causing genes. In particular, in
recent years several genes that account for various “classical”
forms of PIDs have been discovered focusing on restricted
ethnic groups, with a higher consanguinity rate. Undoubtedly,
this success reflects an increased attitude for international
collaboration (126). At the same time, these studies have
shown the heterogeneity of clinical and immunologic pheno-
types that may associate with defects in the same gene. One
such example is represented by RAG genes mutations, which
may cause T�B� SCID, Omenn syndrome, leaky SCID, but
also granulomas (127,128).
On the other hand, identification of patients with genetically

determined susceptibility to selected infections has raised the
question of what are the real borders for the definition of PID.
Can we expect that all individuals who develop severe or
atypical infections by common community acquired patho-
gens in the absence of other contributory factors (such as
chemotherapy, cancer, trauma, etc.) carry mutation in a par-
ticular gene? And if so, should these patients be considered
affected by PID? Furthermore, does this broad definition of
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PID apply only to patients with severe or atypical infections,
or should we expand it to include also susceptibility to more
common and less severe infections?
Finally, the study of patients with aHUS and with PAP has

clearly shown the limitation of a clinical definition of PIDs,
based on identification of an infectious phenotype. Indeed, it is
becoming more and more obvious that PIDs may present with
autoimmune and inflammatory features, or even with previ-
ously unanticipated clinical phenotypes that are limited to
single organs. With this is mind, it can be expected that a large
number of PID genes have yet to be discovered. As mass
sequencing, advanced genome-wide scans and bioinformatics
become more available and sophisticated, the answer to these
questions are on the verge of discovery, as are new approaches
to the prevention and treatment of these diseases.
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