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ABSTRACT: Lactogenic hormones cause intracellular targeting of
glucose transporter 1 (GLUT1) for transport of glucose to the site of
lactose synthesis in mammary glands. Our aim was to study the
intracellular trafficking mechanisms involved in GLUT1 targeting
and recycling in CIT3 mouse mammary epithelial cells. Fusion
proteins of GLUT1 and enhanced green fluorescent protein (EGFP)
were expressed in CIT3 cells maintained in growth medium (GM), or
exposed to secretion medium (SM), containing prolactin. Agents
acting on Golgi and related subcellular compartments and on GLUT1
and GLUT4 targeting in muscle and fat cells were studied. Wort-
mannin and staurosporine effects on internalization of GLUT1 were
not specific, supporting a basal constitutive GLUT1 membrane-
recycling pathway between an intracellular pool and the cell surface
in CIT3 cells, which targets most GLUT1 to the plasma membrane in
GM. Upon exposure to prolactin in SM, GLUT1 was specifically
targeted intracellularly to a brefeldin A-sensitive compartment. Ar-
rest of endosomal acidification by bafilomycin A1 disrupted this
prolactin-induced GLUT1 intracellular trafficking with central co-
alescence of GLUT1-EGFP signal, suggesting that it is via endoso-
mal pathways. This machinery offers another level of regulation of
lactose synthesis by altering GLUT1 targeting within minutes to
hours. (Pediatr Res 63: 56–61, 2008)

The mammary gland is unique in its requirement for trans-
port of free glucose into the cell to provide substrate for

lactose synthesis (1). Glucose transporter 1 (GLUT1) is the
main established isoform of glucose transporters expressed in
mammary epithelial cells (MEC) (2–6). Hormonally regulated
subcellular targeting of GLUT1 from the plasma membrane
into the cell may have an important role for lactose synthesis
in MEC during lactation (5,7,8).
This work is based on previous findings on GLUT1 target-

ing in MEC under hormonal stimulation, mimicking lactation
(5,7). These findings were reconfirmed and expanded in our
previous work on the model of GLUT1 targeting and recy-

cling in living MEC in culture that was used in this study (data
not yet published). For this system, we constructed fusion
proteins of GLUT1 and green fluorescent protein (GFP), and
expressed them in CIT3 mouse MEC in culture. CIT3 cells are
a nonneoplastic MEC line that is derived from Comma-1-D
cells and exhibit polarized transport (9). Cells were main-
tained in growth medium (GM), or exposed to secretion
medium (SM). Lactogenic hormones, namely prolactin, in SM
changed subcellular targeting of GLUT1-GFP fusion proteins
to an intracellular, mostly perinuclear, punctate pattern, as
seen with native GLUT1. Our previous studies showed that
GLUT1 targeting under this hormonal stimulation was a dy-
namic process. We demonstrated a basal constitutive
GLUT1 recycling pathway between an intracellular pool
and the cell surface, which targets most of the GLUT1 to
the plasma membrane in maintenance GM, and specifically
targets GLUT1 intracellularly upon exposure to SM con-
taining prolactin.
The aim of this work was to further study the intracellular

compartments involved in GLUT1 targeting, and to define the
intracellular trafficking mechanisms involved in the basal
recycling and in the intracellular targeting of GLUT1 in MEC.
For this we used known agents acting on Golgi and related
subcellular compartments and on GLUT1 and GLUT4 target-
ing in muscle and fat cells.

METHODS

Subcloning GLUT1 CDNA into GFP plasmid vectors. pEGFP-C1 and
pEGFP-N1 GFP plasmid vectors (#6084-1 and #6085-1, respectively, en-
hanced GFP (EGFP) plasmid vectors, Clontech Laboratories Inc., Palo Alto,
CA) were used. EGFP carries a red-shifted variant of wild-type GFP that
contains two amino acid substitutions that has been optimized for brighter
green fluorescence and higher expression in mammalian cells (10,11).
GLUT1 cDNA (12) was recovered from pHepG2 using Bam H1 restriction
digest or PCR. GLUT1 cDNA was subcloned into pEGFP-C1 and pEGFP-
N1, respectively, to create N- and C-terminus fusion of GLUT1 to GFP. All
recombinant vectors were sequenced to verify the correct orientation and
exclude mutations.

