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ABSTRACT: With the growing frequency of preterm birth, in-
creased effort has been made to elucidate the physiology of normal
and aberrant parturition. As with many developmental processes, the
study of genetically altered mice has led to an increased understand-
ing of mechanisms controlling the maintenance and resolution of
pregnancy. Studies in genetically altered mice have implicated crit-
ical roles for both prostaglandin synthesis and degradation in lute-
olysis and the progression of labor. The importance of local modu-
lation of progesterone activity to cervical ripening has also been
demonstrated. Although a decline in levels of serum progesterone is
a part of normal labor initiation in mice but not humans, murine labor
without progesterone withdrawal has been reported in some cases.
These findings emphasize the importance of other components of the
parturition cascade that are shared in mice and humans and highlights
the importance of an increased understanding of the physiology of
mouse parturition. (Pediatr Res 64: 581–589, 2008)

Parturition is the culmination of mammalian reproduction, a
task essential for survival of the species. After a period of

uterine quiescence to allow fetal growth and development,
changes occur in myometrial contractility that result in effi-
cient expulsion of the fetus. These events have likely evolved to
enhance survival of both the fetus and the mother. The nature of
these pathways, however, is at best incompletely defined.
Increased knowledge of the cascade of events that occur at

parturition may lead to advances in combating preterm labor
(PTL) or optimization of protocols for medically induced
labor. As preterm birth is associated with both increased risk

of neonatal mortality and chronic sequelae such as respiratory
illness, cerebral palsy, and vision and hearing impairment, it is
a major public health concern (1). In the United States, 12.7%
of births are preterm (2). Although approximately 50% of
preterm births are idiopathic (3), genetic factors seem to be
important. Women whose mothers or sisters delivered preterm
are at increased risk for premature labor (4,5), indicating a
genetic component in the timing of labor. In addition, a study
of a Utah population indicates greater genetic relatedness
between families with preterm deliveries than control families
(6). Because the population studied was descended from the
people who established Mormonism in Utah and Mormons
have low rates of substance abuse and sexually transmitted
diseases, the population used in this study may represent indi-
viduals with few environmental risk factors for PTL (6). These
studies highlight a role for genetic, and not just environmental
factors in predisposition to PTL and serves as a call to researchers
to identify and study genes important for parturition.
The mouse is a useful research tool for dissecting genetic

factors involved in developmental processes. Mice are tracta-
ble to genetic manipulation, resulting in an array of available
and potential knockout and transgenic mice suitable for study-
ing the roles of specific genes in complex processes. Important
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to the study of parturition, mice have a conveniently short
duration of gestation. Although the mouse has many advan-
tages as a research tool, its relevance for increasing the
understanding of human parturition has been questioned be-
cause of some dissimilarity in the parturition cascades of mice
and humans. At the onset of normal murine parturition, pros-
taglandins trigger luteolysis, the structural and functional deg-
radation of the steroidogenic corpora lutea, and a withdrawal
of progesterone (Fig. 1) (7). Humans exhibit no such decline
of serum progesterone at term (8). However, a functional
progesterone withdrawal, mediated by a decrease in the proges-
terone receptor’s (PR’s) transcriptional activity, may be a part of
normal human parturition (9). Furthermore, genetically altered
mice in which parturition occurs without a dependence on de-
clining serum progesterone levels have been described (10,11).
This emphasizes the importance of other mechanisms of the
parturition cascade known to be present in both mice and hu-
mans. In each species, there is an up-regulation of contractile-
associated proteins (CAPs), such as oxytocin receptor (OTR),
prostaglandin F2� receptor (FP), and connexin43 (Cx43), in the
uterus at term (12–15). Parturition studies using genetically al-
tered mice are reviewed here (Table 1).

PROGESTERONE WITHDRAWAL

Throughout gestation, progesterone maintains uterine qui-
escence. A fall in circulating progesterone occurs with the
onset of murine (7), but not human (8) labor. In mice, ovari-
ectomy (OVX) induces PTL, whereas administration of pro-
gesterone delays parturition (16). Genetically altered mice
have been used to study mechanisms for declining serum

progesterone levels in mice and possible alternative mecha-
nisms of progesterone withdrawal in humans.

