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ABSTRACT: Over three-quarters of all craniofacial defects ob-
served in the US per year are cleft palates. Usually involving
significant bony defects in both the hard palate and alveolar process
of the maxilla, repair of these defects is typically performed surgi-
cally using autologous bone grafts taken from appropriate sites (i.e.,
iliac crest). However, surgical intervention is not without its compli-
cations. As such, the reconstructive surgeon has turned to the scien-
tist and engineer for help. In this review, the application of the field
of tissue engineering to craniofacial defects (e.g., cleft palates) is dis-
cussed. Specifically the use of adult stem cells, such as mesenchymal
stem cells from bone marrow and Adipose-derived Stem Cells (ASCs)
in combination with currently available biomaterials is presented in the
context of healing craniofacial defects like the cleft palate. Finally, future
directions with regards to the use of ASCs in craniofacial repair are
discussed, including possible scaffold-driven and gene-driven
approaches. (Pediatr Res 63: 478–486, 2008)

At 75% of all birth defects recorded in the US per year,
craniofacial defects, such as cleft palate, are the most

common birth defect affecting nearly 225,000 children each
year (1). Correction of many of these defects requires exten-
sive surgical intervention using bone-grafting techniques and
will often involve numerous procedures over the course of at
least a decade. To the child, bone grafting requires extensive
healing time—at both the correction site and donor site, runs
the risk of infection, results in significant amounts of pain, and
does not guarantee complete correction of the defect if the
graft fails to integrate within the surgical site. Beyond the
child, surgical correction of such craniofacial defects also
places a huge emotional and financial burden on the child’s
family and ultimately places a financial burden on the US
health care system. In 2001, data from the US Health Cost and
Utilization Project reported that 12,700 cranial bone grafts
were performed to repair craniofacial defects in children at a
cost of over $549 million (2). As such, there has been a call for
alternate approaches that, at a minimum, can decrease the
severity of the many side effects associated with surgery.
Although the complete elimination of surgery is unrealistic,
the creation of cutting edge technologies may decrease the
number of procedures and ultimately improve the final out-
come of the necessary surgeries. One such cutting-edge tech-
nology may be the stem cell.

THE CLEFT PALATE

Of all the possible craniofacial defects observed in new-
borns, perhaps the most well-known defect is the cleft palate.
Occurring with a frequency of approximately 1 in every 700
per year in the US, the incidence of cleft palate equates to 475
cleft palates per month or 15 clefts per day (3). The layman’s
term “cleft palate” is actually a combination of soft and hard
tissue defects involving the lip and maxilla. Although clefting
of the lip only can occur (i.e., cleft lip), it is most often
accompanied by a cleft within the palate (i.e., cleft lip with
palate). With respect to the maxilla, two main regions are
often involved in the cleft palate: 1) the primary palate—the
region of the palate anterior to the incisive foramen and 2) the
secondary palate—the region of the palate posterior to this
foramen. Clefts in the primary palate involving the alveolar
process and the lip are referred to as primary palate clefts,
whereas clefting in the secondary palate involving just the
hard and/or soft palate are termed secondary clefts. More
commonly, clefts involve both palates and are referred to as
complete cleft palates. These possible clefts can form on one
side of the facial midline—unilateral clefts—or can form on
both sides—bilateral clefts.
Embryologically, development of the face begins at the

