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ABSTRACT: The field of regenerative medicine continues to make
substantial advancements in therapeutic strategies addressing uro-
logic diseases. Tissue engineering borrows principles from the fields
of cell biology, materials science, transplantation and engineering in
an effort to repair or replace damaged tissues. This review is intended
to provide a current overview of the use of stem cells and tissue
engineering technologies specifically in the treatment of genitouri-
nary diseases. Current themes in the field include the use of adult
stem cells seeded onto biocompatible resorbable matrices for implan-
tation as tissue substitutes, which is conducive to host tissue in-
growth. Injection therapy of adult stem cells for organ rehabilitation
is also making strong headway toward the restoration of organ
structure and function. With new data describing the molecular
mechanisms for differentiation, work has begun on targeting tissues
for regeneration by genetic modification methods. Promising labora-
tory discoveries portend the emergence of a new class of clinical
therapies for regenerative medicine applications in the genitourinary
tract. (Pediatr Res 63: 472–477, 2008)

The field of tissue engineering (TE) has evolved substan-
tially over the past four decades into an international area

of science that is being investigated in virtually every country
in the world. Early advances in the field were the result of
groundbreaking discoveries of the pioneers in the regenerative
medicine field including Joseph and Charles Vacanti, Robert
Langer, and Eugene Bell. In fact, it was Joseph and Charles
Vacanti who first used the term “Tissue Engineering” (1). They
eloquently described the interplay required by cells, scaffolds,
and added growth factors in the microenvironment of mechano-
transducing bioreactors to develop cellular constructs that could
ultimately serve as functional tissues suitable for transplantation.
The field of TE has exponentially grown in size such that it now
claims its own international academic society, Tissue Engineer-
ing Regenerative Medicine International Society, which the ex-
panding community of scientists and physicians in the field have
steadfastly supported (1–4). As of today, the principles of TE are
being applied widely to create new tissue constructs in virtually
every organ system.
In general, the field of TE combines the principles of cell

biology, materials science, and engineering to devise thera-
peutic strategies in various acquired and congenital diseases
(5–7). From a clinical perspective, the goal of regenerative
medicine efforts is to restore end organ function, either by

native tissue rehabilitation, or by development of functional
reproducible tissue substitutes with minimal immunogenicity
and which resemble native tissues in biologic and mechanical
properties.
When autologous tissue is lacking, other possible sources of

tissue include homologous tissues from cadavers or donors,
heterologous tissues from animals (bovine), and synthetic
materials (silicone, polyurethane, Teflon, poly(lactic acid),
poly(glycolic acid), and poly(lactic-co-glycolic acid)), which
are often referred to as alloplastic materials. The use of
allogeneic tissues, such as with organ transplantation, can be
limited by the need for tissue matching, donor organ avail-
ability, and lifelong immunosuppression. On the other hand,
biocompatible and structurally similar alloplastic materials
can be used for prosthetics and other clinical devices. How-
ever, functional recovery to the caliber of the original tissue is
seldom achieved. TE offers the potential to circumvent many
of these difficulties.
TE approaches can be classified into two categories: acel-

lular and cellular techniques. Acellular techniques entail the
use of acellular matrices as a scaffold for organ regeneration,
requiring the host organ to incorporate new tissue onto the
scaffold with proper layering and orientation. Collagen-rich
matrices can be completely synthesized in the laboratory for
subsequent cellular in-growth. These matrices slowly degrade
and eventually are replaced by host extracellular matrix in-
vested with in-growing cells. Scaffolds can also be harvested
from other autologous, allogeneic, or xenogenic tissues, and
then processed by chemical and mechanical means to remove
cellular components for eventual implantation (8–10).
Common cellular techniques employ the use of donor cells,