Cell culture and medium. CIT3 cells, kindly provided by M.C. Neville,
Ph.D., are a nonneoplastic cell line derived from mouse MEC (after being
selected from Comma-1-D cells for their ability to grow well on filters, form
tight junctions, and exhibit polarized transport) (9). Cells were maintained in
GM, which is a nutrient-defined basal medium (DMEM/F12) (Invitrogen,
Carlsbad, CA), containing 10 �g/mL insulin and 5 ng/mL EGF. To stimulate
differentiation by lactogenic hormones, the media was changed to SM, by
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adding prolactin 3 �g/mL and hydrocortisone 3 �g/mL, and withdrawing
EGF. Routine exposure to SM was 96 h before evaluating changes in GLUT1
subcellular targeting.

Transfection. Transient transfections were used to introduce the recombi-
nant vectors carrying GLUT1-EGFP fusion proteins into the cells. Liposome-
mediated transfection using LipoFectAmine Plus Reagent (#10964013, In-
vitrogen) was performed in 35-mm dishes, containing 5 � 105 cells per plate
(60–80% confluent), according to manufacturer’s instructions. Transient
transfections were checked for fluorescent signal at 48–72 h, when maximal
expression of the fluorescent signal was noted in 20–30% of the cells, based
on previous experiments (not shown). Since in our previous experiments the
behavior and intracellular distribution of the N- and C-fusion chimeras of
GLUT1 to EGFP (EGFP-GLUT1 and GLUT1-EGFP, respectively) were
consistently the same, further studies were carried out only with GLUT1-
EGFP.

Fluorescent microscopy. Fluorescent signal was detected using OLYM-
PUS iX-70 epifluorescent microscope. Images were captured by an uncooled
CCD camera (Optronics, DEI-750 CE Digital Output Model S60675). Expo-
sure was adjusted in a linear manner and separate color channels were merged
as indicated using Adobe Photoshop 5.0 software. For the study of changes
taking place over time and under different conditions, cells were grown on
round coverslips, and maintained in a 37°C chamber. Images were acquired
sequentially to avoid crossover. Time-lapse images were captured by Snappy
software and combined into a sequence using Macromedia Flash 4.0 software.
Each condition was studied at least three times and results were consistent.
Representative results are shown.

Inhibitors. Cells kept in GM or exposed to SM for 96 h were exposed to
brefeldin A (5 �M), bafilomycin A1 (800 nM), wortmannin (1 �M), or
staurosporine (2 �M). These optimal concentrations were determined based
on the range of concentrations cited in other studies (referred to below) and
pretesting different concentrations within that range (data not shown). Time-
lapse images of the changes taking place in GLUT1-EGFP fluorescent signal
subcellular targeting were recorded.

Brefeldin A is a macrocyclic lactone antiviral antibiotic synthesized from
palmitate by fungi. It has the ability to change the morphology of some
intracellular organelles of the central vacuolar system in eukaryotic cells,
representing their steady-state structure, which is affected by the extent of
membrane input and outflow. Brefeldin A causes rapid and reversible disas-
sembly of the Golgi apparatus and its mixing with the endoplasmic reticulum
(13,14).

Bafilomycin A1 is an antibiotic that originates from Streptomyces griseus.
It is a specific inhibitor of vacuolar proton pump type H�-adenosine triphos-
phatase (V-ATPase) in animal cells (15) that causes arrest of endosomal
acidification. It also inhibits the acidification of lysosomes and thus the
degradation of proteins in them (16). Bafilomycin A1 not only slows bulk
membrane flow, but causes additional inhibition of receptor recycling that is
dependent on a peptide internalization motif on the cytoplasmic domain (17).

