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Polymeric Biomaterials in Tissue Engineering
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ABSTRACT: Polymeric biomaterials are one of the cornerstones of
tissue engineering. A wide range of materials has been used. Ap-
proaches have shown increasing sophistication over recent years
employing drug delivery functionality, micropatterning, microfluid-
ics, and other technologies. Challenges such as producing three-
dimensional matrixes and rendering them deliverable through mini-
mally invasive techniques have been addressed. A major recent
development is the design of biomaterials for tissue engineering
matrices to achieve specific biologic effects on cells, and vice versa.
Much remains to be achieved, particularly in integrating other new
technologies into the field. (Pediatr Res 63: 487-491, 2008)

he number of polymeric or other materials that are used in

or as adjuncts to tissue engineering has increased enor-
mously over the past decade. Furthermore, a host of previ-
ously unrelated technologies such as micromanufacturing,
high-throughput screening, drug delivery, surface modifica-
tion, and nanotechnology have become integral to the bioma-
terial aspects of tissue engineering, and many approaches have
used more than one of these tool sets. Progress has been
extensive. This review will cover selected aspects of that
progress.

BIOMATERIALS FOR TISSUE ENGINEERING

The basic types of biomaterials used in tissue engineering
can be broadly classified as synthetic polymers, which in-
cludes relatively hydrophobic materials such as the a-hydroxy
acid [a family that includes poly(lactic-co-glycolic) acid,
PLGA], polyanhydrides, and others; naturally occurring poly-
mers, such as complex sugars (hyaluronan, chitosan); and
inorganics (hydroxyapatite). There are also functional or
structural classifications, such as whether they are hydrogels
(1), injectable (2), surface modified (3,4), capable of drug
delivery (5), by specific application, and so on. The breadth of
materials used in tissue engineering arises from the multiplic-
ity of anatomical locations, cell types, and special applications
that apply. For example, relatively strong mechanical proper-
ties may be required in situations where the device may be
subjected to weight-loading or strain, or where maintenance of
a specific cyto-architecture is needed. In others, looser net-
works may be needed or even preferable. The type of mate-
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rials used is also dependent on the anticipated mode of
application (open implantation vs. injection or minimally in-
vasive procedure), the nature of any bioactive molecules that
might be released, the need for surface functionalization, the
needs of the cell types of interest in terms of porosity, and
other issues. Despite this broad spectrum of potential materi-
als, there are certain generic properties that are desirable.

Biocompatibility is clearly important, although it is impor-
tant to note that “biocompatibility” is not an intrinsic property
of a material, but depends on the biologic environment and the
leeway that exists with respect to tissue reaction. For example,
a formulation that is biocompatible in subcutaneous tissue
might not be so in nerve or in the peritoneum (6). Local tissue
reaction to the biomaterial of a construct may be harmful to
the host and/or the construct, even in the absence of immune-
mediated reaction to nonautologous cellular material. For
example, the inflammatory reaction to relatively benign poly-
mers such as the a-hydroxy acids (7), together with the
acidosis that results from their breakdown, can lead to bony
destruction and development of draining fistulae (8); here, the
absolute mass of the biomaterial may play a role. Conversely,
inflammation can lead to invasion of the construct by host
cells, with untoward consequences for the transplanted cells.
Similarly, the material must be neither cytotoxic nor system-
ically toxic. Therefore, it is important to be aware of the
potential toxicity of the materials’ breakdown products, as
well as of residual unreacted cross-linking agents (e.g., glu-
taraldehyde), reactive groups on polymers (e.g., aldehydes,
amides, hydrazides), and similar issues. Even quite benign
matrices, adequate for drug delivery in sensitive environments
such as the peritoneum can be composed of relatively cyto-
toxic precursors (9,10). Of note, a material’s apparent lack of
cytotoxicity does not necessarily predict biocompatibility. For
example, a cross-linked chitosan that was minimally toxic to
mesothelial cells in vitro caused marked adhesions when
placed in the peritoneum (11).

A basic concept in tissue engineering is that the scaffold
performs a time-limited architectural or other function but
that, being foreign to the natural environment, it will disappear
once that function has been fulfilled, leaving behind a viable
purely biologic system. Consequently, many materials used in
tissue engineering are biodegradable. Biodegradable materials
are particularly likely to be used if drug delivery functionality
is intended. However, it is not necessary that the biomaterial
have this property, in part or in whole.

As alluded to above, the mechanical properties for bioma-
terials in tissue engineering are determined by the target
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environment and delivered cells. In general, the properties of
the construct should match those of the surrounding tissue:
e.g., relatively tough in bone, softer in pliable tissues. The
properties will also be defined by the delivered cells’ need for
porosity for in-growth, delivery of nutrients, or protection
from the environment, perhaps especially in the case of non-
autologous transplants.