20�-Hydroxysteroid Dehydrogenase Impacts Serum
Progesterone Levels

20�-HSD has an important role in coordinating progester-
one withdrawal at term in mice (17). 20�-hydroxysteroid
dehydrogenase (20�-HSD) converts progesterone to an inac-
tive metabolite and is expressed in the ovary (18). Although
expression of 20�-HSD is barely detectable during mid to
late gestation, it is up-regulated considerably at term (17).
20�-HSD�/� mice fail to initiate labor at term (17). In-
stead, labor is delayed 2–3 d compared with 20�-HSD�/�

controls, and the pups die in utero (17). In term 20�-
HSD�/� females, progesterone fails to fall to the same level
that it does in term wild-type mice (17). Administration of
the progesterone antagonist RU486 to 20�-HSD�/� fe-
males 1 d before term results in productive parturition the
next day without a decrease in circulating progesterone
levels (17). This result indicates that the singular role for
20�-HSD in gestation and parturition is to regulate the
levels of serum progesterone (17).

Prostaglandins Mediate Luteolysis and Progesterone
Withdrawal

Progesterone withdrawal in mice is concurrent with lute-
olysis, the structural and functional degradation of the corpora
lutea. A role for prostaglandin F2� (PGF2�) in luteolysis and
progesterone withdrawal in mice has been demonstrated by
the study of FP knockout mice (7). FP is normally expressed
in the corpus luteum (19). FP�/� females establish and main-
tain pregnancies normally, but they fail to initiate labor (7).
Serum progesterone levels do not decline in these animals at
term, indicating that their corpora lutea retain their steroido-
genic function (7). OVX in these dams leads to progesterone
withdrawal and successful parturition (7). Mice deficient for
prostaglandin receptors other than FP have no parturition
defects, indicating that PGF2� is the critical prostaglandin
isoform for inducing luteolysis (20).
The importance of prostaglandins in precipitating luteolysis

and progesterone withdrawal is further supported by similar
phenotypes in cytoplasmic phoshospholipase A2 (cPLA2)

�/�

and cyclooxygenase-1 (COX-1)�/� mice (21–24). cPLA2 and
COX-1 are enzymes responsible for the synthesis of prosta-
glandins. cPLA2 converts membrane phospholipids to arachi-
donic acid. Arachidonic acid is then converted to prostaglan-
din H2 (PGH2), the intermediate required by PGF synthase, by
different isoforms of COX (Fig. 2). cPLA2

�/� females have a
delay in labor (21,24). Administration of PR antagonist to
gravid cPLA2-deficient females precipitates labor, indicat-
ing that persistent progesterone levels are responsible for
delayed labor in these mice (24). COX-1�/� females also
exhibit delayed parturition (22,23) and persistent proges-
terone levels (22). Labor can be induced at term by admin-
istration of PGF2� (22). No parturition phenotype has been
reported for COX-2�/� mice because defects in ovulation and
implantation prevent progression of gestation to this stage (25).

Figure 1. Schematic for the cascade of events culminating in murine labor.
Increased synthesis of PGF2� in the uterine epithelium by the sequential
actions of cPLA2, COX-1, and PGF synthase results in luteolytic action
through FP receptors in the ovary. A drop in circulating progesterone with
luteolysis induces expression of myometrial CAPs and labor. CAP, contrac-
tile-associated protein; cPLA2, cytoplasmic phospholipase A2; COX-1, cy-
clooxygenase-1; FP, PGF2� receptor; PGF2�, prostaglandin F2�.
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However, COX-2 is up-regulated in the myometrium during
parturition suggesting a role for this COX isoform in labor
progression rather than initiation (26).

Models for Functional Progesterone Withdrawal in
Humans

Although serum progesterone does not fall at term in hu-
mans (8), questions remain as to whether or not a functional
progesterone withdrawal is part of human parturition. In some
cases, administration of the PR antagonist mifepristone aug-
ments cervical ripening and precipitates labor in term women
(27), indicating that functional progesterone withdrawal may
have a role in human labor. Because it has been observed that
each of the PR isoforms has distinct properties as a transcrip-
tion factor (28), differential expression of PR isoforms at term
seems a likely mechanism for functional progesterone with-
drawal in humans. A recent mouse study indicates a potential
importance of PR regulation at term. Mice deficient for Krüp-
pel-like factor, Klf9, an Sp6 family transcription factor, have
a delay in parturition with corresponding aberrant PR isoform
A expression in the myometrium and insensitivity to proges-
terone antagonist at late gestation (29). Studies have been
conducted on the ratio of expression of the different PR
isoforms in the laboring human myometrium (30,31), but it is
difficult to draw a compelling argument for PR regulation as a
means of functional withdrawal from the data. However,
evidence supporting functional progesterone withdrawal in
humans comes in the form of an observed decrease in coac-
tivators with histone acetylase activity in both humans and
mice at term (9). Both expression of coactivators with histone
acetylase activity and acetylated histone H3 are decreased at
term in humans and mice (9). When trichostatin A (TSA), a
histone deacetylase inhibitor, was administered to pregnant
mice daily during the late gestation, parturition was delayed