Wortmannin is an antifungal antibiotic that originates from Penicillium
fumiculosum. It is a highly cell permeable specific inhibitor of phosphatidyl-
inositol 3-kinase (PI3 K) that is necessary for insulin-stimulated glucose
transport in myoblasts and adipocytes. In its presence GLUT1 and GLUT4
insulin-stimulated translocation to plasma membrane is inhibited (18–22).

Wortmannin also blocks the insulin independent GLUT1 constitutive basal
trafficking pathway in muscle cells that involves PI3 K (21,23).

Staurosporine is an antibiotic that originates from Streptomyces species. It
is a potent inhibitor of protein kinase C (PKC). Staurosporine decreases
insulin-induced glucose uptake in fat and muscle cells (24) by inhibiting
GLUT1 and GLUT4 trafficking to plasma membrane that is mediated via
PKC-dependent pathways.

This study was approved by the Institutional Review Board as part of the
research in Dr. Haney’s laboratory at the ARS/USDA Children’s Nutrition
Research Center, Baylor College of Medicine. Only cell lines were studied.

RESULTS

Brefeldin A. CIT3 transfected with GLUT1-EGFP and kept
in SM for 96 h showed rapid diffusion of GLUT1-EGFP signal
after treatment with 5 �M brefeldin A. The effect was fully
seen after approximately 1.5–2.0 min. Upon withdrawal of
brefeldin A, the process seemed to be fully reversible with
reassembly of the green fluorescent signal of the GLUT1-
EGFP perinuclear vesicles within 1.0–1.5 min (Fig. 1). As
expected, brefeldin A had no significant visible effect on
GLUT1-EGFP signal in GM (not shown).
Bafilomycin A1. CIT3 transfected with GLUT1-EGFP and

kept in SM for 96 h showed central coalescence of GLUT1-
EGFP signal with the loss of peripheral vesicles after treat-
ment with 800 nM bafilomycin A1 (Fig. 2). The effect was
seen after approximately 1 h and was not reversible upon
withdrawal of bafilomycin A1. Bafilomycin A1 had no visible
effect on GLUT1-EGFP signal in GM (data not shown).
Wortmannin. In GM 1 �M wortmannin caused internaliza-

tion of GLUT1-EGFP plasma membrane signal (Fig. 3). The
effect was seen after approximately 1–2 h. No reversibility of
the effect could be demonstrated upon withdrawal of the
wortmannin. The same effect was seen in SM after approxi-
mately 1 h with no reversibility upon withdrawal of the
wortmannin (Fig. 4).
Staurosporine. In GM 2 �M staurosporine caused internal-

ization of GLUT1-EGFP plasma membrane signal (Fig. 5). In
cells exposed to SM for 96 h, staurosporine caused central
coalescence of GLUT1-EGFP signal and loss of peripheral
vesicles signal (Fig. 6).

Figure 1. Brefeldin A causes reversible dif-
fusion of the fluorescent signal of GLUT1-
EGFP in SM. Numbers denotes frames taken
every 30 s. B and Bfa marks the frames taken
before and after the addition of brefeldin A. W
denotes frames after withdrawal of brefeldin
A. The figure plates are those were most
changes occur, i.e. within the first 2 min after
addition and withdrawal of brefeldin A. All
images are high power images at 100� mag-
nification. Bar � 1 �m.
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Figures 1–6 are also available as QuickTime movies at
http://www.technion.ac.il/yehudit/Arik-0707/.

DISCUSSION

We constructed fusion proteins of GLUT1 and GFP, and
expressed them in CIT3 mouse MEC to study GLUT1 target-
ing and recycling in living MEC in culture. In our previous
studies (not shown here), we demonstrated a basal constitutive
GLUT1 recycling pathway between an intracellular pool and

the cell surface, which targeted most GLUT1 to the plasma
membrane in maintenance GM. Upon exposure to SM-
containing prolactin, GLUT1 was specifically targeted intra-

Figure 2. Bafilomycin A1 causes central coalescence of GLUT1-EGFP with
loss of peripheral vesicles in SM. Time-lapse frames were captured every 5
min. The figure plates are from frames 20 min apart. All images captured with
1/15-s exposure time and are at 40� magnification. Bar � 5 �m.

