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ABSTRACT: The prevalence of the common mutations in the
surfactant protein-B (121ins2), surfactant protein-C (I73T), and
ATP-binding cassette member A3 (E292V) genes in population-
based or case-control cohorts of newborn respiratory distress syn-
drome (RDS) is unknown. We determined the frequencies of these
mutations in ethnically diverse population and disease-based cohorts
using restriction enzyme analysis (121ins2 and E292V) and a 5�
nuclease assay (I73T) in DNA samples from population-based co-
horts in Missouri, Norway, South Korea, and South Africa, and from
a case–control cohort of newborns with and without RDS (n � 420).
We resequenced the ATP-binding cassette member A3 gene
(ABCA3) in E292V carriers and computationally inferred ABCA3
haplotypes. The population-based frequencies of 121ins2, E292V,
and I73T were rare (�0.4%). E292V was present in 3.8% of new-
borns with RDS, a 10-fold greater prevalence than in the Missouri
cohort (p � 0.001). We did not identify other loss of function
mutations in ABCA3 among patients with E292V that would account
for their RDS. E292V occurred on a unique haplotype that was
derived from a recombination of two common ABCA3 haplotypes.
E292V was over-represented in newborns with RDS suggesting
that E292V or its unique haplotype impart increased genetic risk
for RDS. (Pediatr Res 63: 645–649, 2008)

The pulmonary surfactant is a phospholipid-protein com-
plex synthesized in alveolar type II cells and necessary for

maintaining alveolar expansion at end-expiration. The pulmo-
nary surfactant metabolic cycle includes synthesis, trafficking,
processing, secretion, and recycling and maintains alveolar
homeostasis (1). In symptomatic newborn infants and older
children, mutations in three genes of the surfactant synthetic

pathway, surfactant proteins-B and -C (SFTPB and SFTPC)
and the ATP-Binding Cassette member A3 (ABCA3), disrupt
surfactant function and cause respiratory disease in newborns
and older children. Surfactant proteins-B (SP-B) and -C
(SP-C) are hydrophobic peptides within the surfactant phos-
pholipid layer that contribute to surface activity (2), whereas
the ATP-binding cassette protein A3 (ABCA3) likely trans-
ports lipids, such as phosphatidylcholine, cholesterol, sphin-
gomyelin, and phosphatidylglycerol, into lamellar bodies
where the surfactant complex is assembled, processed, and
stored (3–6).

SP-B is a 79-amino acid, hydrophobic protein encoded by a
9.7 kb gene, SFTPB. Infants homozygous for recessive loss-
of-function mutations in SFTPB develop respiratory failure
shortly after birth that is fatal without lung transplantation (7).
The SFTPB allele most commonly observed in infants with
SP-B deficiency (�60% of mutated alleles) results from a
frameshift at codon 121 (121ins2) and is rare: less than 1 per
1000 individuals in two different population-based cohorts in
the United States (8–10).

SP-C is a 35 amino acid hydrophobic protein, encoded by a
3 kb gene, SFTPC. Known mutations in SFTPC are expressed
in a dominant fashion and have been associated with respira-
tory distress and interstitial lung disease in newborns and
older children (11,12). The most common SFTPC mutation is
a single nucleotide transition that results in a threonine for
isoleucine substitution at codon 73 (I73T) and is present in
over 25% of the cases of SP-C associated disease (13).

ABCA3 is a 1704 amino acid protein, encoded by an 80 kb
gene, ABCA3. Several autosomal recessive mutations in ABCA3
have been linked to lethal surfactant deficiency in newborns
(14,15) and to chronic respiratory insufficiency in older children
(16). A missense mutation which introduces a valine for glutamic
acid substitution at codon 292 (E292V), when associated with
another mutation on the other ABCA3 allele, has been described
in older, unrelated children with chronic lung disease (16).
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Previously, we reported a prevalence of approximately
0.8/1000 for 121ins2 in an unselected cohort of anonymized
bloodspots obtained from the Missouri Department of Health
Newborn Screening Program (17). The frequencies of I73T
and E292V in this population, and the frequencies of the three
common surfactant pathway mutations in other geographically
and ethnically diverse populations are unknown, as are their
contributions to respiratory distress syndrome (RDS) in uns-
elected populations of symptomatic newborns. To assess the
population-attributable and disease-associated frequencies of
these mutations that are rare in the general population but the
most common of the disease-causing mutations in the three
surfactant pathway genes, SFTPB, SFTPC, and ABCA3, we
used high throughput molecular screening methods in four eth-
nically and geographically diverse population-based cohorts and
a single institution referral-based case–control cohort.