Figure 2. Biochemical pathway of prostaglandin synthesis and degradation.
Arachidonic acid conversion to the metastable intermediate PGH2 occurs
through the action of the COX enzymes. PGH2 is converted to the specific
prostanoid isoforms for receptor action by their respective synthases/
isomerases. PGE2 and PGF2�, the main prostaglandins involved in parturition,
are degraded by 15-HPGD. 15-HPGD, 15-hydroxyprostaglandin dehydroge-
nase; cPLA2, cytoplasmic phospholipase A2; COX, cyclooxygenase; PG,
prostaglandin; TXA2, thromboxane A2.

Table 1. Parturition phenotype of genetically altered mice

Genetically altered mouse Phenotype References

Progesterone withdrawal
20�-Hydroxyprostaglandin dehydrogenase (20�-HSD)�/� Delay in labor; fetal demise; no P4 withdrawal 17
PGF2� receptor (FP)�/� Fail to initiate labor; fetal demise; no P4 withdrawal 7
Cytoplasmic phospholipase A2 (cPLA2)

�/� Delay in labor; fetal demise; no P4 withdrawal 21, 24
Cyclooxygenase-1 (COX-1)�/� Delay in labor; fetal demise no P4 withdrawal 22, 23
Krüppel-like factor 9 (Klf9)�/� Delay in labor; aberrant PR expression 29

Myometrial contraction
Oxytocin (OT)�/� No parturition phenotype 35, 37
Oxytocin receptor (OTR)�/� No parturition phenotype 36
Cyclooxygenase-1 (COX-1)�/�/oxytocin (OT)�/� Prolonged labor initiated at normal time 32
Myometrial connexin43 (Cx43)�/� Delayed labor; fetal demise 39
15-Hydroxyprostaglandin dehydrogenase (15-HPGD)�/� Early labor; early PGF2� increase; no progesterone withdrawal 11
SK3 channel overexpressor Prolonged labor; weaker uterine contractions at term 50, 51

Cervical ripening
Relaxin (RLX)�/� Low penetrance nonproductive labor; impaired cervical ripening 57
LGR7�/� (relaxin receptor) Low penetrance nonproductive labor 58
Steroid 5�-reductase type 1 (5��R1)�/� Delayed labor; prolonged labor; impaired cervical ripening 60, 61

Circadian influence on labor
Clock mutant Increased incidence of extended but nonproductive labor 74
Oxytocin (OT)�/� Phase advance or delay alters birth timing 75

Bacterially induced PTL
IL-1 receptor (IL-1RI)�/� Susceptible to bacterially induced PTL 87
IL-1� (IL-1�)�/� Susceptible to bacterially induced PTL 88
IL-6 (IL-6)�/� Susceptible to bacterially induced PTL 89
IL-1 receptor (IL-1R1)�/�/TNF receptor (Tnfsrsfa)�/� Decreased susceptibility to bacterially induced PTL 91
Toll-like receptor 4 (TLR4) mutant Resistant to bacterially induced PTL 46
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24–48 h (9). TSA administration in this fashion leads to 200
times the histone acetylation of an untreated mouse at term
(9). It is proposed that a decrease in coactivators and acety-
lation at term interrupts the transcriptional activity of the
progesterone-PR complex leading to a functional progesterone
withdrawal (9).

MYOMETRIAL CONTRACTION

Preparation for the myometrium to contract as one powerful
unit is an important step in the start of the parturition cascade.
As term approaches, expression of the CAPs, including Cx43,
OTR, and FP, increases in the myometrium of humans and
mice (12–15). The myometrium is thus activated and therefore
able to respond to stimulants such as prostaglandins, which
induce myometrial contractions and sensitize the myometrium
to other uterotonic agents. Uterine PGF2� also increases to its
highest levels just before labor begins (12). Prostaglandins and
CAPs are important players for transforming the uterus, qui-
escent for most of gestation, to the powerful contractile organ
necessary for expelling the fetus.