fourth week with the migration of neural crest cells toward the
head region and their combination with core mesoderm and
epithelial cells to become the facial primordia. Within these
primordia, mesenchymal tissue derived from neural crest cells
will become the facial skeleton with the mesenchymal cells
derived from the mesoderm forming the facial musculature
(4,5). At 24 d, the primitive mouth forms (stomatodeum)
along with the mandibular arch or first pharyngeal arch. Just 2
days later, this stomatodeum is surrounded by five primordia
comprised of an unpaired frontonasal prominence, a pair of
maxillary processes and a pair of mandibular processes. At
32 d, a thickening of the surface epithelium in the frontonasal
prominence produces nasal placodes that become surrounded
by the horseshoe-shaped nasal processes (lateral and medial).
Growth of the maxillary and medial nasal processes (MNP)
pushes the lateral nasal process up and brings the maxillary
process and MNP into contact—events that are critical to the
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formation of a continuous upper lip (6). Following contact and
fusion, the MNP develops into the intermaxillary segment that
will form the central portion of the lip and contributes to
palate formation. Outgrowths of this segment into the oral
cavity and their fusion forms the anterior or primary palate,
whereas the maxillary processes give rise to lateral palatal
shelves (7) that fuse to form the posterior or secondary palate.
Failure of the intermaxillary outgrowths to fuse results in
primary palate clefts with failure of the maxillary processes to
fuse producing the secondary cleft. Failure of both of these
fusion events results in a unilateral or bilateral complete cleft
palate. Because the formation of the lip occurs before devel-
opment of the palate, it is easy to recognize that most palate
defects are accompanied by clefting of the lip. Therefore, the
term cleft lip with palate is frequently termed just cleft palate.
Cleft lips and palates have both functional and esthetic

implications for children. Functionally, midfacial skeletal
growth is affected dramatically by the failure of the facial
processes to fuse properly and dramatic alterations to the face,
including proper alignment of teeth, can occur. Such malfor-
mations can result in social alienation of the child because he
or she “looks funny.” The development of speech can also be
profoundly affected along with increased incidence of ear
infections owing to improper draining of the middle ear. In the
infant, the cleft can prevent the child from developing normal
suction during suckling, thus eliminating the choice of breast-
feeding. At the everyday level, the malformed palate necessi-
tates the purchase of specialized bottles that help deliver milk
to the back of the throat, where it can be swallowed normally.
It becomes easy to see that correction of craniofacial defects
like the cleft palate represents a tremendous leap forward in
the medical field.
Close to 600,000 bone grafts are performed in the US each

year with approximately 6% of these grafts craniofacial in
nature (8). To the surgeon, repair of the cleft palate is imper-
ative as it provides bony continuity and stability to the alve-
olar ridge, allowing for proper tooth movement and eruption,
provides support to the lip and nose and closes the oronasal
fistula. To the family, repair of the defect dramatically im-
proves the quality of life for the child. The earliest repairs of
palates were performed by suturing the palatal halves together
but were immobile and dramatically impacted the speech and
swallowing of the patient. Repair of the alveolar portion of the
cleft has been even more complicated. Although initial closure
of the lip and palate can easily be performed within the first 6
mo, most patients will require secondary bone grafts over the
next decade to correct the growing alveolar portion of the
mandible. Add to this, the need to consider tooth eruption and
alignment and the reconstruction of a cleft palate becomes
extremely complicated. Current reconstructive techniques
combine the advantages of prosthetic, allogeneic and autolo-
gous (i.e., bone grafts) materials. In the last 50 y, bone grafting
of the alveolar cleft defect using autologous cancellous bone
grafts has become the gold standard for reconstruction be-
cause of their osteoconductive and osteoinductive properties.
However, these properties do not necessarily guarantee suc-
cess as the graft may not fully integrate into the host bone and
may undergo a certain level of resorption. Add to this donor

site morbidity, disease transmission and contour irregularities
and the craniofacial surgeon faces a significant challenge in
the treatment of the cleft palate (9). To solve these problems,
the physician has turned to both the scientist and engineer.

CRANIOFACIAL DEFECTS AND TISSUE
ENGINEERING—A MATCH MADE IN HEAVEN?