METHODS

Population-based cohorts. Anonymized DNA specimens were obtained
from the Newborn Metabolic Screening Programs of Missouri, Norway,
South Korea, and South African blacks (supplemental material, online).
Ethnic and gender data were only available for the Missouri cohort, which
was 51% male, 49% female, and comprised of 77% white, 20% black, and 3%
individuals from other racial groups.

Case–control cohort. We obtained DNA and clinical data from healthy
term newborns as a control group (CON) and from newborns with RDS
referred to the Division of Newborn Medicine at St. Louis Children’s Hospital
for clinical care or genetic screening (Table 1). We defined RDS as the need
for supplemental oxygen, a chest radiograph consistent with RDS and the
need for continuous positive airway pressure or mechanical ventilation within
the first 24 h of life. Because each of 16 twin-pairs had concordant results,
only one twin from each pair was included in the analyses.

The Human Research Protection Office at the Washington University
Medical Center and the Institutional Review Board at the Missouri Depart-
ment of Health and Senior Services and of the respective countries’ newborn
screening programs approved this study. Informed consent was obtained from
the parents of the infants in the case–control cohort.

Surfactant protein-B. We used SfuI restriction enzyme analysis to screen
for 121ins2 after amplifying a 354 base pair fragment of exon 4 as described
previously (10,17) (supplemental material, online).

Surfactant protein-C. We used a 5� nuclease assay (Taqman®, Applied
Biosystems) and the ABI 7500 FAST Real Time PCR System to genotype the
I73T mutation. The assay produced a 61 bp amplicon of exon 3, which included
the thymine to cytosine transition responsible for I73T. Genomic DNA from
individuals known to be heterozygous for I73T served as controls on each plate.

ATP-Binding Cassette member A3. We used BsrG1 restriction enzyme
analysis to screen for E292V after amplifying a 682 base pair nucleotide
fragment of exon 8 that contained the adenine to thymine transversion
(16)(supplemental material, online). To determine whether those newborns
with E292V and RDS carried other unique, functionally disruptive mutations
in ABCA3, we then amplified and sequenced 2 kb of the promoter region, the
30 coding and 2 noncoding exons, and splice site junctions of ABCA3 for all

11 infants heterozygous for E292V and for 12 race and gestational age
matched CON infants from the case–control cohort. Ethidium bromide
agarose gel electrophoresis was performed on all amplicons to determine
success of the amplification reaction and to identify differences in electro-
phoretic mobility that might suggest a gene insertion or deletion of more than
100 nucleotides. The amplification and sequencing strategies are described in
Table S1 (supplemental material, online). A total of 74 single nucleotide
polymorphisms (SNPs) were identified in these 23 individuals, 29 of which
had a minor allele frequency �5% (Table S2, supplemental material, online).
To determine whether the E292V mutation occurred on a common haplotype
background, we computationally inferred ABCA3 haplotypes using a Bayes-
ian approach implemented in the PHASE computer software, and the 29
detected variants with minor allele frequency �5% (18).

We confirmed all mutations detected by restriction enzyme digestion or 5�
nuclease assay with direct sequencing as described in the supplemental
material, online.

Data analysis. We used Phred, Phrap, PolyPhred, and Consed (http://
www.phrap.org/phredphrapconsed.html) to identify and annotate SNPs in
sequencing chromatograms and Prettybase (http://pga.mbt.washington.edu) to
extract a final file with genotypes. We used SAS (Version 9.1.3, SAS Institute,
Cary, NC) to perform �2 tests to determine distribution differences of cate-
gorical clinical characteristics and to perform Fisher’s exact probability test to
assess mutation frequency differences between groups. The Kruskal-Wallis
test was used to compare ranked clinical characteristics where data normality
and homoscedasticity were not assumed or Fischer’s exact tests to determine
differences in mutation frequency and categorical clinical characteristics and
Kruskal-Wallis tests to compare numerical clinical characteristics (19). The
SAS POWER procedure was also used to estimate statistical detection power
separately in blacks (102 controls, 70 cases) and whites (77 controls, 142
cases) among our case–control cohort. In blacks, power was 36% when 5%
dominant risk allele frequency difference or 13% recessive risk allele fre-
quency difference was assumed, and power reached 88% when 11% dominant
or 23% recessive risk allele frequencies were assumed. With the same
assumptions, power estimates in whites were 43% and 93%, respectively.