The Uterotonic Agent Oxytocin is Not Necessary for
Parturition

Oxytocin (OT) is a strong uterotonic agent and is frequently
used to induce labor (32,33). Although OTR expression in-
creases in the myometrium approximately 10-fold at term
(34), OTR�/� and OT�/� females have a normal timing and
duration of labor (35–37). Surprisingly, COX-1�/�/OT�/�

mice have a prolonged labor that initiates at normal term (22).
This is also in contrast to the COX-1�/� mouse, which has
impaired luteolysis and delayed labor (22,23). COX-1�/�/
OT�/� mice undergo luteolysis normally (22). Therefore, it
seems that in addition to having a role as a contractile agonist
at the level of the uterus, OT has a role at the level of the ovary
for maintaining the corpus luteum (22). Further examination
of the role of OT in gestation and parturition has shown that
infusion of OT leads to a delay in labor at low doses, high-
lighting its role in maintaining the corpus luteum, and precip-
itation of labor at high doses indicating its role as a uterine
contractile agonist (38).

Expression of the Gap Junction Protein Cx43 in the
Myometrium is Necessary for Parturition

The necessity of the CAP Cx43, which synchronizes myo-
metrial cells, for successful parturition has been demonstrated
by study of a novel genetically altered mouse (39). Because
conventional Cx43�/� mice die shortly after birth (40), Cre-
LoxP technology (41) was used to generate mice deficient for
Cx43 specifically in smooth muscle tissues including the
myometrium (39). Whereas the vast majority (89%) of gravid
control mice deliver their litters between 4 and 8 am on d 19.5
of gestation, few (18%) of the myometrial Cx43�/� females
deliver during this time period (39). The majority of myome-
trial Cx43�/� mice instead deliver after 8 am on d 19.5, with
approximately half of that group delivering dead pups on d
20–22 of gestation (39). Uterine OTR and FP are up-regulated
and serum progesterone declines normally in the myometrial

Cx43�/� mice at term (39). This study highlights the impor-
tance of Cx43 and the coupling of myometrial cells for
productive uterine contractility as well as the utility of the
conditional knockout system for studying parturition.

15-Hydroxyprostaglandin Dehydrogenase Decreases at
Term to Allow Prostaglandin Up-regulation

Mutant mice have shown a role for the synthesis and action
of prostaglandins in the initiation of parturition (7,21–24).
However, less is known about how the degradation of pros-
taglandins may be regulated to achieve increased prostaglan-
din levels and parturition at term. 15-Hydroxyprostaglandin
dehydrogenase (15-HPGD) is the principal enzyme responsi-
ble for the breakdown of PGF2� as well as the less robustly
expressed prostaglandin E2 (PGE2) (42,43). In humans, 15-
HPGD mRNA decreases in chorion trophoblast cells in both
term and preterm laboring women versus nonlaboring women
(44,45). A similar decrease is noted in laboring mice (46). To
examine the role of regulation of expression of this gene in the
parturition cascade, mice hypomorphic for 15-HPGD were
generated (11). These animals have a significant decrease in
15-HPGD activity in placenta, uterus, and fetal membranes
compared with control animals (11). When mated to hypo-
morphic males, hypomorphic females labor approximately 1 d
early (11). In the case of these pregnancies, PGF2� and PGE2

levels rise early (11). Interestingly, their labor proceeds with-
out progesterone withdrawal, perhaps due to an ability of
PGE2 to maintain the corpus luteum in the face of increasing
PGF2� levels (11). These data indicate a role for decreased
catabolism of prostaglandins, in addition to increased synthe-
sis, in initiation of the parturition cascade (11). It also suggests
that prostaglandins can mediate the induction of labor by
mechanisms besides luteolysis and resulting progesterone
withdrawal.