which are processed before implantation. These cells can be
directly injected into the host, or expanded and processed in
culture, seeded onto a support matrix or scaffold, and then
implanted into the recipient. Tissue or cell sources can vary
from autologous, allogenic (same species, different individ-
ual), or heterologous (such as bovine), with the most preferred
source being autologous so as to eliminate the risk of rejection
and associated complications of immunosuppression. For au-
tologous sources, a tissue sample can be obtained from the
patient by biopsy (10–15). Improvements in culture tech-
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niques have enabled the isolation of individual cell types from
these tissue biopsies, which are then selectively expanded to
amounts sufficient for implantation (6,9,16,17). Similar to
acellular techniques, the scaffold material must be biocompat-
ible, bioresorbable, and illicit minimal immunogenicity while
expanded cellular components integrate into the local envi-
ronment. These scaffold structures may be seeded or impreg-
nated with growth factors and other cell signaling peptides to
regulate cell activity and mimic the microenvironment provided
by the extracellular matrix. Ideal scaffolds should also provide the
appropriate three-dimensional lattice where cell-adhesion may
occur while performing the mechanical functions of the damaged
tissues. Thus, the final steps of the regenerative process occur in
vivo (18–20).
Over the past two decades, research in TE techniques and

stem cell tissue sources has led to potentially viable replace-
ments for a variety of genitourinary tissues including ureter,
bladder, prostate, urethra, external urinary sphinctor, and pe-
nile structures.

STEM CELLS

Many current strategies for TE rely on the presence of autol-
ogous tissue samples from which specific cells types can be
isolated, expanded, and seeded onto a matrix for subsequent
reimplantation. However, in instances of severe end organ failure
or neoplasia, retrieval of normal cells is often problematic. The
ability of stem cells to expand and differentiate into desired tissue
types makes them an attractive alternative cell source for regen-
erative medicine applications. Novel therapeutic strategies are
emerging and utilize stem cells as the primary cellular component
of various TE constructs.
Stem cells are defined by their ability to self-renew and

differentiate into a variety of cellular types. They are further
classified by the breadth of cell lineages to which they may
potentially differentiate (21). Summarization of the estab-
lished classification of stem cells and their corresponding
lineage potential has been well described. Briefly, cells de-
rived from the zygote have the greatest differentiation poten-
tial and are classified as totipotent, capable of forming cells of
ectoderm, mesoderm, endoderm, and gonadal ridge lineage.
Embryonic stem cells and embryonic germ cells are isolated
from the inner cell mass of the blastocyst and primordial germ
cells respectively, and they give rise to all three germ layers
and cells of the gonadal ridge, respectively. However, they do
not give rise to extraembryonic tissues and thus are termed
pluripotent. Multipotent stem cells are harvested from devel-
oping germ layers or their respective adult organs and are
capable of self-renewal and differentiation into organ-specific
cell types. Unipotent cells are progenitor cells with limited or
no capacity for self-renewal (22).
Human embryonic stem cells (hESC) isolated by immuno-

surgery from the inner cell mass of a developing embryo can
be maintained in cell culture in an undifferentiated state for a
prolonged period of time using various published protocols
(23,24). Their pluripotency is highlighted by their ability to
form embryoid bodies in vitro, which are cell aggregations
that contain all three germ layers. Clinical applications using

these cells is challenging due to their propensity to form
teratomas in vivo (24,25).
The harvest of hESC requires the destruction of human

embryos and has raised significant ethical and political con-
cerns. In August 2001, the United States federal government
ordered that only previously generated human embryonic stem
cell lines could be used in research supported by federal
funding. Although over 70 existing cell lines met this criteria,
the National Institutes of Health reported that only 11 were
available, most of which were grown on mouse feeder cells
and were at one point in time potentially exposed to murine
viruses or proteins (26). These barriers to the development of
hESC technologies have prompted the search for alternative
stem cell sources including fetal tissues, parthenogenesis,
amniotic fluid-derived stem cells, somatic cell nuclear trans-
fer, and adult multipotent stem cells. These are briefly men-
tioned below, and extensive discussion on these topics can be
found elsewhere (27–35).
Multipotent stem cells are harvested from adult organs or

developing tissues, thus avoiding any controversy surrounding
hESC. They can be extracted from many different tissues
including bone marrow, striated muscle, fat, skin, testicle, and
synovial membrane. Adult-derived stem cells are gaining
popularity as researchers are finding a more extensive differ-
entiation potential than previously thought and were fre-
quently used in the studies below (29–31).
In addition, several multipotent or pluripotent stem cell

populations derived from fetal tissues have been shown to
produce a number of lineages including bone marrow, hepatic,
and neural tissues. Fetal mesenchymal stem cells do not
express human leukocyte antigen class II antigens and are
thought to exist in a preimmune state. Both differentiated and
undifferentiated fetal mesenchymal stem cells do not illicit
reactive lymphocyte proliferation, making them ideal for al-
logeneic transplant or mismatch situations (32). In addition,
stem cells isolated from amniotic fluid have exhibited pluri-
potency to all three germ layers and possess the ability to
self-replicate despite a large number of passages (33). Pro-
curement of these cells is through amniocentesis and obviates
the need for destruction of human embryos. With the ease of
procurement and published protocols for maintenance and
directed differentiation, amniotic fluid stem cells have the
potential to become a major source of stem cells for therapeu-
tic applications (34,35).