Tissue engineering can be simply defined as the regenera-
tion of new tissues through the combined use of biomaterials
and biologic mediators, such as the stem cell. In the field of
orthopedics, tissue engineering applications have grown in
popularity with numerous studies reporting the healing of long
bone and calvarial defects in numerous large and small animal
models. However, the application of tissue engineering to
craniofacial defects may be more challenging. Simply put, the
implanted construct within the craniofacial defect would be
under tremendous strain and stress. Numerous studies have
examined the magnitude and direction of strain and stress in
several long-bone defect models and have begun to develop
computer-modeling systems that help the bioengineer under-
stand the mechanical environment within the bone. Unfortu-
nately, understanding the physical environment within the
skull does not appear to be as straightforward (for review see
(10)). Although not intuitively obvious, the bones of cranio-
facial arena are under significant amounts of stress—mostly
provided by the large muscles of mastication (e.g., masseter).
Recent large animal studies have found it difficult to reliably put
a “number” to the mechanical loads found within the human skull
(11,12), making the design of the “perfect” craniofacial implant
for tissue engineering a significant challenge.

CRANIOFACIAL TISSUE ENGINEERING

Pick a Scaffold, Any Scaffold

To the craniofacial reconstructive surgeon, tissue engineer-
ing advancements over the last decade has provided a plethora
of materials that may be suitable for the healing of craniofacial
defects like the cleft palate. At a basic level, tissue engineering
scaffolds can be broken down into three groups: autografts,
allografts, and xenografts. Today the reconstructive surgeon
makes best use of the autograft category, taking bone from
another site (e.g., iliac crest, rib) and transplanting it into the
cleft defect. With the disadvantages of host-site morbidity and
a lack of suitable graft sites and material, the use of xeno-
grafts—i.e., bone grafts from animals—would be a good fit.
Of course, it is obvious that histocompatability issues between
the human patient and the animal donor would preclude its
use. In fact, xenografts are not currently allowed in the United
States. This leaves the allograft.
As a category, allografts can be organized into two groups:

natural and synthetics.
Natural. The natural category is a broad-range category that

includes bone powders, chips and fragments. Processed to
remove the cellular components, natural materials are osteo-
conductive but poorly osteoinductive, thus decreasing the
robustness of the response versus a conventional autograft
(13). An alternate natural allograft is demineralized bone
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matrix (DMB), the decellularized, organic component of bone.
DMB represents a concentrated source of BMPs and has been
used in numerous animals systems since its initial description
in 1965 (14). Available commercially from tissue banks, the
widespread use of DMB in humans still remains restricted as
the immunologic properties of donor DMB is unknown.
Synthetic. As an alternative to natural scaffolds, the recon-

structive surgeon has available a wide variety of synthetic
scaffolds, including ceramics, calcium phosphates and poly-
mers (Table 1). Ceramics [often referred to as hydroxyapatites
(HAs)] are a family of calcium phosphate and calcium sulfate
materials with a diverse spectrum of mechanical and degra-
dative properties based on their composition and processing
(15). Meant to be a substitute for the mineral phase of bone,
ceramics are purely osteoconductive but can be combined
with stem cells (i.e., marrow) to provide osteogenic potential
(15,16) Moreover, degradation in vivo can easily be affected
by changing parameters such as their calcium to phosphate
ratio or their internal surface area (i.e., pore architecture).
Similar to ceramics, calcium phosphates are a general term for
a large group of scaffold compositions many of which are
commercially available today as �-tricalcium phosphate/TCP,
or biphasic calcium phosphates (e.g., HA in combination with
TCP or HA/TCP). All try to closely match the calcium to
phosphate ratio of natural HA and possess excellent bone-
bonding ability. Originally used over 20 y ago as coralline HA
implants (17), many forms of calcium phosphate scaffolds are
used today in orthopedic surgery and have been described
extensively elsewhere (18–20) Some calcium phosphates are
currently in use clinically repairing cranial defects in the form
of calcium phosphate “cements”—a wet paste that can be
applied to irregular bony defects and allowed to “cure” thus
forming HA (21,22). Such scaffolds would have the advantage
of filling the irregular contours of a craniofacial defect. How-
ever, the combination of these cements with stem cells has not