Small-Conductance, Calcium-Activated K� Isoform 3
Channel Expression Decreases in Term Myometrium to

Promote Contractility

The activity of several types of K� channels in the myo-
metrium is regulated throughout pregnancy to maintain uter-
ine quiescence during gestation and generate forceful contrac-
tions at term (47–49). The role of small-conductance,
calcium-activated K� isoform 3 (SK3) channels in parturition
has been examined using genetically altered mice. SK3-
overexpressing females exhibit defective parturition, mani-
fested by prolonged delivery and mortality of pups and dams
(50). Weaker contractions are observed in uterus from term
SK3-overexpressing versus wild-type females (51). Moreover,
when administered stimuli precipitate PTL in wild-type mice,
SK3-overexpressing mice do not complete labor even if serum
progesterone levels decline (51). SK3 expression is decreased
in both mice and humans at term (49,51), indicating an
importance of regulation of this channel for parturition in both
species.
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CERVICAL RIPENING

Along with conversion of the quiescent uterus to a power-
fully contracting unit, remodeling of the formerly rigid cervix
is an important process for enabling successful parturition.
During pregnancy, the cervix must be firm so that the fetus is
not prematurely expelled. However, as term draws near, cer-
vical softening and remodeling occurs, making the cervix
more compliant and amenable to the birthing process. This
process involves tissue growth, increase in cervical secretions,
infiltration by inflammatory cells, and alterations in the extra-
cellular matrix (52).

Relaxin Mediates Normal Cervical Ripening

Relaxin (RLX) is a hormone known to be important for
connective tissue remodeling in sites including the cervix and
pelvic ligaments (53,54). The primary source of rodent RLX is
the corpus luteum (55). In rodents, levels of RLX increase
during the second half of pregnancy (56). Studies in rats have
indicated that in the absence of circulating RLX, labor is
prolonged or prevented (53). The RLX knockout mouse is
fertile, but has a low penetrance nonproductive labor pheno-
type (57). Duration of labor, measured as the time elapsed
from delivery of the first pup until delivery of the last, was
reported to be approximately 2 h in seven of seven RLX�/�

and six of eight RLX�/� mice (57). The remaining two
RLX�/� females had abnormal labor. One of these females
had a prolonged labor lasting approximately 15 h (57). The
other birthed two dead pups and was killed 12 h later because
of distress (57). Postmortem analysis revealed the presence of
10 additional dead pups in utero (57). Accordingly, a low
penetrance phenotype of nonproductive parturition was also
observed in dams deficient for LGR7, the highest affinity RLX
receptor (58). The protracted labor phenotype associated with
these two knockout models can perhaps by explained by a lack
of normal pregnancy-related changes in the cervix, pubic
symphysis, and vagina of RLX�/� females (57,59). Weight of
pubic symphysis, vagina, and cervix in RLX�/� females does
not increase by 1 d before term at the magnitude it does in
RLX�/� females (59). In addition, pregnant RLX�/� females
have denser collagen staining in vagina, pubic symphysis, and
cervix than do RLX�/� females 1 d before term (59). Also, the
pubic bones of RLX�/� females fail to widen to the extent that
they do during the second half of pregnancy in wild-type
gravid females (57). These data support a role for RLX in
preparation of the birth canal for labor.

Progesterone Metabolism by Steroid 5�-Reductase Type
1 at the Cervix Allows Ripening

5�-Reductase type 1 (5�-R1)�/� mice also have a parturi-
tion defect attributable to poor cervical ripening (60,61).
5�-R1 metabolizes progesterone, and its expression has been
noted in many tissues of the female reproductive tract (60).
The majority of 5�-R1�/� dams have prolonged labor at 2–3
d postterm (60). A quarter of these females die during labor
(60). If the pups are delivered via caesarean section at term,
they are normal and can be nursed by foster mothers (60).
5�-R1�/� females delivering on time were noted to have

decreased litter size (60). During the second half of gestation,
circulating steroid hormone levels are comparable between
5�-R1�/� and 5�-R1�/� dams (60). Additionally, gravid
5�-R1�/� females exhibit contractions that are sufficient for
labor (61). However, at term, 5�-R1�/� females have a matrix
of collagen fibers that is denser and more compact than that
observed in 5�-R1�/� females at term (61). Further analysis
revealed that progesterone is elevated in the cervix and uterus
of 5�-R1�/� females at term, despite the fact that a serum
progesterone decline is observed (61). The prolonged labor
phenotype observed can be reversed by administration of PR
antagonists or OVX, as well as by administration of some
5�-reduced steroids, RLX, or OT (60,61). This novel report
suggests the importance of local progesterone metabolism to
the process of cervical ripening. Local progesterone concen-
trations also seem to be regulated for cervical ripening in
humans, although by a different enzyme. 17�-Hydroxysteroid
dehydrogenase, which converts 20�-hydroxyprogesterone to
progesterone, is down-regulated in the endocervical cells in
term women, leading to decreased local progesterone levels
and favorable conditions for cervical ripening (62).
Additional studies using 5�-R1�/� female mice have indi-