GENITOURINARY APPLICATIONS OF STEM
CELLS AND TE

Ureter. Multiple conditions can affect the tenuous blood
supply of the ureter or otherwise damage the delicate structure
leading to significant stricture disease. These include penetrat-
ing trauma, impacted ureteral stones, retroperitoneal fibrosis,
and iatrogenic injury. Surgical replacement of long segments
of ureter (�2 cm) requires complex reconstructive procedures
sometimes requiring intestinal interposition. A number of
researchers have attempted to treat these conditions using
engineering scaffolds to allow the expansion of local progen-
itor populations. Smith et al. (36) engineered allogeneic grafts
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using porcine small intestine submucosa (SIS) and applied
these in an onlay manner to 2 cm porcine ureter defects
comprising half of the circumference of the ureter. Renal
function was grossly preserved as seen on i.v. urography, and
histologic analysis showed reconstitution of normal ureteral ar-
chitecture including muscle layers. In another animal study,
Dahms et al. (37) performed a segmental replacement (�1 cm)
of rat ureter using acellular matrix of tubularized collagen.
Although these studies have produced promising results, there
have been no successful reports of complete replacement of
larger ureteral segments with engineered grafts. Canine exper-
iments by Osman et al. (38) proved unsuccessful in the
application of allogeneic acellular tube grafts to 3 cm com-
plete ureteral defects. El-Hakim et al. attempted ureteral seg-
ment substitution using bladder urothelial cells expanded in
culture and seeded onto three different types of matrices:
autologous SIS, harvested xenogenic ureteral acellular matrix,
and autologous deepithelialized small bowel reimplanted in a
retubularized (4 cm Monti) configuration. These efforts
proved unsatisfactory except in the last group which demon-
strated preserved renal function without evidence of obstruc-
tion; however, histologic examination revealed regeneration
of small bowel mucosa rather than seeded urothelial cells (39).
Other studies have shown successful seeding of acellular
xenogenic and allogeneic tubular scaffolds with stratified
urothelium (40), but successful reimplantation and reestablish-
ment of structure and native peristaltic function have yet to be
achieved.
Bladder. High pressure neurogenic bladders as seen in

association with myelomeningocele or spinal cord injury may
require bladder augmentation using intestinal segments to
achieve adequate capacity and low pressure storage. Use of
intestinal segments can lead to complications of urolithiasis,
metabolic disturbances, excessive mucous production, and
malignant disease. Much work has been done in creating
tissue engineered bladder substitutes to potentially avoid the
metabolic and neoplastic complications. A variety of regen-
erative medicine techniques to create bladder wall substitutes
have been examined. Acellular substitutes from decellularized
scaffolds have been obtained from a variety of tissue sources
including xenogenic and allogeneic SIS and bladder (41–43).
One study showed successful regeneration of mouse bladder
by implanting decellularized bladder matrix scaffold impreg-
nated with fibroblast growth factor (44). The most noteworthy
study to date used tissue engineered bladder wall substitutes in
seven patients with neurogenic bladder. Autologous urothelial
and smooth muscle cells were obtained through open biopsy,
expanded in vitro and then seeded onto artificial matrices
before implantation (45). Although the authors noted changes
in technique over the course of the study, four patients showed
improved compliance and increased capacity. This study dem-
onstrated the feasibility of using engineered tissue substitutes
for partial hollow organ replacement in humans, obviating the
need for intestinal substitution. A multi-institutional Food and
Drug Administration-approved Phase 2 clinical trial is cur-
rently underway.
Stem cell research has also played a major role in develop-