been fully explored. Finally, many studies now employ the use
of organic synthetic scaffolds based on alpha-hydroxy acids
(23,24). These scaffolds are usually composed of polyglycolic
acid, poly-L-lactic acid or a combination of both (i.e., PLGA)
possess limited osteoconductive capacity but when combined
with HA technologies become excellent materials for bone
repair by stem cells. The last 10 years has seen additions to
this large field with the development of scaffolds comprised of
a variety of materials including polyvinyl, polycaprolactone,
and polyhydroxyalkanoate. Again, too large of a field to
adequately review here, numerous excellent reviews detail the
use of these organic polymers with and without combination
with calcium phosphates and ceramics (25,26).

Adult Stem Cells—The List Keeps Growing and
Growing

Today, multiple sources for the isolation of adult stem cells
have been identified, including heart tissue (27), umbilical
cord blood (28), skeletal muscle (29,30), and the dermis of
skin (31). But, to the craniofacial surgeon interested in using
tissue engineering, there are two exciting sources of stem
cells: bone marrow and adipose tissue.
Mesenchymal stem cells (MSCs). The identification of

pluripotent MSCs in the bone marrow stroma over 25 y ago
(32) has led researchers to a variety of exciting research
avenues. Capable of differentiating to multiple mesodermal
lineages, including bone and cartilage, MSCs have become a
standard in the field of adult stem cell biology and in regen-
erative medicine (33–38). So, it is only natural that these stem
cells would be used in the repair of significant bony defects
caused by trauma, surgery, or disease. Consistent with this,
multiple studies have reported the formation of bone tissue
both in vitro and in vivo upon the combination of MSCs and
3D scaffold supports. In vitro, a wide spectrum of scaffolds are
being combined with MSCs, including, HA/chitosan compos-
ites, chitosan or gelatin/TCP constructs, electrospun collagen
nanofibers, honeycomb collagen scaffolds, and titanium
meshes (39–44). In animals, the scaffolds and model systems
used have varied from HA ceramics or HA/TCP constructs for
the healing of small bone defects in rodents or larger defects
in dogs, rabbits, or sheep (45–49), to complicated biosynthetic
composites (50,51), to silk-based biomaterials in the healing
of segmental femoral defects in nude mice (52). Each of these
studies report encouraging results and espouse the use of bone
marrow MSCs in the repair of bony defects.
Adipose-derived stem cells. Historically, the adipose com-

partment has been considered primarily a metabolic reser-
voir—effectively packaging, storing, and releasing high-
energy substrates in the forms of triglycerides and cholesterol
as well as lipid-soluble vitamins. However today, the adipose
compartment may be a site for an abundant population of stem
cells—the adipose-derived stem cell (ASC) (53,54). Like the
bone marrow, adipose tissue contains an extensive cellular
stroma comprised of fibroblastic-like cells termed by Rodbell
in 1964 as the stromo-vascular fraction or SVF (55). Further
work by Hauner expanded this knowledge and postulated that
the preadipocytes within the SVF represented a “progenitor”

Table 1. Synthetic Bone Engineering Composites

Scaffold type Commercial name

Chitosan (poly-1,4-D-glucosamine)
Ceramics
Hydroxyapatite/HA
Sintered HA
Biomimetic HA
Bioglass

Calcium phosphates e.g., Cellplex
�-Tricalcium phosphates
Biphasic calcium phosphates (e.g. HA/TCP)

Synthetic polymers
Poly(lactic-co-glycolic) acid
Poly-L-lactic acid

CNI-HA e.g., Healos
Treated metals—titanium, tantalite
Composites e.g., Collagraft
CNI/�-TCP, CNI /HA e.g., Ceraform
PLA/HA/CNI sponges
PLGA/HA
Gelatin/chitosan
PLA/chitosan