cated some potentially important participants in the process of
cervical ripening. Hyaluronan (HA) increases during late
pregnancy in a variety of mammals studied including the
mouse and human and is the primary glucosaminoglycan
present in the cervix at labor (63–66). HA is speculated to be
important in cervical ripening because it has a high water
affinity and increased tissue hydration may prevent the aggre-
gation of collagen fibrils and reduce the tensile strength of this
tissue (65,67). In 5�-R1�/� females, hyaluronan synthase 2
(HAS2) mRNA is the HAS isoform found in greatest abun-
dance in cervix 1 d before parturition, when cervical HA
content is also increased (68). In the 5�-R1�/� female, HAS2
expression is reduced by 70% compared with 5�-R1�/� fe-
males 1 d before term, correlating with a 68% reduction in HA
compared with 5�-R1�/� females (68). HAS2 up-regulation
is also observed in women in labor (68). These data indicate
a potential importance for the regulation of this enzyme in
remodeling of the cervical extracellular matrix near term (68).
In addition, 5�-R1�/� females do not display the late preg-
nancy-associated changes in expression of aquaporins and
tight junction proteins seen in 5�-R1�/� females, indicating a
role for these types of proteins in mediating changes in
cervical water content associated with cervical ripening
(69,70).

CIRCADIAN INFLUENCE ON LABOR

A newly emerging area of interest is the relationship be-
tween circadian rhythmicity and parturition. Circadian rhyth-
micity is manifested by daily oscillations in locomotor activ-
ity, hormone levels, metabolism, and other parameters (71). A
molecular clock comprised of several genes, among them the
heterodimer partners Clock and Bmal1, underlies this phe-
nomenon (71). The onset of parturition seems to be under
circadian influences. Epidemiologic data from two separate
studies indicate that humans tend to labor in the early morning
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hours (72,73). Time of day seems to factor into murine labor
as well, as mice tend to labor during the dark phase of their
daily cycle. This raises the question of how the molecular
clock interacts with molecular events of the parturition cas-
cade. The Clock mutant mouse, which has a deletion in
Clock’s transcriptional activation domain, has been noted to
have a high incidence of extended but nonproductive labor
indicating a role for genes of the molecular clock in the
parturition process (74). In addition, we recently reported a
possible role for OT in maintaining the normal circadian
gating of labor in mice (75). A 6-h phase advance or delay in
wild-type dams starting on d 4.5 of gestation precipitated no
overall change in birth timing, whereas the same 6-h phase
advance or delay in OT�/� dams leads to a random scattering
of the time of birth throughout the day (75). OT is released in
a circadian fashion. This rhythmicity of secretion is not altered
in wild-type gravid females upon change in light:dark cycle
although both wild-type and OT�/� dams shift their locomo-
tor activity patterns in response to the disturbance (75). There-
fore, it seems OT secretion may maintain the onset of labor
with original circadian entrainment of pregnancy (75).

BACTERIALLY INDUCED PTL

Infection seems to contribute to or precipitate PTL in many
instances, with 30% of PTL cases exhibiting intrauterine
microbial colonization or histologic features of chorioamnio-
nitis (76). Bacterially induced PTL is associated with an
activation of the inflammatory response, including up-
regulation of cytokines, chemokines, and prostaglandins (Fig.
3) (77). Even normal spontaneous labor has elements of an
inflammatory response (78–80). Much study has been con-
ducted in mice to better define the pathogenesis of bacterially
induced PTL. Most mouse studies relevant to this phenome-
non use injections of heat-killed Escherichia coli bacteria

(HKE) (77) or lipopolysaccharide (LPS) (81), a component of
the outer membrane of Gram-negative bacteria, to induce
PTL.

No Progesterone Withdrawal in Bacterially Induced
Labor?

Reports on whether or not bacterially induced labor is
accompanied by progesterone withdrawal in mice are conflict-
ing. Fidel et al. (81) observed a significant decrease in serum
progesterone in mice injected peritoneally with LPS to pre-
cipitate PTL. However, Hirsch and Muhle (10) found that
intrauterine injection of a high dose (109) of HKE did not
result in a decrease of circulating progesterone of the magni-
tude observed resulting from OVX. However, the high dose of
HKE precipitated labor more quickly than OVX (10).
Whereas administration of progesterone at pharmacological
levels lengthened the time to delivery in both the high-dose
HKE and OVX groups, administration of progesterone at
physiologic levels lengthens time to delivery in the OVX
group only (10). The results of this study indicate that pro-
gesterone withdrawal is not the chief mechanism for bacteri-
ally induced PTL (10). The conflicting nature of these two
reports may be because of the different routes of infection,
with the peritoneal LPS injections in the first study leading to
a systemic infection and the intrauterine HKE injection of the
latter study leading to a more localized infection (10).