ing bladder substitutes. With muscle invasive transitional cell

carcinoma or severe persistent hemorrhagic cystitis, where
cystectomy and urinary diversion are indicated, tissue biopsy
for in vitro expansion may not be indicated, feasible, or of low
yield. The use of stem cells as a primary nonimmunogenic tissue
source for seeding of decellularized scaffolds is being heavily
investigated. Successful directed differentiation of human embry-
oid body-derived stem cells into bladder urothelium has been
reported, using coculture of stem cells with bladder mesenchyme
to provide the adequate stimulatory effects of mesenchymal
inductive cofactors (42). Co-culture of these stem cells with
mesenchymal tissue and subsequent seeding on decellularized
xenogenic SIS has been described to successfully form compos-
ite grafts. Although the function of these grafts was not tested in
vivo, these studies demonstrate the feasibility of generating stem
cell-derived bladder substitutes (41).
Korossis et al. (46) further addressed functionality in engi-

neered bladder substitutes and intuitively suggested in vitro
exposure of tissue constructs to mechanical transduction that
mimic in vivo conditions. They noted the addition of mechan-
ical dimensions to culture conditions enhanced micro- and
macroscopic structural development and overall mechanical
properties of engineered non-bladder tissues. These findings
are extrapolated as beneficial to in vitro development of
bladder substitutes. Incorporation of mechanical transduction
in bioreactors has been described for other engineered tissues;
however, these principles have yet to be applied to stem cell
tissue sources for the purposes of creating bladder substitutes
(47,48).
Prostate. Replacement of diseased prostatic tissue may not

be a clinically relevant topic, though the prevalence of pros-
tatic disease and paucity of animal models has sparked an
interest in alternative research techniques. A recent study
described in vivo directed differentiation of hESC into pros-
tatic tissue using tissue recombination techniques. They cre-
ated heterospecific tissue recombinants with hESC and rat and
murine urogenital sinus mesenchyme, and then reimplanted
these into the renal cortex of immunodeficient mice. They
were able to achieve glandular differentiation, verified with
production of prostate specific antigen. Controls grown with-
out mesenchyme produced teratomas (49). Aboseif et al. (50)
performed similar studies using tissue recombinants from rat
seminal vesical mesencyhme and adult human bladder epithe-
lium. These chimeric constructs were also implanted into the
subcapsular space of immunodeficient mice kidneys. They
demonstrated the development of glandular structures in the
epithelium, exhibiting the inductive effects of mesenchyme on
epithelial tissues (50). A large body of work for TE of the
prostate has grown from the need for animal models to test
novel cancer and surgical therapies (51,52). Other stem cell
studies in the prostate focus on discerning the biologic char-
acteristics of prostate cancer.
Urethra. Hypospadias, traumatic urethral defects, and stric-

ture disease are traditionally addressed by means of local or
distant epithelial flaps and grafts. Various genital and ex-
tragenital tissues have been used for urethral reconstruction,
including foreskin, tunica vaginalis, buccal and bladder mu-
cosa, and peritoneum (53,54). These techniques have not
always produced satisfactory functional and structural re-
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placement of urothelium, and they rely on the availability of
healthy donor tissues. TE techniques are used to provide a
plentiful source of healthy tissue for reconstructive purposes.
Using similar techniques as those developed for ureters, acel-
lular collagen-based matrices have been applied successfully
as onlay patch grafts (10). Multiple investigators have de-
scribed the use of acellular matrices for reconstruction, but
this technique has only shown success when used as patch or
onlay grafts, since acellular matrices fashioned into tubular-
ized constructs led to recurrent stricture formation. However,
tubularized acellular collagen matrices seeded with cells ex-
panded in culture have repeatedly been successful in animal
studies. These studies describe decellularized porcine or rabbit
bladder submucosa seeded with xenogenic transitional cells or
autologous skin cells expanded in vitro (54,55). Bach pro-
posed an elegant variation in scaffold technique, where an
autologous scaffold was created by implanting silicone tubing
into rat subcutaneous tissue, and then harvested the fibrous
capsule that developed around the tubing. This scaffold was
seeded with cultured urothelial cells suspended in fibrin glue,
which they have reported to be a reliable vehicle for trans-
plantation of cultured cells (56).
El-Kassaby et al. (57) describe the use of an allogeneic