To determine whether variants located near exons in ABCA3 had the
potential to affect RNA splicing, we used a splice site prediction application
available through the Berkeley Drosophila Genome Project (http://
www.fruitfly.org/seq_tools/splice.html).

RESULTS

Population-based cohorts. The 121ins2 mutation was not
identified in the South African or Korean cohorts, but was similar
in frequency in the Norwegian and Missouri cohorts (Table 2).
Because we did not find I73T in over 4000 samples from the
Missouri cohort, we decided not to screen other population-based
cohorts for this mutation. We found E292V in 0.3–0.4% of the
predominantly European descent cohorts (Norway and Missouri)
but in �0.1% of the Asian or African descent cohorts (Table 2).

Case–control cohort. No infants in the RDS or CON groups
carried the I73T mutation, and one infant in the RDS group
carried the 121ins2 mutation (Table 3). In contrast, the preva-
lence of E292V in the RDS cohort was 10-fold higher than that
in the Missouri cohort (3.8%, p � 0.001); the prevalence of
E292V in the CON cohort was not different from that of the
Missouri cohort (1.1%, p � 0.2). One set of twins in each of the
CON and RDS groups was positive for E292V. No patient
heterozygous for E292V in the RDS group carried SNPs that
would be predicted to disrupt splice site junctions or alter
ABCA3 protein sequence (Table 4), nor were any large insertions
or deletions detected. Furthermore, with the exception of one
synonymous SNP (S1372S), all potentially functional SNPs
were identified in one or more of the 12 comparison
individuals. Individual RDS8, who died after 8 mo of
mechanical ventilation, was the only one for whom lung
histology was available. There was variable, but extensive
interstitial fibrosis and pneumocyte hyperplasia, along with

Table 1. Characteristics of case-control cohort

CON RDS

Race
Black 102 70
White 77 142
Other/missing 2 27

Sex
Male 90 134
Female 91 102
Missing 0 3

Birth weight (kg)
Mean � SD 3.1 � 0.5 2.0 � 1.1

EGA (wks)
Mean � SD 39 � 2 33 � 5
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alveolar macrophages, but without alveolar proteinosis.
Normal appearing lamellar bodies and tubular myelin were
seen by electron microscopy (3,14,15,20).

Among the 15 ABCA3 haplotypes computationally inferred
from the E292V and control cohorts (n � 23), we identified
two common haplotypes among the 35 alleles that did not
carry E292V: haplotype 1 with 13 (37%) and haplotype 2 with
9 (26%) (Table 5). Among the 11 E292V carrying alleles, we
identified one common haplotype (n � 8) and three unique
haplotypes. The E292V haplotypes have two distinct blocks in
common with each of the two most common nonE292V
haplotypes: a 5–7 locus block from intron 1 to exon 9, seen in

haplotype 2, and a 23–25 locus block from intron 8 through
intron 28, seen in haplotype 1. This combined haplotype
background (CCAAACCCGG. . . ) was not seen in the ab-
sence of E292V, suggesting that E292V arose in conjunction
with a recombination event between these two blocks and
further suggests that the disease effect, if any, may not be
solely because of E292V, but the unique combination of
associated variants along the gene.

To assess whether E292V is associated with unique RDS
characteristics, we compared demographic and clinical features
in groups of RDS infants with and without E292V. Although the
size of the cohort rendered limited statistical detection power, it
appeared that the infants with E292V had a higher inci-
dence of pneumothoraces (Table 6). The two most imma-
ture newborns with E292V (29 and 26 wk gestation) had
evidence of more respiratory dysfunction (mechanical ven-
tilation for �1 y and death because of chronic lung disease
at 8 mo, respectively) than observed in newborn of similar
gestational ages without E292V.

Table 4. Exonic and splice site SNPs identified in subjects with E292V

Subject Race/Sex SNP(s)* Location
Number of non-E292V
controls with variant BW (kg) GA (wks) Outcome

CON1 B/M Rs170447 (A)† Ex 13 �30 1 3.6 41
Rs323043 �P585P� (B)† Ex 14 7

CON2 W/F A, B 2.6 37
RDS1 W/M A, B 3.6 38 PTX; vent 4 d, O2 5 d;

discharged RA
RDS2A W/F A, B 2.3 35 Vent 10 d, O2 5 d;

discharged RA
RDS2B W/F B 2.1 35 PTX; vent 14 d, O2 4 d;

discharged RA
RDS3 W/M 16669 Ex 5 	11 2 Vent 1 y, O2 1 y

A
Rs313908 Ex 18 	33 0
Rs313909 Ex 18 �34 0
Rs149532 �S1372� Ex 26 0

RDS4 W/M B 2.9 37 PTX; vent 10 d, O2 6 d;
discharged RA

RDS5 W/M 45305 Ex 17 	17 1 3.8 36 Vent 4 d, O2 1 d;
discharged RA

RDS6 W/F Rs149532 �S1372S� Ex 26 0 2.5 33 Vent for 12 d, O2 for 18 d,
then RA; died at 8 wks,
non respiratory causes