Figure 3. Wortmannin causes internalization of GLUT1 signal in GM.
Time-lapse frames were captured every 5 min. The figure plates are from
frames 20 min apart. All images captured with ½-sec exposure time and are
at 60� magnification. Bar � 5 �m.

Figure 4. Wortmannin causes internalization of GLUT1 signal in SM. Time-
lapse frames were captured every 1 min. The numbers denotes the time in
minutes. B denotes before wortmannin was added to the medium.Wmarks the
frames taken after the addition of wortmannin. All the images are high power
images at 60� magnification. Bar � 5 �m.

Figure 5. Staurosporine causes internalization of GLUT1-EGFP in GM.
Time-lapse frames were captured every 2 min. The figure plates are from
frames 22 min apart. All images captured with 2-s exposure time and are at
30� magnification. Bar � 5 �m.
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cellularly. These changes occurred within hours and were in
accordance with previous studies (5,7). GLUT1 intracellular
targeting under the influence of lactogenic hormones was
further characterized to brefeldin A sensitive vesicles that may
be a subcompartment, derived from the cis-Golgi (7). The
vesicular rather than static nature of this compartment well
suits our current findings of dynamic transport system, which
may be related to the cell’s central vacuolar membrane traffic
system (14).
The suggestion that GLUT1 does not solely act at the

plasma membrane, but may also function in an intracellular
organelle, conceptually complements the well-known insulin-
regulated targeting of GLUT4 (25), and to a lesser extent of
GLUT1, to their site of action, the plasma membrane, in fat
and muscle cells. Sharing the same mechanisms of dynamic
regulation by subcellular targeting raises the question, whether
GLUT1 intracellular trafficking in MEC shares some of the
endocytic and exocytic pathways involved in GLUT4 target-
ing in fat and muscle cells. Thus, we studied agents affecting
the central vacuolar membrane trafficking system and the
Golgi complex, and agents known to affect GLUT1 and
GLUT4 targeting in muscle and fat cells.
It must be stressed that our findings are limited to mouse

MEC, and more specifically to the CIT3 cell line that we
studied, and cannot be currently generalized or implied to
humans or other mammals. The suggestion that glucose trans-
porters other than GLUT1 may be more significantly involved
in glucose regulation in MEC of other mammals during
lactation (6,26) needs to be addressed.
Another limitation of this study is the issue of mammary

cell-to-cell phenotypic variability in culture. Cell phenotype
could vary in many ways that may influence GLUT1 targeting
kinetics. This is an inherent limitation of a microscopic de-
scriptive study. To decrease any possible selection bias we
chose representative cells on a low power field before study-

ing them in high power. Although we repeated each experi-
ment to verify reproducibility of our results, such selection
bias cannot be fully excluded.
As a descriptive morphologic study, we did not deal with

cells’ ability to synthesize and secret lactose in culture, which
is not solely dependent on lactogenic hormones and may be
influenced by other factors, such as the intracellular matrix.
However, if these cells had expressed lactose, the issue of
cell-to-cell phenotypic variation would have been minimized.
This work forms a continuum with previous in vivo (5) and

in vitro (7) studies, thus further supporting our results within
their limited scope. Our methodological approach can be
applied to other primary MEC to generalize the conclusions.
In MEC taken from lactating rabbit, brefeldin A caused