Cell adhesion properties are obviously important, in that
cells must attach to the matrix. However, there are circum-
stances, such as in micropatterning of engineered constructs
(12,13), where materials with lower cell adhesion can be
alternated with materials with better cell adhesion to form
desired shapes.

Numerous material properties are useful for specific appli-
cations. For example, electrically conductive polymers have
been developed that could be useful in the tissue engineering
of excitable tissues (14). Further examples of specially tai-
lored materials will be encountered below.

DRUG DELIVERY FUNCTIONALITY

Biologic systems develop in a rich milieu of biologic
signals. The native signal (e.g., a growth factor) may be
lacking in the construct or present in insufficient quantity, or it
may be desirable to add an exogenous drug. In this context,
“drug” means essentially any bioactive molecule, from small
molecules to proteins (15) and nucleic acids (16). There has
been a natural emphasis on the delivery of growth factors.
While the construct is incubated in vitro, it is often sufficient
to add the drug to the ambient medium, provided that the
compound is capable of diffusing throughout. However, it may
be desirable to maintain exposure to that drug after the
construct is implanted in vivo. Biomaterials play a key role in
achieving this in tissue engineering, drawing on experiences in
the broader field of drug delivery. Many of the examples
below are drawn from that experience, rather than the nar-
rower field of tissue engineering. A number of drug delivery
approaches and polymers have been used. (These are related
to, but distinct from drug immobilization and surface modifi-
cation, which will be dealt with separately.) Many investiga-
tors have incorporated drugs into constructs; both polymeric
(17) and hydrogel-based systems have been used (15,17),
although the former are often better at controlling drug release
kinetics. The drugs can be incorporated directly into the
scaffolds, i.e., distributed throughout the polymeric matrix
during casting, as is the case with many micro- and nanopar-
ticulate drug delivery systems (18) and bulk hydrogels
(19,20). Drugs can also be reversibly conjugated to the matrix
covalently (21) or by other means. However, other methods of
providing drug delivery to scaffold-type systems have arisen
that might provide greater flexibility in the types and quanti-
ties of drugs that can be delivered. For example, micro- (22)
or nanoparticles (23) containing drugs can be dispersed
throughout a scaffold (Fig. 1). All these approaches have pros
and cons, particularly in terms of the stability of the drug
payload during and after device manufacture.

There has been considerable interest in developing means
of delivering multiple compounds. In the case of growth

Figure 1. Scanning electron micrographs of a hydrogel, polymeric nanopar-
ticles, and a composite. (A) Hydrogel of cross-linked hyaluronic acid
(X2500). (B) PLGA nanoparticles (X33,000). (C) Hydrogel from A loaded
with nanoparticles from B (X2500). Note the rougher surface. (D) Close-up
of C (X33,000), revealing the nanoparticles. Scale bars are 10 wm (A, C), and
150 nm (B, D). (Courtesy of Dr. Yoon Yeo.)

factors, the rationale is particularly compelling in that most
tissues are composed of more than one cell type, and some-
times, two factors work better than one. For example, poly-
meric scaffolds have been developed that simultaneously re-
lease vascular epithelial growth factor and platelet derived
growth factor (24). Many of the methodologies described
above could be suitable for achieving multiple drug release
(e.g., particles containing different drugs dispersed in a ma-
trix). It is also possible to encapsulate many compounds
within one particulate system (25).

Temporal control of drug release within constructs is im-
portant, either to deliver drugs in a pulsatile manner, or different
drugs at different times. This could be achieved in a number of
ways. For example, drugs could be entrapped within or be-
neath polymer layers of differing thicknesses or with differing
degradation rates. They could be entrapped within separate
populations of particles with differing release kinetics. Drugs
could be contained within chip-like implantable devices that
are programmed to release defined payloads in response to
electrical stimuli (26) or polymer degradation (27). There is
also an increasing literature on polymeric drug-releasing sys-
tems that respond to externally applied energy or forces, such
as ultrasound (28), magnetism (29), and heat (30), or electric-
ity (31). Polymers responsive to light and heat are discussed
below.