Cytokine Roles in Bacterially Induced PTL

A host of cytokines, such as IL-1, IL-6, and TNF, are found
to be up-regulated in cases of infection-associated PTL in
humans and mice (77). In animal models, IL-1 and TNF can
induce increased prostaglandin levels, CAP up-regulation,
uterine contractility, and PTL (82–86). Genetically altered
mice have been helpful in determining the importance of
specific cytokines in bacterially induced PTL. No individual
cytokine has been found necessary for the pathogenesis of
bacterially induced PTL. Mice deficient for IL-1 receptor
(IL-1RI), which are completely devoid of IL-1 signaling, are
not protected from PTL precipitated by HKE injections at
multiple sites (87). Accordingly, IL-1��/� females inoculated
with HKE or LPS were as likely to undergo PTL as wild-type
females undergoing the same treatment (88). Similarly, IL-6
seems to be dispensable for the pathogenesis of bacterially
induced PTL as IL-6�/� and IL-6�/� females are equally
susceptible to PTL triggered by uterine HKE inoculation (89).
To test the hypothesis that cytokines have redundant roles in
the pathogenesis of bacterially induced PTL, mice lacking
signaling from multiple cytokine receptors were examined.
Mice treated with the anticytokines IL-1 receptor antagonist
(IL-1ra) and soluble TNF receptor Fc fusion protein in com-
bination with LPS undergo PTL at similar frequency as wild-
type females treated with LPS alone (90). However, another
report using IL-1 receptor (IL-1R1)�/�/TNF receptor
(Tnfsrsf1a)�/� mice shows a decreased susceptibility to PTL
induced by inoculation with HKE in the double knockouts
(91). Perhaps, the discrepancy is due to complete eradication
of receptor signaling in the knockout paradigm in contrast to

Figure 3. Bacterial infection-associated preterm birth pathway. Bacterial
products, for example, endotoxin (LPS), activate toll-like receptors to produce
proinflammatory products such as cytokines and prostaglandins that acceler-
ate the time for parturition. NF-�B, nuclear factor-�B.
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residual receptor signaling in the case of anticytokine treat-
ment. If this is the case, higher doses of these anticytokines
may be more effective in inhibiting the observed PTL. The
IL-1R1�/�/Tnfsrsf1a�/� study seems to indicate that having
either IL-1 or TNF is necessary for the pathogenesis of
bacterially induced PTL. However, there has been no report
on the phenotype of Tnfsrsf1a single knockout mice. Such
a study is warranted to establish whether the necessity for
TNF signaling is responsible for the double knockout phe-
notype (91).
The role of cytokines in the pathogenesis of bacterially

induced PTL was further explored in the IL-1R1�/�/
Tnfsrsf1a�/� system (91). The double knockout mice showed
significantly lower myometrial expression of COX-2 upon
HKE inoculation compared with wild-type females indicating
the importance of COX-2 in the pathogenesis of bacterially
induced PTL (91). They did not show differential regulation of
genes associated with cervical ripening compared with treated
wild-types, indicating that the process of cervical ripening in
bacterially induced PTL differs from that in term laboring
females (91).

Toll-like Receptor Dependence of Bacterially Induced
PTL

Bacteria are thought to initiate the inflammatory process
and thereby precipitate PTL by interacting with toll-like re-
ceptors (TLRs), which orchestrate an immediate immune re-
sponse. TLR stimulation leads to the activation of nuclear
factor-�B (NF-�B), which induces cytokine and chemokine
transcription (77). To examine whether TLRs are necessary
for bacterially induced PTL, mice with normal TLR4 and mice
with mutant TLR4, leading to LPS hyporesponsiveness, were
used (46). Intrauterine injection of HKE resulted in PTL in the
normal TLR4 but not mutant TLR4 strain at most doses (46).
At the highest HKE dose (1010), 28% of mutant TLR4 females
and 100% of normal TLR4 females underwent PTL (46). At
5 � 109 HKE, a dose sufficient to cause PTL in 100% of
normal mice but none of the TLR4 mutant mice, cytokine and
COX-2 up-regulation was observed in both strains (46). How-
ever, HPGD expression decreased in normal but not mutant
females in response to HKE (46). This indicates that TLR4
may facilitate PTL by lowering prostaglandin catabolism (46).