CNI, collagen type I; HA, hydroxyapatite; PLA, poly-L -lactic acid; PLGA,
poly(lactic-co-glycolic) acid; TCP, tricalcium phosphate.
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population, though apparently limited to the adipocytic lin-
eage (56). However, in 2001, Zuk et al. showed that the SVF
fraction isolated from human lipoaspirates in fact contained
cells with multilineage potential and termed these cells pro-
cessed lipoaspirate cells (53,54). Now renamed ASCs (57),
these cells undergo adipogenesis, osteogenesis, chondrogene-
sis, and myogenesis in vitro, suggesting that the SVF fraction
of adipose tissue may, in fact, be comprised not just of lineage
limited preadipocytes but of multipotent stem cells. Since their
initial characterization only 6 y ago, the amount of work
performed determining the multipotentiality of the ASC pop-
ulation has been staggering (53,54,58–81). Numerous articles
not only continue to document the mesodermal potential of
these stem cells but now suggest expanded germ-layer poten-
tial by describing their ability to form putative neurons, hepato-
cytes and pancreatic cells—at least in vitro (63,65,66). Today, the
researcher interested in ASCs has a wide variety of review
articles from which to learn of these cells (57,82–85).
ASCs have also become a hot topic in the world of tissue

engineering. Numerous studies have begun to explore the
osteogenic potential of ASCs in vivo through their combina-
tion with a wide variety of scaffolding materials. Groups led
by Lee and Hicok were the first to show that s.c. implantation
of human ASCs loaded onto HA/TCP or polyglycolic scaf-
folds could result in the formation of an osteoid-like material
(86,87). Subsequent studies have since attempted to confirm
this finding in established animal models with limited amounts
of success (86,88–90). To improve their ability to form bone,
many of these studies treat ASCs with the osteogenic growth
factor BMP2. Both Peterson and Dragoo were the first to
describe the engineering of well-formed bone by ASCs in
athymic rodents with the help of bone morphogenic protein 2
(BMP2) (88,89,91) and several MSC studies have shown that
this osteogenic factor can be used in concert with these stem
cells also (92–94). Many of these studies claim that increased
bone formation can be attributed to the presence of BMP2-
treated ASCs. However, the greater majority of these works
fail to report levels of healing when empty scaffolds treated
with BMP2 were used as controls. Many studies fail to use this
construct as a control at all. This omission makes it difficult to
determine whether the ASC itself is responsible for the bony
healing or if the healing can be attributed to the powerful
osteoconductive and osteoinductive effects of BMP2. As such,
future studies will be needed to specifically determine the true
osteogenic capacity of ASCs without their combination with
growth factors.

Craniofacial Engineering Using Stem Cells—The Story
So Far

Today’s scientific literature seems to detail a litany of
exciting studies in which embryonic stem (ES) cells can
integrate and heal damaged tissues in both animal and human
model systems. Although ES cells are known to form bone,
the raging ethical debate surrounding these stem cells will
likely make their use in craniofacial procedures all but impos-
sible. As such, the reconstructive surgeon is compelled to look
elsewhere for help. The most obvious option has become the

MSC from bone marrow. Recently, the use of isolated and
expanded MSCs has become more and more popular in the
literature. To list a few, MSCs have been combined with
HA/TCP scaffolds to help build calvarial and alveolar bone in
dogs (95,96), loaded onto gelatin sponges for the repair of
calvarial defects in mice (97), combined with polycaprolac-
tone-based scaffolds to repair cranial defects in rabbits (98)
and seeded into hyaluronan based polymers for reconstruction
of orbital rim defects in pigs (99). Osteo-induced MSCs have
also been combined with calcium alginate composites to
repair alveolar defects in dogs (100) and cranial defects in
sheep (101). Although freeze-dried bone marrow has long
been used in the repair of human alveolar clefts (for review
see Ref. 102), the use of purified MSCs in cleft repairs is still
rare in clinical studies. However, MSCs have recently been
combined with platelet-rich plasma to heal an alveolar cleft in
a 9-yr-old girl (103). As scaffolds suitable for repairing cleft
defects become more available, these studies will surely in-
crease in number.
Although the MSC continues to be viable option for a stem