collagen-based matrix derived from cadaver bladder submu-
cosa during urethroplasty for stricture disease. The matrix was
applied in an onlay fashion to the urethral plate and resulted in
successful urethral reconstruction in 24 of 28 patients. All 24
had improved uroflowmetry and urethral caliber at a mean
follow-up of 37 months and did not require any additional
procedures. These investigators reported a similar technique
several years prior with successful outcome in 3 of 4 patients,
though with limited follow-up (58).
Incontinence. The prevalence of urinary incontinence has

been estimated at 13–20% in men and 5–60% in women
(59,60).
Surgical procedures for stress urinary incontinence (SUI)

seek to improve the coaptation pressure of the urethra-
sphincter complex by means of injectable bulking agents (e.g.,
collagen), mechanical sphincters, urethral slings, and more
recently with cell injection therapy. There is an increasing
body of work investigating the potential for autologous myo-
blast and stem cell therapies for rhabdosphincter regeneration.
The most impressive study to date was published by Strasser
et al. (61), who conducted a randomized controlled trial
comparing ultrasound-guided transurethral rhabdosphincter
injection of autologous myo-and fibroblasts vs. transurethral
collagen injection for SUI in women. They reported an incon-
tinence cure rate of 90% in their cell injection group, com-
pared with only 10% of the collagen treated group. They
showed improvement in urinary incontinence, rhabdosphinc-
ter thickness and contractility (assessed by ultrasound), and
quality of life scores on a prevalidated questionnaire instru-
ment. The same investigators achieved near identical treat-
ment results in a later group of 20 female patients accrued
after the original trial (62). Another group of patients that
included 42 women and 21 men with SUI also underwent
autologous myoblasts injections, which included men who
previously underwent radical prostatectomy or brachytherapy

for prostate cancer. They reported a successful cure rate in 39
of 42 women (92.9%) and 11 of 21 men (52.4%) treated with
injected myo- and fibroblasts at a follow-up of 12 mo. This
study demonstrates the feasibility of this endoscopic injection
therapy for men with SUI after local therapy for prostate
cancer (63). The authors noted the importance of endoscopic
ultrasound as a reliable method to guide precise delivery of
injection therapy and subsequent objective evaluation of the
rhabdosphincter. In addition, the clinical efficacy demon-
strated through a randomized control trial represents an ap-
propriate level of sophistication that should be applied to
clinical trials whenever possible in evaluating stem cell and
TE technology.
Lecoeur et al. (64) attempted de novo porcine sphincter

generation via implantation of labeled autologous myofibers
containing muscle precursor cells obtained from neck muscle
biopsy. Rhabdosphincter injury was induced by endoscopic
electrocautery, followed by implantation of myofibers both
longitudinally along the urethra, and focally away from the
native sphincter applied in a circumferential orientation, func-
tionally generating a new sphincter in vivo. This cluster of
circularly oriented muscle fibers exhibited reproducible con-
tractions adequate to establish recordable urethral peak pres-
sure on urodynamic evaluation 30 d after implantation. Sup-
pression of tonic activity by curare suggests neural innervation
of this sphincter complex. Histologic evaluation verified re-
sulting nerve fiber development in the vicinity of the im-
planted myotubules, and neural tissue was present in greater
density than surrounding tissue. Both these points suggest
concomitant neuronal development and innervation of the
transplanted myofibers.
Autograft, allograft, xenograft, and synthetic materials are

all options for suburethral slings. Like any tissue substitute,
each has its own inherent advantages and disadvantages.
Tissue-engineered slings have been successfully created and
implanted into rats with sciatic nerve injury. They were shown
to maintain measurable leak point pressures in contrast to
controls that were also denervated but did not undergo a sling
procedure. The tissue-engineered slings were composed of
SIS seeded with muscle-derived cells, and this construct did
not show any significant difference in leak point pressure
compared with sling material made of SIS alone. Despite this,
the study showed the feasibility of applying slings to a repro-
ducible sciatic nerve injury rat model and demonstration of
leak point pressure measurements (65).
Penis. Disease processes of the penis include ambiguous