dissociation of trans- but not medial-Golgi marker enzymes
(27). Previously, we demonstrated in fixed CIT3 cells that
under the influence of prolactin and hydrocortisone GLUT1 is
sequestered within the cell, and is diverted from normal sorting
pathways to a brefeldin A-sensitive compartment (7). Morpho-
logically, brefeldin A caused loss of the perinuclear compartment
of GLUT1, which may represent Golgi-derived vesicles (7). In
living CIT3 cells transfected with GLUT1-EGFP and kept in SM,
brefeldin A caused disruption of the Golgi stacks with diffusion
of the fluorescent signal of GLUT1, merging with, but not
staining, the endoplasmic reticulum. Upon withdrawal of brefel-
din A, the process seemed fully reversible with reassembly of the
perinuclear fluorescent signal of GLUT1-EGFP (Fig. 1). The full
effect was seen within 2–3 min [not 30 min as previously
described (27)], and was reversible within 1 min upon with-
drawal of the brefeldin A.
In fat and muscle cells, GLUT4, and to a lesser extent

GLUT1, is constitutively sequestered in the endosomal tubu-
lovesicular system, and moves to the cell surface in response
to insulin. In muscle cells arrest of endosomal acidification by
bafilomycin A1 results in rapid dose-dependent translocation
of GLUT4 from the cell interior to the plasma membrane
surface, mimicking insulin effect. This insulin-like effect of
bafilomycin A1 causes redistribution of GLUT1 and Rab4, a
regulatory component of the secretory and endocytic system,
as well (28). The mechanism by which arrest of endosomal
acidification by bafilomycin A1 causes translocation of
GLUT4 and GLUT1 is distal to the insulin receptor and
phosphatidylinositol 3-kinase (PI3 K) activation. Endosomal
pH is important in membrane dynamics and in the hormonally
regulated intracellular sorting machinery of glucose transport-
ers. In CIT3 cells kept in SM bafilomycin A1 caused central
coalescence of GLUT1-EGFP and the loss of peripheral ves-
icles (Fig. 2). The effect was not reversible upon withdrawal of
bafilomycin A1. We conclude that in living mouse MEC
prolactin causes intracellular targeting of GLUT1 by altering
rates of GLUT1 exocytosis and endocytosis. Arrest of endo-
somal acidification by bafilomycin A1 disrupts this recycling
process via endosomal compartments. The importance of en-
dosomal pH to the prolactin-induced hormonally regulated
sorting of GLUT1 in MEC, thus shares characteristics with
GLUT4 and GLUT1 insulin-dependent intracellular redistri-
bution in adipocytes.

Figure 6. Staurosporine causes central coalescence of GLUT1-EGFP vesi-
cles in SM. Time-lapse frames were captured every 2 min. The figure plates are
from frames 18 min apart. All images captured with ½-sec exposure time and are
at 60� magnification. Bar � 5 �m.
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Wortmannin is considered a specific inhibitor of PI3 K that
is necessary for insulin-stimulated glucose transport in myo-
blasts and adipocytes. In the presence of wortmannin GLUT1
and GLUT4 insulin-stimulated translocation to plasma mem-
brane was inhibited (18–22). Wortmannin also blocks a con-
stitutive basal GLUT1 trafficking pathway in muscle cells that
involves PI3 K but is independent of insulin, resulting in
sequestration of GLUT1 in a perinuclear compartment
(21,23). This seems to be a ubiquitous pathway used by other
cell types for basal glucose uptake by GLUT1, as shown in
fibroblasts (29,30). GLUT1 protein appears to recycle be-
tween an intracellular site and the plasma membrane, and PI3
K seems to have an important functional role in this recycling
by regulating membrane protein traffic. By inhibition of PI3 K,
wortmannin causes selective blockade of this protein recy-
cling with accumulation of glucose transporters in intracellu-
lar location in fibroblasts (29). In CIT3 mouse, MEC wort-
mannin caused internalization of GLUT1-EGFP plasma
membrane signal in GM (Fig. 3). We were not able to
demonstrate reversibility of the effect upon withdrawal of the
wortmannin. Similar effects of internalization and central
coalescence were seen in SM (Fig. 4). It seems that the effects
of wortmannin on GLUT1 in mouse MEC are independent of
prolactin, and are related to blockade of the constitutive basal
GLUT1 trafficking pathway. These findings further support
recycling of GLUT1 by exocytosis and endocytosis. Study of
the effects of wortmannin on the endosomal system and
GLUT4 recycling compartments in adipocytes (31) supports
the role of endosomal derived vacuoles and endosomal recy-
cling compartments, sensitive to wortmannin, for this process.
Staurosporine is a potent inhibitor of protein kinase C