RDS7 W/F 21289 �A227A� Ex 7 1 3.1 39 CPAP for 2 d,
Rs13332547 Ex 9 	20 3 O2 for 4 d; discharged RA
Rs13332514 �F353F� Ex 9 3

RDS8 W/M None 0.7 26 Died at 8 mo, entirely vent
dependent

RDS9 W/M None 2.6 37 PTX, vent for 13 d, O2 for
6 mo

* rs numbers through dbSNP (http://www.ncbi.nlm.nih.gov/SNP); if no rs number available, then the number refers to the genomic location from the ABCA3
sequence generated by Seattle SNPs (http://pga.gs.washington.edu/data/abca3/abca3.ColorFasta.html).

† A, B: common variants found in multiple individuals.
PTX, pneumothorax; Vent, mechanical ventilation; RA. room air.

Table 2. Population-based frequencies

Norway South Africa-black Korea Missouri Overall p value across cohorts

121ins2 3/2501 (0.1%) 0/2044 (0%) 0/2596 (0%) 8/10,044 (0.08%)* 0.2
I73T — — — 0/4464 (0%) —
E292V 8/2515 (0.3%) 0/1686 (0%) 0/1541 (0%) 4/1107 (0.4%) 0.004

* Reported in Ref. 17.

Table 3. Disease-based frequencies

CON
(N � 181)

RDS
(N � 239)

p value*
between groups

121ins2 0 1 (0.4%) 1.0
I73T 0 0 —
E292V 2 (1%) 9 (3.8%) 0.12

* Fisher’s exact probabilities.

647FREQUENCY OF COMMON SURFACTANT MUTATIONS



DISCUSSION

The autosomal recessive 121ins2 (SFTPB) and autosomal
dominant I73T (SFTPC) mutations most frequently detected
in infants with lethal surfactant deficiency and interstitial lung
disease are rare in the general population and in unselected
infants with RDS, observations that suggest that these specific
mutations have low population-attributable risk of RDS.
SFTPB haploinsufficient murine lineages that demonstrate
decreased lung compliance and air trapping at birth suggest
that infants heterozygous for 121ins2 may have increased risk
or severity of RDS (21,22). However, the observation that
121ins2 heterozygous siblings and parents of SP-B deficient
infants are asymptomatic at birth coupled with the rarity of
loss of function mutations in SFTPB suggests that these
mutations would not be over-represented in a small cohort of
premature and term infants with RDS (23,24). Although in-
fants with mutations in SFTPC can present as RDS in the
newborn period, most children with these mutations become
symptomatic with interstitial lung disease beyond the newborn

period, especially those with I73T (13,25). Therefore, it is also
not surprising that we did not find I73T in the cohort of
children who developed respiratory disease at birth.

We only screened for E292V in ABCA3, and, whereas the
E292V carrier frequency is 3- to 5-fold higher than 121ins2 or
I73T carrier frequencies in population-based cohorts of pri-
marily European descent (Norway and Missouri) and we
cannot exclude the possibility that other mutations in ABCA3
are just as common, the 10-fold enrichment in E292V preva-
lence in our RDS cohort suggests that E292V may increase the
risk and/or severity of RDS in susceptible newborns. The
developmental, environmental, and/or genetic background
factors that contribute to differences in penetrance of these
mutations remain to be defined.

Although disease-causing variants other than 121ins2 and
E292V in SFTPB and ABCA3 are highly prevalent in cohorts
of infants selected for lethal respiratory distress, they have
primarily been identified in single individuals or families
(3,14,26). We did not have sufficient power to pursue the
contribution of these more rare mutations to the disease-based
risk for RDS in our neonatal intensive care unit cohort that
was not enriched for lethal RDS. Common variants in SFTPB
and SFTPC with minor allele frequencies �0.2 have also been
associated with the risk for RDS, but the mechanisms by
which these variants and combinations thereof impart risk are
undetermined (27–30). To our knowledge, the contribution of
common variants in ABCA3 to the risk of RDS has not been
evaluated. In view of the contributions of SFTPB, SFTPC, and
ABCA3 to surfactant function necessary for successful fetal-
neonatal pulmonary transition, the low population-attributable
risk of genetically disruptive mutations is not surprising.