POLYMERS FOR INJECTABLE TISSUE
ENGINEERED SYSTEMS

Typically, tissue constructs are fully formed outside the
body and then must be implanted surgically. There is, how-
ever, growing interest in being able to use minimally invasive
methods such as laparoscopy, perhaps even simple injection
(2). Ideally, for such applications, the entire construct should
be of low viscosity (i.e., easy to inject) when outside the body,
but become more cohesive and gel-like once in situ. This
attribute is particularly desirable if concurrent drug delivery
functionality is intended, because the rate of drug release is
related to viscosity.
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Many approaches have been tried, in drug delivery and/or
tissue engineering. One broad category includes polymers that
cross-link physically, whether by hydrophobic, charge, or
hydrogen bonding interactions, stereocomplexation, or su-
pramolecular chemistry. One example within this category
takes advantage of the difference in temperature between the
inside and outside of the body, i.e., thermogelling polymers.
Triblock polymers of polypropylene oxide and polyethylene
oxide (32) are among the most commonly used, relying on
temperature-dependent hydrophobic interactions to change
state; there are many other specific chemistries that achieve
analogous goals. Polymers can also cross-link covalently.
There are many potential chemistries. UV photopolymeriza-
tion (33), and numerous small-molecule cross-linker mediated
methods (34) have been used. However, it is worth noting that
potential disadvantages for in situ use of UV photopolymer-
ization are the need for additional equipment and perhaps
physician squeamishness re UV irradiation, while with small
molecule cross-linkers, the concern is the potential toxicity of
residual unreacted reagents. The polymers themselves can be
modified so that they cross-link covalently in situ (35). Here
also there are numerous possible chemistries (36,37). Most
commonly, the reaction schema involves two polymers (or
two modifications of the same polymer) with complementary
reactive functional groups that form a covalent bond when
mixed, forming a gel. Aside from the relatively sophisticated
chemistry involved, the principal potential disadvantages of
these methods relate to the facts that the two prepolymers may
have to be kept separated until use (e.g., in a double-barreled
syringe), and that the gelation process could occur within the
delivery device (e.g., needle). Injectability can also be pro-
vided by formulating the tissue construct as microspheres. For
example, large porous biodegradable polymeric microspheres
have been produced that could have potential for delivering
cells (38). Also, polymeric microspheres have been surface-
modified, allowing chondrocytes to adsorb to their surfaces
(39) and subsequently delivered into the articular space.

One interesting type of polymer that could be of use for
minimally invasive deployment of structured constructs is that
with shape memory (40), i.e., the capacity to revert to a
predetermined shape in response to a defined cue. For exam-
ple, there are thermoplastic biodegradable polymers that can
change their shape upon heating. Potentially, this could reduce
the aspect of a relatively bulky object, allowing it to be
implanted via a small incision then expanding to its full
geometry. Polymers have also been developed that can un-
dergo similar shape changes in response to light (41), or that
can undergo more than one shape change in response to
graded temperature increases (42). In the latter case, one shape
change is mediated by physical cross-links, the second by
covalent links, or the rupture thereof.

SURFACE MODIFICATION OF POLYMERS FOR
TISSUE ENGINEERING

Cells are sensitive to the environment in which they exist
(43,44), responding to chemical cues, and morphologic as-
pects of the surfaces with which they are in contact. Although

the common synthetic polymeric scaffolds have great advan-
tages in terms of their manufacturing process and the repro-
ducibility of their degradability and other properties, they
suffer from a lack of those finer cues. One approach to
providing them is by modifying their surfaces (3,4), by phys-
ical adsorption of compounds, or by chemical modification.
Apart from immobilizing proteins or other compounds for
specific biologic effects (e.g., adhesion), this approach can
also be used to increase polymer hydrophilicity to repel
proteins and perhaps reduce the tendency toward adhesion
(e.g., in the peritoneum). Another common type of surface
modification is micro- or nanopatterning to create structured
cellular arrays (13) and influence cell behavior (45).

THREE-DIMENSIONAL POLYMERIC MATRICES

There has been a growing realization of the importance of
three-dimensionality in engineered tissue constructs. One ap-
proach, which was largely driven by considerations relating to
engineering large organs with, for example, complex issues of
nutrient and oxygen delivery and waste removal (i.e., need for
a microvasculature), and by the need to pattern multiple cells
types in precisely defined structures, relied on advanced fab-
rication tools to establish those matrices (46). A variety of
polymeric materials have been patterned in 3-D using micro-
fabrication and similar technologies, based on designs estab-
lished by computational fluid dynamics. Early work using
micropatterned silicon (47) evolved into micromolded poly-
mer networks (48), which could be stacked into macroscopic
3-D networks (49,50). Such devices have been made with
relatively hydrophobic polymers such as PLGA (49), as well
as with hydrogels such as calcium alginate (51). These devices
are amenable to other modifications that have been addressed
here, such as drug delivery and surface modification.

Other approaches have focused less on tightly defined
ultrastructures and more on nanoscale biologic interactions.
Self-assembling nanofibrillar networks have been developed
that incorporate biologic determinants (e.g., peptide se-
quences) for molecular recognition or cell interactions (52,53)
and have been shown to guide cell differentiation (53). The
latter systems were composed of self-assembling amphiphilic
peptides. Polymer systems have been used in a somewhat similar
way, albeit with a different biologic approach. Synthetic hydro-
gels have been developed that degrade in response to the proteo-
lytic activity of migrating cells (54), producing three-dimensional
networks suitable for angiogenic in-growth. This approach is of
interest in that here, the cells respond to the matrix, and the
matrix responds to the cells.