genitalia requiring penile reconstruction, trauma, erectile dys-
function, and Peyronie’s disease. The field of TE is making
significant strides in the development of potential treatments
for these various structural disorders of the phallus, many of
which have inadequate current therapies. Peyronie’s disease is
a condition of the penis that results in plastic induration and
marked curvature with erections. It is usually associated with
the presence of an inflammatory reaction and fibrotic plaque in
the tunica albuginea. The prevelance is estimated at 0.4–23%
of men (66). There are several published reports describing
use of fascial, venous, and synthetic grafts to repair defects in
tunica albuginea in the setting of penile trauma or treatment of
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Peyronie’s disease (67–70). In clinical studies, Breyer et al.
(71) reported a complication rate higher than expected in
patients who underwent tunica grafting with SIS (Surgisis®)
after plaque incision or excision for Peyronie’s disease. At a
mean follow-up of 15 months in 19 patients, complications
included penile shortening (63%), pain (26%), infection (5%),
and hematoma formation (26%) at the graft site that required
ultrasound guided aspiration. There were no significant dif-
ferences regarding erectile dysfunction pre- and postopera-
tively as determined on a previously published erectile dys-
function diagnostic questionnaire tool (72). More recent
animal studies describe the successful creation of tissue-
engineered corporal grafts paving the way for future replace-
ment strategies. Joo et al. (70) reported successful grafting of
decellularized porcine bladder submucosa onto rabbit corpora.
Histologic analysis verified tissue integration without exces-
sive scarring or contracture 2 month following surgery.
Of particular interest are descriptions of engineered replace-

ments for damaged erectile tissues within the corporal bodies.
Falke et al. describe a novel technique to generate human
cavernosal muscle and endothelial cells in vivo. Processed
acellular rabbit corpora seeded with human corpus cavernosa
muscle and endothelial cells were implanted in mice and
subsequently generated well vascularized corporal tissues
(73). Although functional studies have not been performed,
the preliminary studies appear promising.
Multiple investigators have attempted interposition of au-

tologous nerve grafts during radical prostatectomy for cancer
in an attempt at preservation of erectile function. Clinical trials
using sural nerve interposition have shown only limited suc-
cess (74–76). More recently, May et al. published an exten-
sive review examining the use of neurotrophic bioartificial
scaffolds for regeneration of cavernous nerves following local
injury from trauma or radical prostatectomy. These collagen
based nerve scaffolds were seeded with autologous Schwann
cells and interposed in large nerve defects. These authors
included their own animal studies, which showed the return of
erectile function in rats grafted with bioartificial nerve scaf-
folds after cavernous nerve ablation. These seeded scaffolds
were shown to be superior to both interposed autologous nerve
graft interposition and unseeded silicone nerve conduits (77).
Additional studies in erectile dysfunction have examined

gene therapy applications to enhance endothelial vasodilata-
tion of the corporal bodies, ultimately upregulating erectile
response. Induced mutation in several target genes has been
described to upregulate the production of nitric oxide and
other vasodilatory proteins (78). Deng et al. has reported
successful animal studies in intracavernosal injection therapy
of genetically engineered stem cells for the treatment of
erectile dysfunction. In a series of experiments, this group
demonstrated in vivo directed protein upregulation using int-
racavernosal injection of viral vehicles carrying selected mu-
tant genes for transfection. They suggested in vitro transfec-
tion of mesenchymal stem cells with subsequent cell injection
as therapy for corporal dysfunction. Histologic evaluation
verified the increased tissue concentration of targeted proteins
and the morphologic verification of incorporated stem cells,
which remained within the corpora up to 3 week postinjection.

Another recent report using stem cell injection therapy of
corpora cavernosa has also demonstrated in vivo differentia-
tion of these cells into corporal tissue (79).

CONCLUSION

The fields of TE and stem cell research continue to search
for novel techniques of tissue replacement and rehabilitation
in the genitourinary tract. In identifying possible replacements
for current treatment strategies, recent studies have included
randomized controlled trials for cell injection therapy, and
animal studies utilizing genetically enhanced stem cells that
render metabolically programmed tissue substitutes. The latter
shows great promise for attaining directed cellular function
and protein upregulation, and is a new application of stem cell
gene therapy.
The use of adult stem cells, specifically autologous progen-

itor cells obtained from biopsy, appears to have sufficient
clinical utility for in vitro expansion and autologous tissue
generation, thus avoiding the controversies surrounding the
use of hESCs.
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