(PKC). In fat and muscle cells, insulin increases glucose
uptake via a PKC-dependent pathway. Staurosporine inhibits
GLUT1 and GLUT4 trafficking to plasma membrane in adi-
pocytes (24). PKC is involved in insulin signaling in other cell
types as well, i.e. fibroblasts (32), resulting in GLUT1 recruit-
ment to plasma membrane. But PKC is also involved in
translocation of GLUT3 to plasma membrane in activated
platelets in response to thrombin (33), suggesting a common
PKC activation-mediated signaling pathway for recruitment of
glucose transporters to the cell surface to increase glucose
uptake (34). In CIT3 mouse MEC in GM staurosporine caused
internalization of GLUT1-EGFP plasma membrane signal
(Fig. 5). In SM, it caused central coalescence of GLUT1-
EGFP and loss of peripheral vesicles (Fig. 6). These findings
support the role of PKC in the sorting machinery controlling
GLUT1 recycling in MEC, as in many other cells. However,
since staurosporine had similar effects in GM and SM, we
cannot establish a role for PKC in the prolactin-regulated
GLUT1 intracellular trafficking and targeting.
It should be noted that both our GM and SM contained

insulin, thus limiting our conclusions regarding possible
mechanisms involved in the effects of wortmannin and stau-
rosporine on GLUT1 intracellular targeting.
Further studies, aimed directly at studying the roles of PI3

K and PKC in GLUT1 intracellular trafficking in MEC, pos-
sibly using medium deprived of insulin, are needed. Further
works will also have to define the underlying mechanisms that

allow relatively rapid changes in GLUT1 subcellular targeting
in response to prolactin. Possibly, this is related to phosphor-
ylation or dephosphorylation reaction. Alternatively, glycosyl-
ation may play a significant role (7). The marked effects of
bafilomycin A1 seen with the arrest of endosomal acidification
merits further study regarding the role of subpopulations of
endosomes and endosomal recycling compartments in GLUT1
basal recycling (31) and intracellular targeting in SM. Co-
localization studies using Rab proteins (e.g. Rab4, Rab5, and
Rab11) involved in the regulation of transport through
distinct domains on the endosomes have shown that endo-
somes are organized in compartments within the same
continuous membrane, which cooperatively generate a re-
cycling continuum (35).
In summary, we demonstrated a basal constitutive GLUT1

membrane-recycling pathway between an intracellular pool
and cell surface in CIT3 mouse MEC, which targets most of
GLUT1 to the plasma membrane in GM, and is common to
other cell types (29). It is responsible for maintaining basal
glucose uptake and may be regulated by PI3 K and PKC, thus
blocked by wortmannin and staurosporine. However, in MEC
there is also hormonally regulated cell type-specific, develop-
mental stage-specific sorting machinery for GLUT1 intracel-
lular targeting in lactation. Upon exposure to prolactin,
GLUT1 is specifically targeted intracellularly to a brefeldin
A-sensitive compartment (7), most likely via endosomal path-
ways, thus disrupted by bafilomycin A1. This quick mecha-
nism that supplies free glucose intracellularly for lactose
synthesis in the Golgi offers another level of regulation of
lactose synthesis by altering GLUT1 targeting within minutes
to hours, as demonstrated in vivo (5). The rapid responsive-
ness of GLUT1 targeting suggests that this machinery does
not require new protein synthesis, and may support glucose
transport as a rate-limiting step for lactose synthesis during
lactation.
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