cell population in craniofacial repair, there are drawbacks to
the population that must be recognized. Foremost is the pain
and stigma associated with the bone marrow harvest. Second
is the yield. Although MSCs grow well under standard tissue
culture conditions, ex vivo amplification is a necessity due to
relatively low numbers of MSCs thought to be present in the
harvested marrow (1 MSC/104–106 stromal cells (104)). In
light of this, adipose tissue has become an extremely attractive
option. In fact, the use of the buccal fat pad in the reconstruc-
tion of soft palate, maxillary defects, and palatal clefts has
been used for several years in clinical studies with varying
results (105,106). Descriptions of purified ASCs in craniofa-
cial engineering appear to be limited in today’s literature and
their use has also resulted in varying amounts of success. For
example, the implantation of osteoinduced rabbit ASCs and
gelfoam scaffolds into rabbit calvarial defects did not signif-
icantly improve bony healing when compared with controls
(107). In contrast, Yoon and colleagues report improved cal-
varial defect healing upon implantation of PLGA scaffolds
seeded with human ASCs maintained in vitro in the presence
of osteogenic factors before implantation (108). However, the
improved bone formation they observed was compared with
ASC/PLGA scaffolds maintained in vitro in noninductive
DMEM. It remains unreported whether acellular scaffolds main-
tained in osteogenic media were performed as a control or if they
produced similar levels of healing as the ASC-seeded scaffolds
preinduced toward the osteogenic lineage. Therefore it is difficult
to determine whether the healing was due to the activity of the
ASC or osteo-inductive factors absorbed to the scaffold. Today,
numerous alternatives to conventional HA or polymers are
being proposed as supports for the repair of large bony
defects using ASCs, including silk-fibrin grafts not unlike
those used with MSCs (109), coral matrices (110), or decellular-
ized bone tubes (111).
Yet, despite all this apparent progress, the application of

tissue engineering techniques specifically to palatal bone en-
gineering has been limited and progress slow. Repair of
palatal defects caused by nonfusion has been performed in
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vitro using embryonic mesenchyme tissue (112), whereas the
insertion of BMP2-coated heparin beads has been found to
promote the in vitro fusion of small fragments of human palate
with its murine host (113). Work in the veterinary field
suggests that MSCs may be used to heal soft palate defects in
horses (114). Recently, one study by Conejero and coworkers
has emerged to suggest that the ASC is being closely exam-
ined for its applicability to craniofacial defects, like cleft
palate. In this study, rat ASCs were seeded onto conventional
poly-L-lactic acid scaffolds and induced in osteogenic medium
for 7 d before being inserted into surgically produced cleft
defects. The researchers reported significant bone formation in
the palates treated with osteogenically differentiated ASCs.
However, like the studies of Yoon, which were similar in com-
position, these authors also fail to report if acellular scaffold
controls treated for 1 week in osteogenic medium also healed
palates to any degree. Despite this, the application of ASCs to
palate defect models and their putative ability to treat these
defects is an exciting development.

WHERE DO WE GO FROM HERE?