The mechanism by which E292V may disrupt surfactant
synthesis is unknown. Codon 292 is part of an intracellular
loop between two transmembrane domains of the ABCA3
protein and the substitution of a nonpolar hydrophobic amino
acid for a negatively charged hydrophilic amino acid may
disrupt phospholipid binding and transport into the lamellar
body. In vitro studies suggest a primary role for ABCA3
mutations in the disruption of pulmonary surfactant metabo-
lism through abnormalities in intracellular protein trafficking,

Table 5. Computational haplotypes identified in 23 individuals

Group Haplotype # Haplotype Alleles, N (%)*

nonE292V 1 CCGACCCCGGCAATCCGAAACTACAGGGTA 13 (37)
1a CCGACCCCGGCADCTCCAAAGCACTGGGCC 1 (3)
1b CCGACCCCGGCGDCTGCGGACCGCATAATC 1 (3)
1c CCGACCCCGGAGDTTCCGGACCGCATAATC 2 (6)
1d CCGACCCTGGCAATCCGAAACTACAGGGTA 1 (3)
1e CCGACTTTGGAGDTTCCGGACCGCATAATC 2 (6)
1f TTGACCCCGGCAATCCGAAACTACAGGGTA 1 (3)
1g TTGACTTTGGAGDTTCCGGACCGCATAATC 2 (6)

nonE292V 2 CCAAACCTAACGDCTGGAAGGCATTGGGCC 9 (26)
2a CCAAACCTAACADCTGGAAGGCATTGGGCC 2 (6)
2b CCAAACCTAACGDCTGGAAGCCATTGGGCC 1 (3)

E292V 3 CCAT†ACCCGGCAATCCGAAACTACAGGGTA 8 (73)
3a CCATACCCGGCAATCCGAAGCTACAGGGTA 1 (9)
3b CCATACCCGGCAATTCGAAACTACAGGGTC 1 (9)
3c CCATACCCGACAATCCGAAACTACAGGGTA 1 (9)

* Percent of alleles with or without E292V.
† E292V is an A�T transversion; shaded CC is indeterminate as to which haplotype from which it was derived.

Table 6. Comparison of E292V positive newborns with RDS
cohort (including twins)

E292V with RDS
N � 10

RDS without E292V
N � 237 p value

BW 2.6 (0.7–3.8) 1.8 (0.5–4.5) 0.10*
201

EGA 36 (26–39) 34 (23–43) 0.30*
218

Race (ED/AD) 10/0 139/72/26w 0.04†
Sex (F/M) 4/6 101/133 1.0†
Pneumothorax 4 (40%) 29 (15%) 0.06†
Duration mech

vent/CPAP
8 (1–450) 14 (0–358) 0.46*

171
Duration O2 18 (3–800) 26 (0–358) 0.90*

171
Outcome at discharge
On O2 3 (38%) 75 (43%) 0.71*
Vent 1 (10%) 9 (5%) 0.24*
Survive 8 (80%) 147 (86%) 0.64*

* Kruskal-Wallis test.
† Fisher’s exact test.
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defects in ATP hydrolysis, or abnormal phospholipid packag-
ing (3–6,31,32). In addition, ABCA3 protein expression has
been shown to increase with advancing gestation (33). These
observations, along with other reports of lethal and chronic
respiratory disease in the presence of a single mutation in
ABCA3, suggest that E292V itself, or through interactions
with variants in other genes, could disrupt ABCA3 function in
developmentally susceptible individuals (14,16,26,34). In
contrast to those reports, however, all but one infant in this
study recovered from their lung disease.

The unique haplotype associated with E292V raises the
possibility that a specific combination of variants within this
new block could confer the phenotype. Our resequencing
strategy that focused on coding regions and flanking sequence
did not identify any coding or splice site variants either
upstream or downstream of E292V that would obviously alter
ABCA3 function, but it is possible that functional intronic or
promoter variants reside within the regions that were not
sequenced or in other genes along the surfactant synthetic
pathway.

Taken together, these data suggest that E292V may increase
RDS susceptibility in the context of currently unknown de-
velopmental, genetic, or environmental traits. Even though the
121ins2, I73T, and E292V mutations are rare in the general
population, they are sufficiently prevalent to warrant evalua-
tion in the context of respiratory compromise that seems
disproportionate for gestational age.
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