One rationale for the need for a nanoscale level of archi-
tecture is that that is the size scale within which fibrils occur
in the extracellular matrix. There is evidence that nanoscale
topography affects cell behavior in many ways, including
shape, proliferation, migration, and gene expression (55-58).
A wide variety of polymers have been used for these appli-
cations (45), often made into nanofibers by electrospinning
(59). The conditions required for this process may denature
naturally occurring polymers.
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BIOMATERIALS AS BIOACTIVE AGENTS

From the preceding, it is clear that in tissue engineering, the
underlying scaffold or matrix is not an inert entity, providing
only support, adhesion, and other mundane functions. (It bears
mentioning, however, that the view that scaffold materials are
“bio-inert” is still remarkably prevalent.) Although tissue-
engineering matrices often have to be used with drug delivery
and surface modification methods to attain specific biologic
goals, it is still true that those biomaterials can be quite active,
both indirectly and directly. Indirect actions can occur through
inflammation and similar events, which recruit a range of
inflammatory cells, which themselves can secrete molecules
(cytokines and chemokines) with complex biologic sequelae.
This might, for example, be one factor in the effectiveness of
some particle-based vaccine delivery systems (60). Direct
action of putatively inert materials is seen in the following
examples relating to carbohydrate-based matrices. In the cross-
linked chitosan mentioned above that caused severe peritoneal
adhesions, it was found that the material itself caused marked
increases in the expression of MIP-2 (a murine IL-8 analogue)
and tumor necrosis factor alpha (TNF-«) in mesothelial cells
(11). A cross-linked hyaluronic acid (35) used to prevent
peritoneal adhesions (61) was shown to cause a small increase
in tissue plasminogen activator in mesothelial cells, which
might have contributed to the anti-adhesion efficacy.

Much research has imparted specific functionalities, such as
encouraging proliferation or differentiation, to biomaterials by
grafting, incorporating or delivering molecules with defined
biologic functions. An alternative approach might have been
to use rational design to construct biomaterials with those
functions, but that is very difficult, although it is a goal of
some aspects of glycomics (62)—the study of information
encoded in the structure of carbohydrates—and structural
biochemistry. Instead, some investigators have used high-

Figure 2. Human embryonic stem cell differentiation on a chip, in this case
with 576 polymers. Green = cytokeratin, red/purple = vimentin, blue =
polymer. (Courtesy of Dr. Daniel G. Anderson.)

throughput methods to perform rapid nanoliter-scale synthesis
of thousands of potential biomaterials, followed by screening
of the thousands of cell-polymer interactions on chip-like
systems (63) (Fig. 2). This approach revealed that some
polymers were markedly better than others in making human
embryonic stem cells differentiate into epithelial cells. Fur-
thermore, the various polymers had widely differing effects on
the cellular response to a bioactive molecule, retinoic acid. It
is possible, as has been suggested, that the effects of the
biomaterials were actually mediated by adsorbed proteins (64)
or other factors, but that does not alter the fact that the variable
driving the differences in cellular response was the variety in
polymeric structure. It is possible that approaches of this sort
will allow for rapid identification of biomaterials—with or
without addition of specific ligands—for specific tissue engi-
neering applications.

LOOKING AHEAD

Although there has been impressive progress in the material
science underlying tissue engineering in the past few years,
enormous tasks remain. “Convergence” (65)—the melding of
seemingly disparate scientific fields—is already an integral
part of the field, and it is to be expected that that tendency will
increase, incorporating features from electronics, computer
science, bio-microelectromechanical systems (bio-MEMS)
and similar fields. As constructs become more sophisticated,
“smart” materials (66) such as switchable surfaces (67) may
be use to create constructs with state-dependent cellular be-
haviors. Work will continue in the daunting task of producing
multi-cell type constructs (68) and integrating them into an
immunocompetent host. It will also be important to find means
of preventing biofouling, both by adsorbed molecules and by
inflammatory cells, which can suffocate the construct or pre-
vent it from releasing its biologic products (e.g., in the case of
encapsulated pancreatic islet cells). On a related note, bioma-
terial permselectivity will have to be optimized, which will
involve determining whether it is sufficient to keep the cellular
components of the host immune response at bay, or whether
humoral factors must also be kept from the donor cells.
Important formulational issues remain to be dealt with, such as
creating delivery systems with gradients across a matrix, but
the seemingly pedestrian issues of drug stability are also likely
to be challenging. A deep understanding of all aspects of the
biology of tissues, including embryogenesis, will continue to
be crucial. We are far from being able to create matrices that
are rationally designed from the ground up to perform specific
biologic task with the same specificity that is found in biomol-
ecules. However, as is seen in some of the work described
above, and in the rise of fields of study such as glycomics, that
objective is perhaps on the horizon.
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