Several animal models have induced bone formation within
long bone and cranial defects by using MSCs treated with or
virally-expressing BMP2 (92,94,115–118). Based on the early
work of Peterson and Dragoo (88,89,91), it is not unreason-
able to think that ASCs, treated with BMP2, would be capable
of forming bone within a cleft defect. However, work by
Leboy has suggested that BMP2 may not promote osteogenic
differentiation of human MSCs (119,120). Similarly, in pa-
tients receiving recombinant BMP2 treatment, the regenera-
tive response is several times lower than that previously
measured in animal studies (121), suggesting that the response
of human cells to BMP2 may not be directly comparable to
that observed by animal cells. Although several studies have
begun to combine BMP2 and ASCs, surprisingly, to date, no
in-depth in vitro studies have been performed to confirm if
BMP2 can actually promote ASC osteogenesis. Like human
MSCs, it is possible that BMP2 has no effect on inducing
ASC-driven bone formation (Zuk, unpublished observations).
In addition, it remains unknown the effect of such a powerful
growth factor as BMP2 would have on the craniofacial arena
in very young children. The question becomes how do we
augment the ability of an adult stem cell, like the ASC, to make
large quantities of bone within a craniofacial defect like a cleft
palate without such growth factors? Promising results may be
linked to three distinct approaches or a combination of them.

The “Scaffold-Driven” Approach—Biomimetic Apatites

Efficient use of 3D scaffold systems in bone repair is
dependent upon their bond-bonding or bioactive ability. Al-
though scaffolds such as PLGA or PLA composites provide
the reconstructive surgeon with a biodegradable platform for
stem cell adhesion and differentiation, their bioactivity can be
limited. However, studies have suggested that their bioactivity
can be strengthened through the formation of a layer of HA at
the bone-implant interface (122,123). Several HA materials
for use in bone differentiation have been developed within the

last 20 years and are thought to possess superior in vivo
bioactivity. However, much excitement has been generated
regarding the osteoinductive capacities of biomimetic apatite
coatings. Typically created through the immersion of 3D
scaffolds in ionic solutions with compositions similar to blood
plasma—called Simulated Body Fluids—biomimetic apatites
are composed of plate-like crystals of calcium phosphate
capable of coating the entire 3D scaffold architecture
(124,125). An improvement on biomimetic apatites has re-
cently been presented by Wu and colleagues through their
development of accelerated biomimetic approaches that dra-
matically shorten the time required for coating from approx-
imately 2 weeks to 2 days (126,127). Such convenience may
make the accelerated biomimetic apatite more attractive for in
vivo applications such as bone healing. In support of this,
accelerated apatite coatings have been shown by Wu and his
group to promote bone in-growth and differentiation of preos-
teoblasts and bone marrow stem cells and to enhance direct
bone to bone contact (125). Recently, accelerated apatites
have also been shown to promote the osteogenic capacity of
ASCs. In a landmark paper by Cowan et al., murine ASCs
seeded onto accelerated apatite coated PLGA scaffolds were
found to heal critical-sized cranial defects without the need for
exogenous stimulation such as BMP2 treatment (128). Al-
though the ASCs used were murine and no further studies
using human ASCs have been presented, these results
remain exciting because they show the reconstructive sur-
geon that methods other than conventional growth factor
stimulation may be used to induce stem cells to make and
heal bone.

The “Cell-Driven” Approach—The Pediatric Stem Cell

Despite all that we know of the adult stem cell, we still
know very little about how their age affects their differentia-
tive capacity. The use of a pediatric stem cells in the repair of
craniofacial defects should be intuitive since repair of the
defect would require the child’s own stem cell. With regards
to the ASC, it would be relatively simple for the craniofacial
surgeon to extract a small amount of adipose tissue from the
child using a simple syringe. This could easily be done during
one of the many preparatory procedures that often precedes
major craniofacial reconstruction. These pediatric ASCs (pe-
dASCs, i.e., under 5 y) could be expanded in the lab and
combined with the best possible scaffold for implantation into
the defect. Yet, there is no current information available that
studies pedASCs at an in-depth level.