Nonsteroidal Anti-inflammatory Drugs as Therapeutics

Because bacterially induced PTL is associated with an
increase in prostaglandin production (77), inhibiting the syn-
thesis of prostaglandins is a logical therapy in cases of poten-
tial infection-related PTL. Administration of nonsteroidal anti-
inflammatory drugs (NSAIDs), which inhibit prostaglandin
synthesis, have been shown to curtail the progression of both
term labor and PTL (16,92–94). Currently used NSAIDs, such
as indomethacin, block COX-1 and COX-2. Treatment with
these drugs is associated with fetal and maternal side effects
that have precluded their use (92,95). The efficacy of NSAIDs
that inhibit a single COX isoform and their associated side
effects were studied in mice as a potential remedy to these
problems (96). Inoculation with LPS resulted in PTL within

24 h in all gravid females, whereas administration of LPS and
indomethacin led to PTL in only 20% of dams (96). Most of
the nonlaboring females demonstrated in utero fetal death
(96). Coadministration of LPS and the COX-1 inhibitor SC-
560 resulted in PTL in 58% of females, with 40% of nonla-
boring females exhibiting in utero fetal demise (96). More
successful was the coadministration of LPS and the COX-2
inhibitor SC-236 (96). This treatment resulted in PTL in only
8% of treated females, with 73% of the remaining females
delivering viable fetuses (96). These data, in concert with the
observation that 88% of gravid COX1�/� females treated with
LPS deliver within 24 h, indicate that COX-2 derived prosta-
glandins are important for bacterially induced PTL and that
COX-2 is a potentially important target for stopping PTL (96).

SURFACTANT PROTEIN-A AS PARTURITION
SIGNAL

Pulmonary surfactant may have a role in regulating the
inflammatory response associated with even normal term la-
bor (97). Surfactant production begins in the fetal lung during
the final third of gestation in humans and mice (97,98).
Inadequate surfactant production results in respiratory distress
in infants (98). A recent study suggests that in addition to its
role in pulmonary function, secretion of surfactant, particu-
larly surfactant protein-A (SP-A), from fetal lung has a role in
signaling for parturition to begin in mice (97). It is proposed
to play this role by activating amniotic fluid macrophages
which travel to the maternal uterus and incite the inflamma-
tory response (97). SP-A is found to up-regulate IL-1� and
NF-�B in cultured amniotic fluid macrophages (97). Experi-
ments using wild-type dams carrying fetuses heterozygous for
�-galactosidase revealed that macrophages of fetal origin
increase in the maternal uterus during the timeframe at which
SP-A is secreted from fetal lung (97). Intraamniotic injection
of SP-A caused PTL in gravid female mice within 6–24 h
(97). Conversely, the injection of an SP-A antibody or NF-�B
inhibitor led to a delay of labor more than 1 d postterm (97).
In laboring humans, macrophages of fetal origin are not
present in the myometrium (99,100). Although SP-A appears
not to promote migration of fetal macrophages to the myome-
trium in women, it may have a different role in precipitating
human labor (100).

CONCLUSION

The mouse has proved to be an important resource for
increasing our knowledge of the processes related to parturi-
tion. Although the importance of CAPs and prostaglandins is
evident in both humans and mice, the differences in proges-
terone regulation between the two species is more perplexing.
Research into potential functional progesterone withdrawal in
the human may lead us to an increased appreciation of simi-
larity between human and murine labor. Additionally, the
established murine models recapitulating infection-associated
PTL are promising for increasing the understanding of inflam-
matory processes related to labor. Further knowledge on
cervical ripening gained from the RLX and 5�-R1 knockout
mice may lead us to new therapeutic targets for stimulating or
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delaying labor. The expanding circadian field provides us with
a new group of genes whose roles in parturition merit further
exploration. The ability of 15-HPGD hypomorphic mice, and
potentially mice experiencing bacterial infection, to labor
without a dependence on progesterone withdrawal indicates
the importance of other mechanisms that are a part of labor
initiation. Because these other mechanisms crucial for labor
initiation are likely shared between mice and humans, con-
tinuing analysis of rodent models should yield further under-
standing of the physiology of pregnancy across species.
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