The “Gene-Driven” Approach—Molecular Signaling
Within the Stem Cell

Although the adult stem cell researcher has learned much of
the ultimate downstream genes involved in bone differentia-
tion (i.e., Runx2/Cbfa1, Osterix), we are only beginning to
understand the upstream mechanisms that control them. Nu-
merous studies have elucidated possible signaling pathways
downstream of BMP2 induction and how these pathways may
affect osteogenic gene transcription (129–131). However, it is
possible that osteogenesis in ASCs is under an alternate
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signaling pathway. In fact, very little is known about signal
transduction pathways in adult stem cells like ASCs. Jaiswal
et al. (132) have examined the role of MEK-ERK signaling in
deciding adipogenic and osteogenic fates in MSCs. ERK
pathways and there role in obesity and adipogenesis have been
examined in ASCs along with the role of MAPK signaling in
ASC proliferation, migration, and apoptosis (133–135). How-
ever, the number of these studies does appear to be increasing
as researchers turn to gene therapy approaches in the hopes of
understanding and alleviating the disease state. For example,
significant bone regeneration in a rabbit calvarial model has
been measured upon implantation of MSCs transduced with
Sonic Hedgehog (Shh)—a key protein involved in craniofacial
morphogenesis (136). Although these results are promising,
the stem cell population must be carefully considered as Shh-
expressing ASCs were capable of regenerating bone within a
calvarial defect but also appeared to induce the formation of large
cyst-like structures. Canonical and noncanonical Wnt signaling
pathways have also come under focus because of their well-
known role as regulators of embryologic patterning, stem
cell fate and mesenchymal differentiation (137). Observations
linking the LRP5 gene mutation and osteoporosis-pseu-
doglioma syndrome have suggested a connection between
Wnt signaling and bone formation (138). Consistent with this,
work in MSCs has linked Wnt3a induced signaling to a
suppression of bone formation in vitro and in vivo (139). In
contrast, increased bone regeneration in both mandibular and
calvarial defects has been observed in MSCs isolated from
craniofacial tissues overexpressing Wnt4 (140). Analysis of
these Wnt4-transduced MSCs identified a specific increase in
p38MAPK phosphorylation suggesting that increased activity
of this MAPK kinase may act to promote MSC-driven bone
formation within the defect. Similar to this, microarray anal-
ysis of developing orofacial tissues has identified the differ-
ential expression of a number of MAPK pathway genes,
suggesting that this pathway may play a role in craniofacial
development (141). Together, these studies suggest that stem
cell-directed bone within craniofacial defects might be aug-
mented not through upstream growth factors but through the
careful and directed manipulation of their downstream signal-
ing paths. Finally, in stem cells like MSCs, adhesion signifi-
cantly affects osteogenic differentiation with differential ef-
fects being attributed to the actual substrate (142). This effect
is likely to be controlled at many levels including interactions
between the substrate and integrin complexes (143,144). Be-
cause numerous signaling pathways, including the MAPK cas-
cade, can be induced through integrin—matrix interactions in a
variety of cells (145), it is not unreasonable to hypothesize the
design of scaffolds that mimic the effect of growth factors through
adhesion-based mechanisms, mediating signaling through spe-
cific “pro-osteogenic” signal transduction pathways.

“State of the Field”—A “Call to Arms” to the Adult
Stem Cell Researcher

It seems like everyday we read about huge advances in the
field of ES research detailing daring approaches in the appli-
cation of these stem cells to the clinical world. The question is

where is the adult stem cell researcher? True advances in the
medical and scientific world using adult stem cells like the
ASC will not be achieved by playing it “safe.” In the modern
marketing world, we hear phrases like “kick it up a notch” and
“think outside the box.” The adult stem cell researcher needs
to take these phrases to heart and look outside conventional
fields for inspiration and knowledge. The combination of the
stem cell researcher with the biomaterials engineer has been
an example on how what appears to be an unconventional
collaboration can advance the scientific community and ben-
efit the general public. Who knows where these relationships
will take us? But one thing is for sure—collaboration brings
people together who look at the world in different ways. From
these unions, we can propel the fields of adult stem cell
biology and craniofacial tissue engineering into a whole new
realm—where all things are possible.
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